CONCLUSIONS
Текст
The method of multispectral analysis of remote sensing data is considered and the assessment of the capabilities of multisensor imagery performed in a wide range of wavelengths from ultraviolet to infrared is carried out. Various combina- tions of data made it possible to georeference images, to reveal the detailed struc- ture of the analyzed scene, to study the spectral composition of the radiation of objects and to distinguish point sources by it, which is especially important, for ex- ample, for detecting fire centers and determining their coordinates. One of the very promising optoelectronic devices is a hyperspectrometer. The relevance of the work carried out in Russia on the creation of new types of hyperspectral modules is determined by their ability to extract the maximum information from optical radiation ascending from remotely sounded objects, as well as by the lagging of domestic developments outlined in the 90s of the last century from developments carried out abroad. The hyperspectral modules developed at "RDC "Reagent", JSC are not inferior in their technical characteristics and even surpass modern foreign aviation imaging spectrometers. In particular, this concerns the spatial resolution and the number of spectral channels of the modules. "RDC "Reagent", JSC has mastered the industrial production of hyperspectral modules in the UV, visible and near-infrared range. Full-scale tests of the developed and manufactured devices confirmed the correctness of the design solutions incorporated in them and the ability to confidently determine the type and state of probed natural and anthropo- genic objects based on hyperspectral sensing data in the interests of solving many scientific, industrial and other problems. In particular, it is shown that the joint analysis of data from different sensors allows a significant synergistic effect to be achieved. This book examines some hyperspectrometers developed at "RDC "Reagent", JSC, as well as a very interesting development - the UV sensor. Most of the book is devoted to describing the results of remote sensing of combustion and explosion processes in laboratory conditions. It has been experimentally established that spherical flames of lean (6-15% H2) hydrogen-air mixtures have a cellular structure. In mixtures containing 6-10% H2, the flames at the initial stage near the lower concentration limit propagate spherically symmetrically. Then the gravity field distorts the shape of the combus- tion front. Flames of mixtures containing 10-15% H2 propagate spherically sym- metrically. It is shown that the Boussinesq approximation is applicable to obtain cells with H2 <10%, taking into account the force of gravity. Calculations by the Boussinesq model in the absence of gravity do not give the formation of cells. The use of the Navier-Stokes equations for a compressible medium makes it possible to describe the spherically symmetric mode of propagation of a cellular flame under microgravity conditions. It is shown that the analysis of experimental data on flame propagation in lean mixtures does not make it possible to take apart the calculation results using a two-dimensional model with and without convection. It has been shown experimentally that additives of isobutene С4Н8 in amounts below the lower concentration limit (up to 1.5%) lead to an increase, and additives of СО2 to 15% to a decrease in the flame propagation velocity in lean hydrogen- air mixtures. The reasons for the acceleration of combustion in the presence of a hydrocarbon additive are considered. Using the combustion of hydrogen-air mixtures (30% and 15% H2) as an ex - ample, it is shown that the detected light emission inhomogeneities can be associ- ated with the presence of acoustic waves. It was found that the flame propagation velocities in a stoichiometric hydrogen-air mixture with central spark initiation do not depend on the material of the inner surface of the reactor (stainless steel, TiO2, Ta, Pt) but depend on the shape of the inner surface of the reactor. It is shown that spark-initiated flames of lean hydrogen mixtures (8% -15% H2 in air) pass through aluminum mesh spheres with a cell size of 0.04-0.1 mm 2, while the flame of a mixture of 15% H2 in air accelerates after passing through an obstacle. In the presence of an obstacle during the propagation of flame in mix- tures of 10% and 15% H2, acoustic oscillations of the gas arise in the reactor. The onset of oscillations occurs earlier in time in the presence of a sphere of a smaller diameter. The flame of a mixture of 7.5% H2 in air does not pass through the mesh spheres. It was found that the flame of a mixture of 8% natural gas with air passes through the mesh spheres. However, after the obstacle, the flame velocity remains the same, while acoustic oscillations are not observed. It is shown that the active centers of combustion of methane and hydrogen, which determine the propagation of the flame, have a different chemical nature. In a static bypass installation with a tangential inlet of the mixture under study, the effect of thermal ignition of combustible mixtures at reactor temperatures sig- nificantly lower than the thermal ignition temperature was experimentally discov- ered. In this case, the difference between the temperature of the reactor and the temperature of thermal ignition can reach more than 150 K. This effect is caused primarily by the presence of centripetal forces, which inevitably arise during the formation of a vortex gas flow. The result of the action of these forces on the flow is the radial stratification of the gas in terms of density and, therefore, in terms of temperatures. In the central region, the hottest and least mobile gas is formed and, in addition, it is well insulated from the walls of the reactor. The possibility of mixing it with fresh cold masses of gas is excluded. The pressure increase in the reactor caused by the mixture admission leads to adiabatic compression and additional heating of the gas. The centripetal forces contribute to the fact that the heat, which begins to release with the onset of a chemical reaction, accumulates in the central region of the reactor, thus creating favorable conditions for thermal ignition. By the example of combustion of stoichiometric mixtures of n-pentane (C5H12) with air, diluted with carbon dioxide (CO2) and argon (Ar), at a total atmospheric pressure, it is shown that when the propagation of the FF flame front from spheri- cal to propagation in a tube occurs, phenomena arise, caused by the instability of a flat flame. It is shown that, upon deceleration of the FF near the end wall of the re- actor, a smooth FF acquires a cellular structure. It is shown that qualitative model- ing of the results obtained is possible when analyzing the Navier-Stokes equations for a compressible medium in the approximation of a small Mach number. In this book, using the methods of 4D optical spectroscopy and color high-speed filming, the features of combustion in flame cells caused by hydrodynamic instability are experimentally established for the first time. In addition, as a result of direct experimental verification of Landau's hypothe- sis about the hydrodynamic instability of a flat flame front, the relationship was es- tablished between the main factors responsible for the instability of hydrodynamic and acoustic flames. This means that in the cell of the combustion front, caused by an instability of any nature (thermodiffusion, hydrodynamic, thermoacoustic), a complete cycle of transformations is carried out, which is characteristic of a given combustion process. It is shown that any combustion cell is essentially a separate “chemical reactor”, in each of which the process of complete chemical transfor- mation is carried out. The results obtained on the spectral study and visualization of the propagation of fronts of unstable flames are important in solving the issues of explosion safety for volumes of complex geometry. A cellular mode of combustion of a 40% mixture of hydrogen with air in the presence of platinum wire and foil in the range of 270-350 °C at atmospheric pres- sure was found. Using the methods of routine and 4D optical spectroscopy, which allows registering the intensity of the optical spectrum simultaneously depending on the wavelength, time and coordinate, and color high-speed filming, combus- tion cells caused by catalytic instability have been experimentally detected for the first time. It was found that the cellular mode is determined by the catalytic combustion of hydrogen on Pt - containing particles formed during the decompo- sition of unstable platinum oxide in the gas phase. It is shown that the temperature dependence of the delays of hydrogen ignition on a platinum wire and foil in both stationary and rotating gases corresponds to an activation energy of 19 ± 3 kcal/ mol, which is close to the activation energy of branching of the reaction chains of hydrogen oxidation. The impurity origin of the 552 nm emitting band, which is of- ten recorded during the combustion of gas and heterogeneous mixtures, has been established. The results obtained are of immediate importance for the develop- ment of Catalytic Stabilization (CS) technology and the development of catalysts with increased activity. The results are also important for verification of theoreti- cal concepts of the propagation of dust and gas flames. It has been shown experimentally that in the case of flame penetration through an obstacle, gas-dynamic factors, for example, flame turbulization, can determine the kinetics of the process, including the transition of low-temperature combustion of a hydrocarbon to a high-temperature regime. It has been established that the flame front after a single obstacle does not arise in the immediate vicinity of the obstacle. The first ignition site can be observed relatively far from the obstacle surface. It is shown that the use of a mesh sphere as an obstacle leads to an increase in the length of the flame "jump" behind the obsta- cle in comparison with a round hole. It has been shown that two or more obstacles, both spherical and planar, noticeably suppress the propagation of the flame, which can be associated with both heat losses from the flame front and with heteroge- neous termination of reaction chains at the obstacle. It has been experimentally shown that below the limit of penetration of a flame of a dilute methane-oxygen mixture through a flat obstacle with a single hole, for an obstacle in the form of a funnel, the flame does not penetrate from the side of the confuser, but penetrates from the side of the diffuser. Numerical modeling of the Navier-Stokes equations for a compressible medium in the approximation of a small Mach number with the representation of a chemical process as a single reaction and the simplest chain mechanism made it possible to describe qualitatively the experimental features. Within the framework of an approximate consideration using the Navier-Stokes equations in a compressible reacting medium, the features of flame propagation through a conical obstacle with additional holes on the converging generatrix are described qualitatively. In other words, the flame does not penetrate through the central hole of the converging tube, but only penetrates through the central hole of the diffuser, even if there are holes in the generatrix of the cone. The simulation carried out in small volumes suggests that in the event of an emergency situation, the flame will not penetrate through the open valve located in the center of the confuser located in the pipe. In this case, the most effective double-sided flame arrester in the pipe can be a system of two confusers, the funnels of which are located on the pipe axis along the gas flow and against it, since an emergency situation can occur before and after the obstacle. A hole or valve can be located in the middle. The features of the penetration of the flame front through rectangular holes in comparison with round holes were experimentally studied using color filming and visualization of a gas flow. It is shown that the length of the “flame jump” after the hole in the obstacle is mainly determined by the time of occurrence of the laminar- turbulent transition, and not by the ignition delay period. It was found that C2 radicals in detectable amounts and the main heat release in the process are observed after the flame passes the first obstacle by using 4D spec- troscopy combined with high-speed color filming, i.e. after turbulization of the gas flow. The obtained result means that the used experimental technique makes it possible to separate in time and space “cold” and “hot” flames in one experiment. The result obtained is also important for the verification of numerical models of methane combustion. In addition, the results obtained are important for solving explosion safety problems for volumes with complex geometrical arrangement. It was found that the ignition temperature of a 40% H2 - air mixture in the presence of metallic palladium (70 °C, 1 atm) is ~ 200 °C lower than over the platinum surface (260 °C, 1 atm). In addition, Pd initiates the ignition of mixtures (30÷60% H2 + 70÷40% CH4)stoich + air; Pt foil does not initiate combustion of these mixtures up to 450 °C. The effective activation energy of ignition over Pd is estimated as ~ 3.5 kcal/mol. It was found that the temperature of the ignition limit above the palladium surface at 1.75 atm for mixtures of 30% methane + 70% hydrogen + air (θ=0.9, T=317 °C) and 30% propane + 70% hydrogen + air (θ=1, 106 °C), measured by the “approach from below” method by temperature, decreases during subsequent ignitions and is 270 °C for a mixture containing hydrogen - methane and 32 °C for a mixture containing hydrogen and propane. The flammability limit returns to the initial value after the reactor is treated with oxygen or air, i.e. hysteresis takes place. The temperature of the ignition limit of mixtures 30% (C2, C4, C5, C6) + 70% H2 + air (θ=0.6, 1.1, 1.2, 1.2, respectively) over the palladium surface is 19÷35 0C at 1,75 atm. There is no hysteresis. It is shown that the lean (θ=0.6) mixture of 30% ethane + 70% hydrogen + air has the lowest temperature of the ignition limit: 24 0C at 1 atm. The effective activation energy for the ignition of mixtures over palladium is estimated as ~ 2.4 ± 1 kcal/mol. It was found that the separation of the CH and Na emission bands in time during the combustion of a mixture of 30% pro- pane + 70% H2 + air (θ=1), found in this work, is due to the occurrence of hydro- dynamic instability of the flame when it touches the end of the cylindrical reactor. It was found that the ignition temperatures of hydrogen - oxygen and hydro - gen - methane - oxygen mixtures under the pressure of heated wires of palladium, platinum, nichrome and kanthal (fechral) at a total pressure of 40 Torr increase with a decrease in the hydrogen content in the mixture. Only heated palladium wire has a noticeable catalytic effect. A qualitative numerical calculation made it possible to reveal the role of the additional branching reaction H + HO2 → 2OH in the process of ignition initiation by a heated wire. Copper nanopowders are obtained by the method of hydrogen reduction (chemical-metallurgical method) and thermal decomposition of copper citrate and formate. It was shown that copper nanopowder synthesized from copper citrate is not pyrophoric. Combustion of this copper nanopowder can be initiated by an external source, with the combustion wave velocity 1.3 ± 0.3 mm/s. The nanopow- der has a ~ 4 times larger specific surface (45 ± 5 m2/g) than the nanopowder obtained by the chemical-metallurgical method. It practically does not contain oxides and is stable in atmospheric air. Copper nanopowder obtained by the chemical-metallurgical method is pyrophoric and therefore requires passivation, but its passivation leads to the formation of noticeable amounts of copper ox- ides. The combustion rates of passivated and non-passivated copper nanopowder obtained by the chemical-metallurgical method are the same and amount to 0.3 ± 0.04 mm/s. The dynamics of temperature fields during the ignition and com- bustion of copper nanopowders obtained by various methods has been studied. Tungsten nanopowders are synthesized by reduction of tungsten trioxide with hydrogen (chemical metallurgy method) at 440 ÷ 640 °C from samples with dif- ferent specific surface: 2 m2/g (1), 11 m2/g (2), 0.8 m2/g (3). It is shown that the W nanopowder synthesized at 640 °C for all three precursors used is non-pyrophoric α-W. Its combustion can be initiated by an external source. Combustion develops in a spatially non-uniform regime. Nanopowder synthesized at 480 °C from tung- sten oxide of grades 1 and 2 is a mixture of α-W, β-W and WO2.9. This powder is pyrophoric. It was found that the passivated W nanopowder synthesized at 480 °C of grade 3 tungsten oxide is β−W with traces of WO3 and WO 2.9. Temperature range of synthesis β−W, obtained in the work is very narrow: 470÷490 °C. The specific surface area of α-W is 10 ± 2 m2/g. For the β-W mixture with traces of WO3 and WO2.9 it is 18 ± 1 m 2/g. The dynamics of temperature fields during the ignition and combustion of tungsten nanopowders obtained at different tempera- tures has been studied. An experimental determination of the features of combustion of compact samples made of non-passivated iron nanopowders and the effect of the porosity of these compact samples on the dynamics of their heating in air are described. It is shown that the propagation velocity of the combustion front and the maxi - mum combustion temperature of compacted samples made of non-passivated iron nanopowders decrease with increasing compact density.
Список литературы

1. Vision system overview, C&PS Flight Technical Services, 2013. https://www.mygdc.com/ assets / public_files / gdc_services / pilot_services / presentations / Vision_Systems_Overview.pdf

2. Rodionov I. D., Rodionov A. I., Vedeshin L. A., Vinogradov A. N., Yegorov V.V.,. Kalinin A.P. Aviation hyperspectral complexes for solving problems of remote sensing, Earth exploration from space. 2013. No. 6. P. 81-93.

3. Kalinin A. P., Orlov A. G., Rodionov A. I. Troshin K. Ya. Demonstration of the possibility of studying combustion and explosion processes using remote hyperspectral sensing, Physical-chemical kinetics in gas dynamics. 2009. Volume 8. 12 p. http://www.chemphys.edu.ru/pdf/2009-06-18-001.pdf

4. Kalinin A. P., Troshin K. Ya. Orlov A. G. Rodionov A. I. Hyperspectrometer as a system for monitoring and studying combustion and explosion processes, Sensors and Systems, 2008, No. 12, pp.19-21.

5. RF patent. Vinogradov A. N., Kalinin A. P., Rodionov I. D., Rodionov A. I., Rodionova I. P., Rubtsov N. M., Chernysh V. I., Tsvetkov G. I., Troshin K.Ya. Device for remote study of combustion and explosion processes using hyperspectrometry and high-speed photography, Utility model. Patent No. 158856 dated July 22, 2015 Published on January 20, 2016 Bull. No. 2.

6. Belov A. A., Egorov V. V., Kalinin A. P., Korovin, Rodionov A. I., Rodionov I. D., Stepanov S. N. Ultraviolet Monophoton Sensor "Korona" Automation and Remote Control, 2014, Vol. 75, No. 12, pp. 345-349, Pleiades Publishing, Ltd., 2014. (ISSN 0005-1179).

7. Ishimaru A. Wave Propagation and Scattering in Random Media. M.: Mir. 1980. Vol. 1. 280 p.

8. Nepobedimy S. P., Rodionov I. D., Vorontsov D. V., Orlov A. G., Kalashnikov S. K., Kalinin A. P., Ovchinnikov M. Yu., Rodionov A. I., Shilov I. B., Lyubimov V. N., Osipov A. F. Hyperspectral Earth Remote Sensing, Reports of the Academy of Sciences. 2004. Vol. 397. No. 1. P. 45-48.

9. Rodionov I. D., Rodionov A. I., Vedeshin L. A., Vinogradov A. N., Yegorov V. V., Kalinin A. P. Aviation hyperspectral complexes for solving problems of remote sensing, Earth exploration from space. 2013. No. 6. P. 81-93.

10. Yegorov V. V., Kalinin A. P., Rodionov I. D., Rodionova I. P., Orlov A. G. Hyperspectrometer - as an element of an intelligent technical vision system, Sensors and systems. 2007. No. 8, P. 33-35.

11. Vinogradov A. N., Yegorov V. V., Kalinin A. P., Rodionov A. I., Rodionov I. D. Onboard hyperspectrometer of visible and near infrared range with high spatial resolution. Contemporary problems of telecommuting. Sensing the Earth from space. 2012. Vol. 8. Number 2. P. 101-107.

12. E.L.Akim, P.Behr, K.Bries, V.V.Egorov, Е.Yu.Fedunin, A.P.Kalinin, S.K.Kalashnikov, K.-H. Kolk, S.Montenegro, A.I.Rodionov, I.D.Rodionov, M.Yu.Ovchinnikov, A.G.Orlov, S.Pletner, B.R.Shub, L.A.Vedeshin, D.V.Vorontsov, THE FIRE INFRARED-HYPERSPECTRAL MONITORING (Russian – Germany Proposals for an International Earth Observation Mission), Preprint of the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences. № 32, 36 pp, Moscow, 2004.

13. Belov A. A., Yegorov V. V., Kalinin A. P., Korovin N. A., Rodionov A. I., Rodionov I. D., Stepanov S. N. Ultraviolet monophotonic sensor “Corona”. Sensors and systems. No. 12. 2012. P. 58-60.

14. Belov A. A., Yegorov V. V., Kalinin A. P., Korovin, Rodionov A. I., Rodionov I. D., Stepanov S. N. Ultraviolet monophotonic sensor “Corona” Automation and Remote Control, 2014, Vol. 75, No. 12, pp. 345-349.

15. Belov A. A., Yegorov V. V., Kalinin A.P., Krysiuk I. V., Osipov A. F., Rodionov A. I., Rodionov I. D., Stepanov S. N. Universal ultraviolet monophotonic sensor. Preprint IPMech RAS, No. 935, 48p, 2010.

16. Belov A. A., Yegorov V. V., Kalinin A. P., Korovin N. A., Rodionov I.D., Stepanov S. N. Application of the monophotonic sensor "Corona" for remote monitoring of the state of high-voltage equipment Chief Power Engineer No. 6 2012 p. 12-17.

17. Belov A. A., A.N. Vinogradov, Yegorov V. V., Zavalishin O. I., Kalinin A. P., Korovin N. A., Rodionov A. I., Rodionov I. D., Possibilities of using position-sensitive monophotonic UV sensors for aircraft navigation in the airfield area, Sensors and systems. 2014. No. 1. 37-42.

18. Ronney, P. D., “Premixed-Gas Flames,” in: Microgravity Combustion: Fires in Free Fall (H. Ross, Ed.), Academic Press, London, U.K., 2001, pp. 35-82.

19. F.A. Williams , J.F.Grcar, A hypothetical burning-velocity formula for very lean hydrogen–air mixtures , Proc. of the Combustion Institute. 2009. V. 32. №1. P.1351 -1360.

20. Nonsteady flame propagation, ed. by George H.Markstein, Perg.Press, Oxford, London, 1964.

21. Ya.B. Zeldovich, Selected Works. Chemical Physics and Hydrodynamics, p/r ak. Yu.A. Khariton, M :; Publishing house "Nauka", 1984, 379 pp.

22. Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combustion Theory and Modelling, Vol. 11, No. 3, Р. 427–453.

23. H. F. Coward and F. Brinsley, Influence of additives on flames, J. Chem. Soc. 105 (1914) 1859-1866.

24. P.D.Ronney, Near-limit flame structures at low Lewis number, Comb, and Flame, 1990,V.82,P.1-14.

25. Ya.B. Zeldovich, N. P. Drozdov, Diffusion phenomena at the limits of flame propagation, Journal of Physical Chemistry, 1943, Vol. 17, issue 3, pp. 134-144.

26. N.M.Rubtsov, B.S.Seplyarsky, G.I.Tsvetkov, V.I.Chernysh, Numerical investigation of the effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure , Mendeleev Communications, 2008, V.18, P.220-222.

27. Rubtsov N.M., Seplyarsky B.S., Troshin K.Ya., Chernysh V.I., Tsvetkov G.I., Features of the propagation of laminar spherical flames initiated by a spark discharge in mixtures of methane, pentane and hydrogen with air at atmospheric pressure // Journal of Physical Chemistry, 2011, Vol. 85, issue 10, pp. 1834-1844.

28. Rubtsov N.M., Kotelkin V.D. Seplyarskii B.S., Tsvetkov G.I.,Chernysh V.I. Investigation into the combustion of lean hydrogen–air mixtures at atmospheric pressure by means of high-speed cinematography, Mendeleev Communications, 2011, V.21, N5,p. 215-217.

29. B. Lewis, G. Von Elbe, Combustion, Explosions and Flame in Gases, New York, London.: Acad.Press, 1987, P.566.

30. Dahoe A.E. Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions, Journal of Loss Prevention in the Process Industries. 2005. V.18. P.152-169.

31. Rubtsov N. M., Kotelkin V. D., Seplyarskiy B. S., Tsvetkov G. I., Chernysh V. I. Chemical physics and mesoscopy, V.13, issue 3, pp. 331-339.

32. G. Backstrom, Simple Fields of Physics by Finite Element Analysis (Paperback), GB Publishing (2005), P 324.

33. V. Polezhaev, S. Nikitin, Thermoacoustics and heat transfer in an enclosure induced by a wall heating, 16th International Congress on Sound and Vibration, Kraków, Poland, 5–9 July 2009, p.2-8

34. Rayleigh J.W. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Phil. Mag., 1916. V. 32. P. 529-546.

35. N. M. Rubtsov, V. V. Azatyan, D. I. Baklanov, G. I.Tsvetkov, V. I. Chernysh, The effect of chemically active additives on the detonation wave velocity and detonation limits in poor fuel mixtures, Theoretical foundations of Chemical Technology, 2007, Vol. 41, issue 2, 166-175.

36. T.C. Lieuwen. Experimental investigation of limit-cycle oscillations, Journal of Propulsion and Power, 2002, V.18, P.61-67.

37. Larionov V. M., Zaripov R. G. Gas self-oscillations in combustion installations. Kazan: Publishing House of Kazan State Tech. Univer., 2003. 227 p.

38. Kampen, J. F. van, Acoustic pressure oscillations induced by confined turbulent premixed natural gas flames, PhD thesis, University of Twente, Enschede, The Netherlands, March 2006, ISBN 90-365-2277-3, Printed by Febodruk BV, Enschede, The Netherlands.

39. Williams, F. A. (1985) Combustion Theory. 2nd Ed., The Benjamin/Cummings Pub. Co., Menlo Park, Ca.

40. Ya. B. Zeldovich, G. A. Barenblatt, D.V. Makhviladze, A.B. Librovich, Mathematical theory of flame propagation, Moscow, Publishing house of the AS of the USSR, 1980, 620 pp.

41. Zeldovich Ya. B., Structure and stability of a stationary laminar flame at moderately high Reynolds numbers, Chernogolovka: Publishing house of the AS of the USSR, Preprint OIKhF, 1979, 36 pp.

42. Nickolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya.Troshin, Victor I.Chrenysh, Georgii I.Tsvetkov, Initiation and propagation of laminar spherical flames at atmospheric pressure, Mendeleev Comm., 2011, Vol. 21, P.218-221.

43. J. W. S. Rayleigh, The theory of sound. New York: Dover, 1945.

44. Putnam A.A., Dennis W.R. Organ-pipe oscillations in a burner with deep ports, JASA. 1956. Vol.28. R.260-268.

45. Al-Shahrany, AS, Bradley, D., Lawes, M., Liu, K. and Woolley, R., Darrieus-Landau and thermo-acoustic instabilities in closed vessel explosions, Combustion Science and Technology, 2006, V. 178, N10, P. 1771 -1802.

46. Maxwell, G.B. and Wheeler, R.V., Some flame characteristics of motor fuels, Ind. Eng. Chem., 1928, V. 20, 1041-1044.

47. Megalchi, M. and Keck, J.C., Burning velocities of mixtures of air with methanol, isooctane and indolene at high pressure and temperature, Combust. Flame, 1982, V. 48, P. 191-210.

48. Clanet, C., Searby, G., (1998), First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett., 27, 3867-3870.

49. Clavin, P. Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech. 1994, 26, 321-352.25. Nickolai M.Rubtsov, Boris S.Seplyarskii, Kirill Ya.Troshin, Victor I.Chrenysh, Georgii I.Tsvetkov, Initiation and propagation of laminar spherical flames at atmospheric pressure, Mendeleev Comm., 2011, T.21, P.218-221.

50. J. W. S. Rayleigh, The theory of sound. New York: Dover, 1945.

51. Putnam A.A., Dennis W.R. Organ-pipe oscillations in a burner with deep ports, JASA. 1956. Vol.28. Р.260-268.

52. Al-Shahrany, A. S. , Bradley, D. , Lawes, M. , Liu, K. and Woolley, R., Darrieus-Landau and thermo-acoustic instabilities in closed vessel explosions, Combustion Science and Technology, 2006, V.178, N10, P.1771 -1802.

53. Maxwell, G.B. and Wheeler, R.V., Some flame characteristics of motor fuels, Ind. Eng. Chem., 1928, V.20, 1041–1044.

54. Megalchi, M. and Keck, J.C., Burning velocities of mixtures of air with methanol, isooctane and indolene at high pressure and temperature, Combust. Flame, 1982, V.48, P.191–210.

55. Clanet, C. , Searby, G., (1998), First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett., 27, 3867-3870.

56. Clavin, P. Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech. 1994, 26, 321-352.

57. I. P. Solovyanova, I. S. Shabunin, Theory of wave processes. Acoustic waves, Yekaterinburg: SEI HVE USTU-UPI, ISBN 5-321-00398 X, 2004. P. 142

58. Teodorczyk Α., Lee J.H.S., Knystautas R.: The Structure of Fast Turbulent Flames in Very Rough, Obstacle-Filled Channels. Twenty-Third Symposium (Int.) on Combustion, The Combustion Institute 1990, pp. 735-741.

59. Gorev V. A. , Miroshnikov S. N., Accelerating combustion in gas volumes, Chem. Physics, 1982, No. 6, pp. 854-858.

60. Moen I.O., Donato Μ., Knystautas R., Lee J.H. and Wagner H.G.: Turbulent Flame Propagation and Acceleration in the Presence of Obstacles, Gasdynamics of Detonations and Explosions. Progress in Astronautics and Aeronautics. 1981, No. 75, pp. 33-47.

61. Wagner H.G.: Some Experiments about Flame Acceleration. Proc. International Conference on Fuel-Air Explosions. SM Study 16, University of Waterloo Press, Montreal 1981, pp.77-99.

62. Nikolayev Yu.A., Topchiyan M. E. Calculation of equilibrium flows in detonation waves in gases, Physics of Combustion and Explosion, 1977, Vol. 13b No. 3, pp. 393-404.

63. A. S. Sokolik, Self-ignition, flame and detonation in gases. M: Publishing house of the AS of the USSR, 1960, 470 pp.

64. Fischer V., Pantow E. and Kratzel T., Propagation, decay and re-ignition of detonations in technical structures , in “Gaseous and heterogeneous detonations:Science to applications”, Moscow: ENASH Publishers,1999, P. 197.

65. Rubtsov N. M., Tsvetkov G. I., Chernysh V.I. Different nature of the action of small active additives on the ignition of hydrogen and methane. Kinetics and catalysis. 2007. Vol. 49. No. 3. P. 363.

66. N. M. Rubtsov, B.S. Seplyarsky, G. I. Tsvetkov, V. I. Chernysh, Influence of vapors of organometallic compounds on the processes of ignition and combustion of hydrogen, propylene and natural gas, Theoretical Foundations of Chemical Technology, 2009, Vol. 43, No. 2, pp. 187–193

67. J.H.S. Lee, R. Knystautas and C.K. Chan, Turbulent Flame Propagation in Obstacle-Filled Tubes, in 20th Symposium (International) on Combustion, The Combustion Institute, 1985, P. 1663.

68. C.K. Chan, J.H.S. Lee, I.O. Moen and P. Thibault, Turbulent Flame Acceleration and Pressure Development in Tubes, In Proc. of the First Specialist Meeting (International) of the Combustion Institute, Bordeaux, France, 1981, P.479.

69. C.J.M. Van Wingerden and J.P. Zeeuwen, Investigation of the Explosion-Enhancing Properties of a Pipe-Rack-Like Obstacle Array, Progress in Astronautics and Aeronautics 1986, V.106, P.53.

70. J.C. Cummings, J.R. Torczynski and W.B. Benedick, Flame Acceleration in Mixtures of Hydrogen and Air, Sandia National Laboratory Report, SAND-86-O173, 1987.

71. W. Breitung, C. Chan, S. Dorofeev. A. Eder, B. Gelfand, M. Heitsch, R. Klein, A. Malliakos, E. Shepherd, E. Studer, P. Thibault, State-of-the-Art Report On Flame Acceleration And Deflagration-to-Detonation Transition In Nuclear Safety, Nuclear Safety NEA/CSNI/R 2000, OECD Nuclear Energy Agency, http://www.nea.fr.

72. Nickolai M. Rubtsov, The Modes of Gaseous Combustion, Springer International Publishing Switzerland 2016, 294 P.

73. Poinsot, T. and D. Veynante. Theoretical and Numerical Combustion, 2001, RT Edwards, Flourtown, PA.

74. Zeldovich, Y.B.: Selected Works. Chemical Physics and Hydrodynamics. Nauka, Moscow, 1980, (in Russian).

75. Laurent Joly P. Chassaing, V. Chapin, J.N. Reinaud, J. Micallef, J. Suarez, L. Bretonnet, J. Fontane, Baroclinic Instabilities, ENSICA - Département de Mécanique des Fluides, Variable Density Turbulent Flows – Villanova i la Geltru – 2003, oatao.univ-toulouse.fr›2366/.

76. S. B. Pope, Turbulemt premixed Flames, Ann. Rev. Fluid Mech., 1987, V. 19, P. 237.

77. Bray K.N.C. Turbulent flows with premixed reactants. In P.A. Libby and F.A. Williams, editors, Turbulent Reacting Flows, volume 44 of Topics in Applied Physics, chapter 4, pages 115–183. Springer Verlag, 1980.

78. A. A. Borisov, V. A. Smetanyuk, K. Ya. Troshin, and I.O. Shamshin, Self-ignition in gas vortices, Gorenie i vzryv (Moskva) – Combustion and explosion, 2016, V. 9 no. 1, P.219 (in Russian).

79. Khalil, A.E.E., and Gupta, A.K., Fuel Flexible Distributed Combustion With Swirl For Gas Turbine Applications, Applied Energy, 2013, V. 109, P. 2749.

80. Khalil, A.E.E., and Gupta, A.K., Swirling Flowfield for Colorless Distributed Combustion, Applied Energy, 2014, V. 113, P. 208.

81. Margolin,A.D., and V. P.Karpov. Combustion of rotating gas, Dokl. AN USSR, 1974, V.216, P.346.

82. Babkin, V. S., A.M. Badalyan, A. V. Borisenko, and V. V. Zamashchikov. Flame extinction in rotating gas, Combust. Explo. Shock Waves, 1982, V.18, P.272.

83. Ishizuka, S. Flame propagation along a vortex axis, 2002, Prog. Energ. Combust. Sci.,V. 28, P.477.

84. Zel’dovich, Ya.B., B. E. Gelfand, S.A. Tsyganov, S.M. Frolov, and A.N. Polenov. Concentration and temperature nonuniformities of combustible mixtures as reason for pressure waves generation. Dynamics of explosions. Eds. A. Borisov, A. L. Kuhl, J.R. Bowen, and J.-C. Leyer, 1988, Progress in astronautics and aeronautics ser. Washington, D.C., AIAA, V. 114, P.99.

85. K. Ya. Troshin, I. O. Shamshin, V. A. Smetanyuk, A. A. Borisov, Self-ignition and combustion of gas mixtures in a volume with a eddy flow, Chemical Physics, 2017, V. 36, No. 11, p. 1-12.

86. Borisov, A. A., N. M. Rubtsov, G. I. Skachkov, and K. Ya. Troshin. 2012. Gas-phase spontaneous ignition of hydrocarbons. Russ. J. Phys. Chem. B, V.6, P. 517.

87. Nonsteady flame propagation, ed. by George H.Markstein, Perg.Press, Oxford, London, 1964.

88. Landau L., On the theory of slow combustion. Acta Phys.-Chim. URSS, 1944, 19, 77-85.

89. F.A. Williams, J.F.Grcar, A hypothetical burning-velocity formula for very lean hydrogen–air mixtures, Proc. of the Combustion Institute. 2009. V. 32. №1. P.1351 -1360.

90. Ya.B. Zeldovich, Selected Works. Chemical Physics and Hydrodynamics, p/r ak. Yu .A. Khariton, M:; Publishing house "Nauka", 1984, 379 P.

91. B. Lewis, G. Von Elbe, Combustion, Explosions and Flame in Gases, New York, London: Acad.Press, 1987, P.566.

92. Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations,Acta Astronaut., 1977, 4. 1177-1206.

93. Clavin, P.,Williams, F.A., Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity // J. Fluid Mech., 1982, 116, P. 251-282.

94. Pelcé, P. , Clavin, P. Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flame. J. Fluid Mech. 1982. 124, 219-237.

95. Kampen, J. F. van, Acoustic pressure oscillations induced by confined turbulent premixed natural gas flames, PhD thesis, University of Twente, Enschede, The Netherlands, March 2006, ISBN 90-365-2277-3, Printed by Febodruk BV, Enschede, The Netherlands.

96. Ronney, P. D., “Premixed-Gas Flames,” in: Microgravity Combustion: Fires in Free Fall (H. Ross, Ed.), Academic Press, London, U.K., 2001, pp. 35-82

97. Clanet, C., Searby, G., (1998), First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett., 27, 3867-3870.

98. Ya.B. Zeldovich, G. A. Barenblatt, D.V. Makhviladze, A. B. Librovich, Mathematical theory of flame propagation, M., Publishing House of AS of USSR, 1980, 620 P.

99. Kalinin A. P., Orlov A. G., Rodionov A. I., Troshin K.Ya., Demonstration of the possibility of studying combustion and explosion processes using remote hyperspectral sensing, Physicochemical kinetics in gas dynamics, www.chemphys .edu.ru / pdf / 2009-06-18-001.pdf

100. Vinogradov A. N., Yegorov V. V., Kalinin A. P., Melnikova E. M., Rodionov A. I., Rodionov I. D. Line of hyperspectral sensors of the optical range: Preprint of SRI of RAS Pr-2176, 2015.16 p.

101. Yegorov V. V., Kalinin A. P., Rodionov I. D., Rodionova I. P., Orlov A. G., Hyperspectrometer as an element of an intelligent technical vision system // Sensors and Systems, 2007, No. 8, pp. 33-35

102. Thomas Alasard, Low Mach number limit of the full Navier-Stokes equations, Archive for Rational Mechanics and Analysis 180 (2006), no. 1, 1-73.

103. F. Nicoud, Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows, Journal of Computational Physics 2000, 158, 71.

104. Williams, F. A. (1985) Combustion Theory. 2nd Ed., The Benjamin/Cummings Pub. Co., Menlo Park, Ca., 450 P.

105. V.Akkerman, V.Bychkov, A.Petchenko, L.-E. Eriksson, Flame oscillations in tubes with nonslip at the walls, Combustion and Flame, 2006, V.145. P.675-687.

106. A.Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984.

107. D. I. Abugov, V. M. Bobylev, Theory and calculation of solid propellant rocket engines, M:; Mechanical engineering, 1987, 271 P.

108. Clavin, P. Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech. 1994, 26, 321-352.

109. G. Backstrom, Simple Fields of Physics by Finite Element Analysis (Paperback), GB Publishing (2005), 324 P.

110. Pierse, R., Gaydon, A., The identification of molecular spectra, 1941, N.-Y., London, Acad. Press, 240 p.

111. T. Icitaga, Emission spectrum of the oxy-hydrogen flame and its reaction mechanism. (1) Formation of the Activated Water Molecule in Higher Vibrational States. The Review of Physical Chemistry of Japan Vol. 13f, No. 2 (1939), P. 96-107.

112. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner etc ,"The HITRAN 2012 Molecular Spectroscopic Database," Journal of Quantitative Spectroscopy & Radiative Transfer, 130, 4-50 (2013).

113. P.-F. Coheur, P.F. Bernath, M. Carleer and R. Colin, et al. A 3000 K laboratory emission spectrum of water, The Journal of Chemical Physics, 122, 074307, 2005.

114. Herzberg G. Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules. 2nd ed. Van Nostrand. New York. 1950.

115. C. Appel, J. Mantsaras, R. Schaeren, R. Bombach, and A. Inauen, Catalytic combustion of hydrogen – air mixtures over platinum: validation of hetero-homogeneous reaction schemes, 2004, Clean Air, 5, 21–44.

116. J. C. Chaston, Reaction of Oxygen with the Platinum Metals. The oxidation of platinum, Platinum Metals Rev., 1964, 8, (2), 50-54

117. Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Victor I. Chernysh and Georgii I. Tsvetkov, Investigation into spontaneous ignition of hydrogen–air mixtures in a heated reactor at atmospheric pressure by high-speed cinematography, Mendeleev Commun., 2012, 22, 222-224.

118. Perry, D. L. (1995). Handbook of Inorganic Compounds. CRC Press. pp. 296–298. ISBN 0-8493-8671-3.

119. Lagowski, J. J., ed. (2004). Chemistry Foundations and Applications 3. Thomson Gale. pp. 267–268. ISBN 0-02-865724-1.

120. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich and G. M. Machviladze, Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Nauka, Moscow, 1980 (in Russian).

121. A.A. Borisov, N.M. Rubtsov, G.I. Skachkov, K.Ya. Troshin, Gas Phase Spontaneous Ignition of Hydrocarbons, 2012, Khimicheskaya Fizika, 2012, 31, N8, 30–36. [Engl.transl. Russian Journal of Physical Chemistry B, 2012, 6, 517].

122. A. A. Borisov, V. G. Knorre, E. L. Kudrjashova and K.Ya. Troshin, Khim.Fiz., 1998, 17, 80 [Chem. Phys. Rep. (Engl. Transl.), 1998, 17, 105].

123. Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Georgii I. Tsvetkov and Victor I. Chernysh, High-speed colour cinematography of the spontaneous ignition of propane–air and n-pentane–air mixtures, Mendeleev Commun., 2011, 21, 31-33.

124. Ahmed E.E.Khalil and Ashwani K.Gupta, Dual Injection distributed Combustion for Gas Turbine application, J.Energy Resources Technol, 2013, 136, 011601.

125. Ahmed E.E.Khalil, Ashwani K.Gupta, Kenneth M. Bryden and Sang C.Lee, Mixture preparation effects on distributed Combustion for Gas Turbine application, J.Energy Resources Technol, 2012, 134, 032201.

126. Kalinin A. P., Orlov A. G., Rodionov A. I., Troshin K.Ya., Demonstration of the possibility of studying combustion and explosion processes using remote hyperspectral sensing, Physicochemical kinetics in gas dynamics, www.chemphys .edu.ru / pdf / 2009-06-18-001.pdf

127. Vinogradov A. N., Yegorov V. V., Kalinin A. P., Melnikova E. M., Rodionov A. I., Rodionov I. D. Line of hyperspectral optical sensors Preprint SRI RAN Pr-2176, 2015.16 p.

128. N. M. Rubtsov, A. N. Vinogradov, A. P. Kalinin, A. I. Rodionov, K. Ya. Troshin, G. I. Tsvetkov, Establishing the Regularities of the Propagation of an Unstable Flame Front by the Methods of Optical 3D Spectroscopy and Color High-Speed Filming, Ishlinsky Institute for Problems in Mechanics RAS, Preprint No. 1097, 2015.

129. N.M.Rubtsov, B.S.Seplyarsky, G.I.Tsvetkov, V.I.Chernysh, Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation, Mendeleev Communications, 2009, V.19, P.15.

130. Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Victor I. Chernysh and Georgii I. Tsvetkov, Initiation and propagation of laminar spherical flames at atmospheric pressure, Mendeleev Commun., 2011, 21, 218-220.

131. Pierse, R., Gaydon, A., The identification of molecular spectra, 1941, N.-Y., London, Acad. Press, 240 Р.

132. T. Icitaga, Emission spectrum of the oxy-hydrogen flame and its reaction mechanism. (1) Formation of the Activated Water Molecule in Higher Vibrational States. The Review of Physical Chemistry of Japan Vol. 13f, No. 2 (1939), P. 96-107.

133. P. Stamatoglou, Spectral Analysis of Flame Emission for Optimization Of Combustion Devices on Marine Vessels, Master of Science Thesis, Department of Physics, Lund University, Kockumation Group, Malmö(Sweden), Мay 2014

134. NIST Atomic Spectra Database http://physics.nist.gov/ PhysRefData/ASD/ lines_form. html

135. B. Lewis, G. Von Elbe, Combustion, Explosions and Flame in Gases, New York, London.: Acad.Press, 1987, 566 P.

136. V. M. Maltsev, M. I. Maltsev, L. Y. Kashporov, Axial combustion characteristics, M:, Chemistry, 1977, 320 p.

137. Н.Hamoushe, Trace element analysis in aluminium alloys, Alcan International Limited, Quebec, Canada, http://www.riotintoalcan.com/ENG/media/76.asp

138. Constructional materials, p/r B. I. Arzamasov, M:, Mechanical Engineering, 1990, 360 P.

139. W. Meyerriecks and K. L. Kosanke, Color Values and Spectra of the Principal Emitters in Colored Flames, Journal of Pyrotechnics, 2003, No. 18, Р. 720 - 731.

140. S. G. Saytzev and R. I. Soloukhin, "Proceedings of the 8th symposium (International) on combustion," in California Institute of Technology Pasadenia, California, (The Combust. Inst., Pittsburgh, PA), 1962, p. 2771.

141. R.K.Eckhoff, Dust Explosions in the Process Industries, 2nd еdn., Butterworth-Heinemann, Oxford, 1997.

142. J. C. Livengood and W. A. Leary, "Autoignition by rapid compression," Industrial and Engin. Chem., 1951, 43, 2797.

143. T. C. Germann, W. H. Miller, Quantum mechanical pressure dependent reaction and recombination rates for OH + O →O2 + H, J. Phys. Chem. A: 1997, V.101, P.6358-6367.

144. Frank-Kamenetsky D. A., Diffusion and heat transfer in chemical kinetics. Publishing house "Nauka", 1967, 489 p.

145. S.Chakraborty, A.Mukhopadhyay, S.Sen, International Journal of Thermal Sciences, 2008, 47, 84.

146. G.K. Hargrave, S.J. Jarvis, and T.C. Williams, Meas. Sci. Technol., 2002, 13, 1036.

147. V. Polezhaev, S. Nikitin, Thermoacoustics and heat transfer in an enclosure induced by a wall heating , 16th International Congress on Sound and Vibration, Kraków, Poland, 5–9 July 2009, p.2-8

148. I.O. Moen, M.Donato, R. Knystautas and J.H. Lee, Combust.Flame, 1980, 39, 21.

149. S.S. Ibrahim and A.R. Masri, J. Loss Prev. in the Process Ind., 2001, 14, 213.

150. G.D. Salamandra, T.V.Bazhenova, I.M.Naboko, Zhurnal Technicheskoi fiziki, 1959, 29, 1354 (in Russian).

151. N. Ardey, F. Mayinger, Highly turbulent hydrogen flames, Proc. of the 1st Trabson Int. Energy and Environment Symp., Karadeniz Techn.Univ., Trabson,Turkey, 1996. 679

152. B.Durst, N. Ardey, F. Mayinger, OECD/NEA/CSNI Workshop on the Implementation of Hydrogen Mitigation Techniques, Winnipeg, Manitoba. 1996, AECL-11762, 433.

153. M.Jourdan, N. Ardey, F. Mayinger and M.Carcassi, Influence of turbulence on the deflagrative flame propagation in lean premixed hydrogen air mixtures, Heat Transfer, Proceedings of 11th IHTC, Kuongju, Korea, 1998, 7, 295.

154. Gussak L.A., Turkish M.C. LAG Stratiff. Charge Engines, 1 Mech. Conference Publication. London, 1976, 137.

155. Naboko I. M., Rubtsov N. M., Seplyarsky B. S., Troshin K.Ya., Tsvetkov G.I., Chernysh V. I., Modes of flame propagation during combustion of lean hydrogen-air mixtures in the presence of additives under conditions of central initiation at atmospheric pressure, "Physical-Chemical kinetics in gas dynamics", 2012. Volume 13, URL: http://www.chemphys.edu.ru/pdf/2012-11-02-001.pdf P .1-17

156. I. M. Naboko, N. M. Rubtsov, B. S. Seplyarskii and V. I. Chernysh, Interaction of Spherical Flames of Hydrogen-Air and Methane-Air Mixtures in the Closed Reactor at the Central Spark Initiation with Closed Meshed Obstacles, J Aeronaut Aerospace Eng, 2013, 2:5, http://dx.doi.org/10.4172/2168-9792.1000127.

157. N.M. Rubtsov, The Modes of Gaseous Combustion, Springer International Publishing, 2016, 302 Р.

158. Ideya M. Naboko, Nikolai M. Rubtsov, Boris S. Seplyarskii, Victor I. Chernysh and Georgii I. Tsvetkov, Influence of an acoustic resonator on flame propagation regimes in spark initiated H2 combustion in cylindrical reactor in the vicinity of the lower detonation limit, Mendeleev Commun., 2013, 23, 163.

159. Thomas Alasard, Low Mach number limit of the full Navier-Stokes equations, Archive for Rational Mechanics and Analysis 180 (2006), no. 1, 1-73.

160. F. Nicoud, Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows.

161. V.Akkerman, V.Bychkov, A.Petchenko, L.-E. Eriksson, Flame oscillations in tubes with nonslip at the walls, Combustion and Flame, 2006, V.145. P.675-687.

162. A.Majda, Compressible fluid flow and systems of conservation laws in severalspace variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984.

163. D. I. Abugov, V. M. Bobylev, Theory and calculation of solid fuel rocket engines, M: Mechanical engineering, 1987, 271 P.

164. Clavin, P. Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech. 1994, 26, 321-352.

165. C. Clanet, G. Searby and P. Clavin, Primary acoustic instability of flames propagating in tubes: cases of spray and premixed gas combustion, J. Fluid Mech.,1999, 385, 157.

166. B. Lewis, G. Von Elbe, Combustion, Explosions and Flame in Gases, New York, London.: Acad.Press, 1987, P.566.

167. Kampen, J. F. van, Acoustic pressure oscillations induced by confined turbulent premixed natural gas flames, PhD thesis, University of Twente, Enschede, The Netherlands, March 2006, ISBN 90-365-2277-3, Printed by Febodruk BV, Enschede, The Netherlands.

168. G. Backstrom, Simple Fields of Physics by Finite Element Analysis (Paperback), GB Publishing (2005), P 324.

169. Omar D. Lopez, Robert Moser and Ofodike A. Ezekoye, High-Order Finite Difference Scheme For The Numerical Solution Of The Low Mach-Number Equations. Mecánica Computacional, 2006, XXV, 1127.

170. N. M. Rubtsov, B.S. Seplyarskii, I. M. Naboko, V.I. Chernysh, G.I. Tsvetkov and K.Ya. Troshin, Non-steady propagation of single and counter flames in hydrogen–oxygen and natural gas–oxygen mixtures in closed cylindrical vessels with spark initiation in initially motionless gas, Mendeleev Commun., 2014, 24, 163.

171. Griffiths J.F., Barnard J.A. , Flame and Combustion, 1995, 3rd Edition, CRC Press, 328 P.

172. Abdel-Gayed R. G., Bradley D., Criteria for turbulent propagation limits of premixed flames.1985, Combust. Flame, 62, 61.

173. Bradley D.; Abdel-Gayed R.G.; Lung F.K.-K.. , Combustion regimes and the straining of turbulent premixed flames, 1989, Combust. Flame, 76, 213.

174. Melvin R. Baer and Robert J. Gross, 2001, SANDIA REPORT, Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550.

175. Nickolai M.Rubtsov, Boris S.Seplyarskii, Kirill Ya.Troshin, Victor I.Chrenysh, Georgii I.Tsvetkov, Initiation and propagation of laminar spherical flames at atmospheric pressure // Mendeleev Comm., 2011, T.21, P.218-221.

176. Набоко И.М., Рубцов Н.М., Сеплярский Б.С., Цветков Г.И., Черныш В.И. Возникновение термоакустической неустойчивости в водородо- воздушных смесях в замкнутом реакторе при центральном инициировании искровым разрядом//Физико-химическая кинетика в газовой динамике. 2011. Том 12, URL: http://www.chemphys.edu.ru/pdf/2011-12-23-002.pdf

177. Erin Richardson, An experimental study of unconfined hydrogen –oxygen and hydrogen-air explosions, https://ntrs.nasa.gov/search.jsp?R=20150002596 2018-09-27T16:35:29+00:00Z

178. Ya. B. Zeldovich, A. S. Сompаneеts, Detonation Theory, Мoscow.: Gostechizdat, 1955, 268 P. (in Russian).

179. J.E. Shepherd, Detonation in gases Proceedings of the Combustion Institute, 2009, V.32, P. 83–98.

180. Stephen B. Murray, Fundamental and Applied Studies of Fuel-Air Detonation - A Quarter Century of Large-Scale Testing at DRDC Suffield (Stephen. Murray @ drdc-rddc.gc.ca), 2010, DRDC Suffield, P.O. Box 4000, Station Main, Medicine Hat, Alberta, Canada T1A 8K6

181. Steven A. Orzag and Lawrence C. Kellst, J. Fluid Mech., 1980, 96, 159.

182. Saric W.S., Reed H.L., Kerschen E.J., Annu. Rev. Fluid Mech., 2002, 34, 291.

183. S.S. Ibrahim and A.R. Masri, J. Loss Prev. in the Process Ind., 2001, 14, 213.

184. C. Clanet and G. Searby, Combustion and flame, 1996, 105, 225.

185. N. M. Rubtsov, B. S. Seplyarskii V. I. Chernysh and G.I.Tsvetkov, International Journal of Chemistry and Materials Research, 2014, 2,102, http://pakinsight.com/?ic=journal&journal=64

186. G. N. Abramovich, Teorija turbulentnych struj (The theory of turbulent flows), 1960, Moscow, Ekolit, reprint, 2011 (in Russian).

187. V.V.Lemanov, V.I.Terechov, K.A, Sharov, A.A.Shumeiko, JETP Letters, 2013, 39, 89 (Pis'ma v ZhETF, 2013, 39, 34).

188. F. Durst, K. Haddad, O. Ertun, in Advances in Turbulence ed. Prof. B. Erkhardt, Proceedings of the 12th Euromech European Turbulence Conference September 7-10 Marburg Germany, Springer Publishing, 160.

189. Vinogradov A. N., Yegorov V. V., Kalinin A. P., Melnikova E. M., Rodionov A. I., Rodionov I. D. Line of hyperspectral optical sensors Preprint SRI RAN Pr-2176, 2015.16 p.

190. N. M. Rubtsov, A. N. Vinogradov, A. P. Kalinin, A. I. Rodionov, K. Ya. Troshin, G. I. Tsvetkov, Establishing the Regularities of the Propagation of an Unstable Flame Front by the Methods of Optical 3D Spectroscopy and Color High-Speed Filming, IPMech RAS, Preprint No. 1097, 2015.

191. Nickolai M.Rubtsov, Boris S.Seplyarskii, Kirill Ya.Troshin, Victor I.Chrenysh, Georgii I.Tsvetkov, Initiation and propagation of laminar spherical flames at atmospheric pressure // Mendeleev Comm., 2011, T.21, P.218-221.

192. Coheur P.-F., Bernath P.F., Carleer M., Colin R., et al. A 3000 K laboratory emission spectrum of water, The Journal of Chemical Physics. 2005. 122. 074307

193. Herzberg G. Molecular Spectra and Molecular Structure. Vol. 1, Spectra of Diatomic Molecules. 2nd edn. Van Nostrand. New York. 1950.

194. Kreshkov A. P. Fundamentals of analytical chemistry. Theoretical basis. Qualitative analysis, 1970, M:; Publishing house "Khimiya", V. 3.

195. Davy H. Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continuous light in mixtures of inflammable gases and air without flame. 1817, Phil. Trans. R. Soc. Lond. A v. 107, P.77-100.(magazine ? )

196. Lee J. H. and Trimm D. L. Catalytic combustion of methane, Fuel Processing Technology, 1995, v.42. P.339-355.

197. Deutschmann, O., Maier, L. I., Riedel, U.et al. Hydrogen assisted catalytic combustion of methane on platinum. Catalysis Today. 2000. V.59, P.141-165.

198. Lyubovsky M., Karim H., Menacherry P. et al. Complete and partial catalytic oxidation of methane over substrates with enhanced transport properties. Catalysis Today. 2003. V.83. P. 183-201.

199. Salomons S., Hayes R. E., Poirier M. et al. Flow reversal reactor for the catalytic combustion of lean methane mixtures. Catalysis Today. 2003. v.83. P. 59-75.

200. Lampert J. K., Kazia M. S., and Farrauto, R. J. Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. //Applied catalysis B: Environmental. 1997. v. 14, P. 211-230.

201. IAEA SAFETY STANDARDS SERIES. Design of Reactor Containment Systems for Nuclear Power Plants SAFETY GUIDE No. NS-G-1.10, 2004.

202. Frennet A. Chemisorption and exchange with deuterium of methane on metals. // Catal. Rev.- Sci.Eng. 1974. v. 10. P. 37-51.

203. Cullis C.F., Willatt B.M. Oxidation of methane over supported precious metal catalysts. // Journal of Catalysis. 1983. v. 83, P. 267-281.

204. Hicks R.F., Qi H., Young M.L. and Lee, R.G. Structure sensitivity of methane oxidation over platinum and palladium. // Journal of Catalysis. 1990. v.122. P. 280-291.

205. Hayes R.E, Kolaczkowskii S., Lib P., Awdryb S., The palladium catalyzed oxidation of methane: reaction kinetics and the effect of diffusion barriers, Chemical Engineering Science, 2001. v. 56. P. 4815-4830.

206. S. Choudhury, R. Sasikala, V. Saxena, D. Kumar-Aswalb and D. Bhattacharyac, A new route for the fabrication of an ultrathin film of a PdO–TiO2 composite photocatalyst, Dalton Trans. 2012, 41, 12090-12095.

207. P.O. Nilsson and M.S. Shivaraman. Optical properties of PdO in the range of 0.5–5.4 eV. J. Phys. C: Solid State Phys. 12, 1423-1427 (1979).

208. F. Ling, O. Chika Anthony, Q. Xiong, M. Luo,X. Pan, L. Jia, J. Huang, D. Sun, Q. Li. PdO/LaCoO3 heterojunction photocatalysts for highly hydrogen production from formaldehyde aqueous solution under visible light,International journal o f hydrogen energy 41, 6115-6122, (2016).

209. С.Diaz, M.L.Valenzuela, C.Rios and M.Segovia, Oxidation facility by a temperature dependence on the noble metals nanostructured M°/MxOy phase products using a solid state method: the case of Pd, J. Chil. Chem. Soc., 2016, 61 no.4, http://dx.doi.org/10.4067/S0717-97072016000400024

210. Rodionov I. D., Rodionov A. I., Vedeshin L. A., Vinogradov A. N., Yegorov V. V., Kalinin A. P., Aviation hyperspectral complexes for solving problems of remote sensing. Exploration of the Earth from space 2013. №6. P. 81; Rodionov I. D., Rodionov A. I., Vedeshin L. A., Yegorov V. V., Kalinin A. P. , Izvestija, Atmospheric and Oceanic Physics. 2014. V. 50. No. 9. 2014. P. 983.

211. Vinogradov A. N., Yegorov V. V., Kalinin A. P., Rodionov A. I., Rodionov I. D. // Optical instrument engineering. 2016. Vol. 83. No. 4. P. 54.

212. Kalinin A. P., Orlov A. G., Rodionov A. I., Troshin K.Ya. Demonstration of the possibility of studying combustion and explosion processes using remote hyperspectral sensing // Physicochemical kinetics in gas dynamics. 2009. V. 8. [Electronic resource] Access mode: http://chemphys.edu.ru/issues/2009-8/articles/202/.

213. Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Victor I. Chernysh and Georgii I. Tsvetkov, Mendeleev Commun. 2012, V. 22. P. 222.

214. Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Georgii I. Tsvetkov and Victor I. Chernysh High-speed colour cinematography of the spontaneous ignition of propane–air and n-pentane–air mixtures,  Mendeleev Communications 2011, 21, 31-33.

215. Nikolai M. Rubtsov , Victor I. Chernysh, Georgii I. Tsvetkov, Kirill Ya. Troshin, Igor O. Shamshin, Ignition of hydrogen–air mixtures over Pt at atmospheric pressure, Mendeleev Communications, 2017, 27, 307-309.

216. Nikolai M. Rubtsov, Alexey N. Vinogradov, Alexander P. Kalinin, Alexey I. Rodionov, Victor I. Chernysh, Cellular combustion and delay periods of ignition of a nearly stoichiometric H2–air mixture over a platinum surface, Mendeleev Communications, 2016, 160-162.

217. K.L. Cashdollar, I.A. Zlochower, G.M. Green, R.A. Thomas and M.Hertzberg, Journal of Loss Prevention in the Process Industries, 2000. V.13, N3-5, P.327-340.

218. Lewis B., Von Elbe G., Combustion, Explosions and Flame in Gases. New York, London. Acad. Press. 1987.

219. S.M.Repinski, Vvedenie v himicheskuyu fiziky poverhnosti tvyordych tel (Introduction into chemical physics of the surface of solids), Novosibirsk:; “Nauka”, Sibir publishing company, 1993 (in Russian).

220. М. Johansson, E. Skulason, G. Nielsen, S. Murphy, R.M. Nielsen, I. Chorkendorff, A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surface Science, 2010, 604, 718.

221. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Chris Benner D., et al. The HITRAN 2012 Molecular Spectroscopic Database//Journal of Quantitative Spectroscopy & Radiative Transfer. 2013. 130. P. 4-50

222. N. M. Rubtsov, A. N. Vinogradov, A. P. Kalinin, A. I. Rodionov, I. D. Rodionov, K. Ya. Troshin, G. I. Tsvetkov, V. I. Chernysh, The use of a high-speed optical multidimensional technique for establishing the characteristics of ignition and combustion of a 40% H2 - air mixture in the presence of platinum metal, Physical and chemical kinetics in gas dynamics 2016 Vol.17 (1) http://chemphys.edu.ru/issues/ 2016-17-1 / articles / 615 /.

223. R.G. Stützer, S. Kraus, M. Oschwald, Characterization of Light Deflection on Hot Exhaust Gas for a LIDAR Feasibility Study, May 2014 Conference 4th Space Propulsion 2014, https://www.researchgate.net/publication/263586493.

224. T. Icitaga, Emission spectrum of the oxy-hydrogen flame and its reaction mechanism. (1) Formation of the Activated Water Molecule in Higher Vibrational States. The Review of Physical Chemistry of Japan Vol. 13f, No. 2 (1939), Pp. 96‒107.

225. N.M.Rubtsov, V.I.Chernysh, G.I.Tsvetkov, K.Ya.Troshin, I. O.Shamshin, A.P. Kalinin, The features of hydrogen ignition over Pt and Pd foils at low pressures Mendeleev Communications, 2018, 28, 216-218

226. Tang, C., Zhang, Y., Huang, Z ., (2014). Progress in combustion investigations of hydrogen enriched hydrocarbons, Renewable and Sustainable Energy Reviews, 30, 195–216.

227. Knyazkov, A., Shvartsberg, V.M., Dmitriev, A.M., Osipova, K.N., Shmakov, A.G., Korobeinichev, O.P., Burluka, A., (2017). Combustion Chemistry of Ternary Blends of Hydrogen and C1–C4 Hydrocarbons at Atmospheric Pressure, Combustion, Explosion, and Shock Waves, 53(5), 491–499.

228. Biswas, S., Tanvir, S., Wang, H., Qiao, L., 2016. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion, Applied Thermal Engineering, 106, 925–937.

229. Cho, E.-S., & Chung, S. H., (2009). Improvement of flame stability and NOx reduction in hydrogen-added ultralean premixed combustion, Journal of Mechanical Science and Technology, 23, 650-658.

230. Razali, H., Sopian, K., Mat, S. (2015). Green fuel: 34% reduction of hydrocarbons via hydrogen (AL+HCl) blended with gasoline at maximum torque for motorcycle operation. ARPN Journal of Engineering and Applied Sciences, 10(17), 7780-7783.

231. Flores, R. M., McDonell, V. G., Samuelsen, G. S., (2003). Impact of Ethane and Propane Variation in Natural Gas on Performance of a Model Gas Turbine Combustor, J. Eng. Gas Turbines Power, 125, 701–708.

232. Hassan, H., & Khandelwal, B., (2014). Reforming Technologies to Improve the Performance of Combustion Systems, Aerospace, 1, 67-96.

233. Xiong, H., Wiebenga, M. H., Carrillo, C., Gaudet, J. R., Pham, H.N. , Kunwar, D., et.al (2018). Design considerations for low-temperature hydrocarbon oxidation reactions on Pd based catalysts, Applied Catalysis B: Environmental, 236 (15), 436-444.

234. Persson, K., Pfefferle, L.D., Schwartz, W., Ersson, A., Jaras, S.G., (2007). Stability of palladium-based catalysts during catalytic combustion of methane: The influence of water, Applied Catalysis B: Environmental, 74, 242–250.

235. Rubtsov, N.M., Chernysh, V.I., Tsvetkov, G.I., Troshin, K.Ya., Shamshin I.O., (2019). Ignition of hydrogen-methane-air mixtures over Pd foil at atmospheric pressure, Mendeleev Commun., 2019, 29, (in press).

236. Rubtsov, N.M. (2016), The Modes of Gaseous Combustion, Cham, Switzerland, Springer International Publishing.

237. Markstein, G. H., (1949). Cell structure of propane flames burning in tubes, The Journal of Chemical Physics, 17, 428.

238. Zeldovich, Ya. B., (1944). Theory of Combustion and Detonation in Gases, Moscow, Acad. Sci. USSR, (in Russian).

239. Крешков А. П. Основы аналитической химии. Теоретические основы. Качественный анализ, 1970, М:; Изд-во “Химия”, Т.3.

240. Nikolai M.Rubtsov, Alexey N.Vinogradov, Alexander P.Kalinin,Alexey I.Rodionov, Kirill Ya.Troshin,Georgii I.Tsvetkov,Victor I.Chernysh, Gas dynamics and kinetics of the penetration of methane–oxygen flames through complex obstacles, as studied by 3D spectroscopy and high-speed cinematography, Mendeleev Communications, 2017, 27, 192-194.

241. Ideya M. Naboko, Nikolai M. Rubtsov, Boris S. Seplyarskii, Kirill Ya. Troshin, Victor I. Chernysh, Cellular combustion at the transition of a spherical flame front to a flat front at the initiated ignition of methane–air, methane–oxygen and n-pentane–air mixtures, Mendeleev Communications, 2013, 23, 358-360.

242. M.Fisher, Safety aspects of hydrogen combustion in hydrogen energy systems, Int. J. Hydrogen Energy, 1986, 11, 593-601.

243. A.B.Welch and J.S.Wallace, Performance characteristics of a hydrogen-fueled diesel engine, SAE Paper 902070.

244. R.K.Kumar, Ignition of hydrogen-oxygen- diluent mixtures adjacent to a hot, non-reactive surface, Combustion and Flame, 1989, 197-215.

245. R.S.Silver, The ignition of gaseous mixture by hot particles, Phil. Mag. J.Sci., 1937, 23, 633-657.

246. K.B.Brady, Ignition Propensity of hydrogen/air mixtures in the presence of heated platinum surfaces, Master of Science Thesis, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, January, 2010 .

247. Rinnemo, M., et al., Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum. Combustion and Flame, 1997, 111, 312-326.

248. S.K. Menon, P.A. Boettcher, B.Ventura, G. Blanquart and J.E. Shepherd, Investigation of hot surface ignition of a flammable mixture, Western States Section of the Combustion Institute (WSSCI), 2012, Arizona University, Tempe, Paper # 12S-39.

249. Dong-Joon Kim, Ignition Temperature of Hydrogen/Air Mixture by Hot Wire in Pipeline, Fire Sci. Eng., 2014, 28, No. 4, 8-13.

250. Tables of Physical Values, handbook, ed. I. K.Kikoin, Atomizdat, Moscow, 1976, p. 1007 (in Russian).

251. Marchuk G.I. Methods of computational mathematics, Moscow; Nauka, 1989, 608 p. (in Russian).

252. Rubtsov N. M., Kotelkin V. D., Karpov V. P., Transition of flame propagation from isothermal to chain-thermal mode in chain processes with nonlinear branching of chains, Kinetics and Catalysis, 2004, Vol. 45, P. 3.

253. N. N. Semenov, O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (On Some Problems of Chemical Kinetics and Reactivity), 2nd edn., AN SSSR, Moscow, 1958 (in Russian).

254. D.C.Montgomery, E.A.Peck, G.G.Vining, Introduction to linear regression analysis, 5 th ed., John Wiley@Sons Inc., Wiley Series in probability and statistics, Hoboken, New Jersey, US, 2012, 659 P.

255. Rubtsov N. M., Seplyarsky B. S., Alymov M. I. Critical Phenomena and Dimensional Effects in Autowave Processes with Exothermic Reactions. Saratov: Publishing House "KUBiK", 2019, 338 p. ISBN 978-5-91818-595-7.

256. B.S. Seplyarsky, T. P. Ivleva, M. I. Alymov. Macrokinetic analysis of the process of passivation of pyrophoric powders. Reports of the Academy of Sciences. Physical chemistry. 2018. Vol. 478, No. 3, pp. 310-314.

257. Michail I. Alymov, Nikolai M. Rubtsov, Boris S. Seplyarskii, V.A.Zelensky, A.B.Ankudinov, The Method of Preparation of Ni Nanopowders with Controlled Mean Specific Surface and Pyrophoricity, UNITED JOURNAL OF CHEMISTRY www.unitedjchem.org, 2018, Vol. 01, No.(1): Pg. 82-91.

258. P. Zijlstra, M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications, Reports on Progress in Physics, 2011, 74, 106401.

259. A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics, Open Applied Physics J., 2011, 4, 19.

260. R. Gréget, G.L. Nealon, B. Vileno, P. Turek, C. Mény, F. Ott, A. Derory, E. Voirin, E. Rivière, A. Rogalev, Magnetic properties of gold nanoparticles: a room-temperature quantum effect, ChemPhysChem, 2012, 13, 3092.

261. R.R. Letfullin, C.B. Iversen, T.F. George, Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles, Nanomedicine: Nanotech., Bio. and Med., 2011, 7, 137.

262. Wei, Y.; Chen, S.; Kowalczyk, B.; Huda, S.; Gray, T. P.; Grzybowski, B. A. , 2010, Synthesis of stable, low-dispersity copper nanoparticles and nanorods and theirantifungal and catalytic properties, J. Phys. Chem. C. 114, 15612.

263. Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A. A. , 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett. 71: 114.

264. Dhas, N.A.; Raj, C.P.; Gedanken, A. , Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles, 1998, Chem. Mater., 10, 1446.

265. H. Hashemipour, M.E. Zadeh, R. Pourakbari, P. Rahimi, Inter. J. of Physical Sciences, Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method, 2011, 6, 4331.

266. M. Salavati-Niasari, F. Davar, Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor, Materials Letters, 2009, 63, 441.

267. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films, 2007, 515, 7706.

268. E. Egorova, A. Revina, Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin, Colloids and Surfaces A: Physicochem. and Eng. Aspects, 2000, 168, 87.

269. R. Zhou, X. Wu, X. Hao, F. Zhou, H. Li, W. Rao, Oxidation of Copper Nanoparticles Protected with Different Coatings, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266, 599.

270. J.N. Solanki, R. Sengupta, Z. Murthy, Synthesis of Copper Nanoparticles, Solid State Sciences, 2010, 12, 1560. 17 L. Francis, A.S. Nair, R. Jose, S. Ramakrishna, V. Thavasi and E. Marsano, Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods, Energy, 36, 627-632, (2011)

271. K. Tian, C. Liu, H. Yang, X. Ren, Sensors and Actuators of transition metal elements, Colloids and Surfaces A: Physicochem. and Eng. Aspects, 2012, 397, 12.

272. Michail I. Alymov, Nikolai M. Rubtsov, Boris S. Seplyarskii, Victor A. Zelensky and Alexey B. Ankudinov, Temporal characteristics of ignition and combustion of iron nanopowders in the air, Mendeleev Commun., 2016, 26, 452.

273. Thomas M.Gorrie, Peter W.Kopf and Sidney Toby, Kinetics of the reaction of some pyrophoric metals with oxygen, J.Phys.Chem., 1967, 71, 3842.

274. B.K. Sharma, Objective Question Bank in Chemistry, Krishns Prakashan Media Ltd., India, 2009, 488 P. 22. https://www.nanoshel.com/topics/nanoshel-llc-news/

275. A. G. Gnedovets, A. B. Ankudinov, V. A. Zelenskii, E. P. Kovalev, H. Wisniewska_Weinert, and M. I. Alymov, Perspektivnye Materialy, 2015, 12, 62 [Inorganic Materials: Applied Research, 2016, 7, 303] (in Russian).

276. W. R. Morcom W. L. Worrell H. G. Sell H. I. Kaplan The preparation and characterization of beta-tungsten, a metastable tungsten phase, Metallurgical Transactions,January 1974, 5:155,

277. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and Applications, Rev. Mod. Phys. 76, 323 (2004).

278. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future, Science 294, 1488 (2001)

279. M. Johnson and R. H. Silsbee, Interfacial Charge-Spin Coupling: Injection and Detection of Spin Magnetization in Metals, Phys. Rev. Lett. 55, 1790 (1985).

280. T. Jungwirth, J. Wunderlich, and K. Olejnik, Spin Hall Effect Devices, Nat. Mater. 11, 382 (2012).

281. C. F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin Transfer Torque Devices Utilizing the Giant Spin Hall Effect of Tungsten, Appl. Phys. Lett. 101, 122404 (2012).

282. Q. Hao, W. Chen, and G. Xiao, Beta (β) Tungsten Thin Films: Structure, Electron Transport, and Giant Spin Hall Effect, Appl. Phys. Lett. 106, 182403 (2015).

283. G. Hägg and N. Schönberg, 'β-Tungsten' as a Tungsten Oxide, Acta Crystallogr. 7, 351 (1954).

284. P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, Microstructure, Growth, Resistivity, and Stresses in Thin Tungsten Films Deposited by RF Sputtering, J. Appl. Phys. 44, 2545 (1973).

285. Erik Lassner and Wolf-Dieter Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, 1998, Kluwer Academic / Plenum Publishers New York, Boston, Dordrecht, London, Moscow, 447 P.

286. Michail I. Alymov, Nikolai M. Rubtsov, Boris S. Seplyarskii,Victor A. Zelensky and Alexey B. Ankudinov, Passivation of iron nanoparticles at subzero temperatures, Mendeleev Commun., 2017, 27, 482-484.

287. Florin Saceleanu, Mahmoud Idir, Nabiha Chaumeix and John Z. Wen, Combustion Characteristics of Physically Mixed 40 nm Aluminum/Copper Oxide Nanothermites Using Laser Ignition, Frontiers in Chemistry, original research published: 09 October 2018, doi: 10.3389/fchem.2018.00465.

288. Alexander A. Gromov, Ulrich Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, 2014, John Wiley & Sons, 417 P.

289. Michail I.Alymov, Nikolai M. Rubtsov, Boris S. Seplyarskii, Victor A. Zelensky, Alexey B. Ankudinov, Temporal characteristics of ignition and combustion of iron nanopowders in the air, Mendeleev Commun., 2016, V.26,452-454.

Войти или Создать
* Забыли пароль?