PRELIMINARY WORKS FOR DIAMONDS IN THE SOUTH-EASTERN PART OF THE SIBERIAN PLATFORM
Аннотация и ключевые слова
Аннотация (русский):
The book contains materials on the search for modern and buried alluvial and primary deposits of diamonds. Much attention is paid to prospecting testing of potentially diamondiferous deposits and provides information on all types of diamondiferous rocks currently known. It is addressed primarily to young geologists who have embarked on a search for diamond deposits. It will find the answer to many questions by many geologists, prospectors and prospectors, leading the search for gold and diamonds. While this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Ключевые слова:
diamonds, deposits, Basaltoids, Impactites, Tuffisites, Metamorphites, Lamproites, Kimberlites, placers, Angarida
Текст
The methodology of preliminary work to identify promising areas for prospecting for diamonds, with the preparation of various maps (Fig. 52-55), we will consider using the example of the Ilimo-Katangsky district (Middle Priangarye) of the Irkutsk region. The study area is located on the Siberian craton within the South Siberian diamondiferous province and is confined to the northwestern part of the Nepa zone of epiplatform folding (see Fig. 47). 9.1. Conditions for the accumulation of diamond deposits in the Angara region Numerous data on lithology, stratigraphy and features of the material composition of deposits in the Ilimo-Katangskaya territory served as the basis for compiling a lithological-paleogeographic map of the Angara region for the Early Carboniferous (Tusham section) (Fig. 56, 57). On this territory at that time, there was a Tusham (Angara-Tunguska) sedimentary basin located in the Angara-Tunguska interfluve. The nature of the development of the paleobasin was influenced by many factors that led to changes in its configuration, area, depth, and mineralogical composition of sediments. The most important factor is tectonic, the impact of which changed the subsidence amplitude of the bottom of the basin, which in turn was reflected in the transformation of its sedimentary filling. Differentiated block movements in the provinces feeding terrigenous material regulated the mineralogical composition of the sedimentary material transported to the paleobasin. In the process of transportation, precipitation was differentiated by size and weight. An important role in the formation of the Tusham Basin belongs to the volcanic factor, or rather, to the consedimentary volcanic activity. Volcanic deposits emphasize the individuality of its development, although at times the ash material was carried by the wind over considerable distances. Volcanic activity is associated with the activation of tectonic movements on the platform (epiplatform orogeny) that occurred at the turn of the Late Devonian and the Early Carboniferous. Simultaneously, kimberlite magmatism has intensified (Brakhfogel et al., 1997). The Tusham sedimentary basin, as it was filled with river waters, periodically turned into a lake. It was a vast freshwater lake very often, on the banks of which psilophyte plants grew. It is important to note that the Tusham sedimentary basin was migratory (Fig. 58). The oldest (Tournaisian) spore-and-pollen complexes were found in the sediments of its northeastern part. In the direction from the northeast to the southwest, spore-and-pollen complexes and imprints of Visean and then Serpukhovian age plants appear in the sections. At the same time, it is very characteristic that the area of distribution of the Visean-Serpukhovian deposits is much smaller than the Tournaisian ones. The time interval for the existence of the sedimentary basin covers the Tournaisian, Visean and Serpukhovian centuries, and the lateral migration of its depocenter took place from the northeast to the southwest and west. The carried out intra-basin correlation of diamondiferous deposits of the Tusham Formation (Fig. 59) showed that during the existence of the paleobasin, a huge amount of sedimentary matter accumulated, the current thickness of which in the northeastern part of the basin reaches 218.4 m, in the western part - 180 m, and in the southern - 157.3 m. At the end of the Serpukhovian century, the area of the sedimentation basin was significantly reduced, and the reservoir became shallow. In the heavy fraction of the Tusham sandstones, a garnet-zircon-rutile association was revealed, represented by minerals that are resistant and very resistant to weathering, and in mudstones - allothigenic kaolinite. In addition, the presence of beds of monomictic quartz sandstones and white porcelain-like (the Poliva River) kaolin mudstones was noted. All this testifies to the erosion of chemical weathering in the source area where the kaolinic crust is demolished. The physicochemical regime in the sedimentation basin was determined by the introduction of a large mass of pyroclastic material, which caused an acidic environment and a reducing environment, which contributed to the formation of authigenic pyrite. The appearance of barite accumulations in separate layers is explained by the processing of pyroclastic material during the epigenesis stage, and is not a sign of water salinity. It should be noted that the total cut during the peneplanation of the Middle Paleozoic Kimberlite-bearing territories of the Yakut diamondiferous province reached 250-350 m and more (Shamshina, 1979). In this regard, it can be assumed that as a result of the active manifestation of erosion-denudation processes at the boundary from the Late Devonian to the Early Carboniferous, most of the Middle Paleozoic kimberlite bodies were brought to the paleosurface, which can be seen in the sublatitudinal and submeridional geological cuts (Fig. 60-62). 9.2. Composition of diamondiferous deposits of the Tusham paleobasin In the process of carrying out a group geological survey (GGS-50) in the basin of the upper reaches of the river there were found diamonds in the Lower Tunguska among the Lower Carboniferous deposits of the Tusham Formation. One of the diamonds was found during core sampling from well 33, drilled on the watershed of the Lower Tunguska and Chona in the upper reaches of the Sarginka river. The well penetrated a stratum of lacustrine deposits of the Tusham Formation. At a depth of 92 m, in an interlayer of fine-grained polymictic sandstones with an admixture of pyroclastic material, a diamond crystal was found in an intergrowth with moissanite in a corundum-spinel-galena terrigenous-mineralogical association (Rybakov et al., 1994). The coastal zone of the Tusham paleolake extended in the submeridional direction and is currently recorded at the contact between the rocks of the Tusham and Verkholensk formations, passing from the headwaters of the river. Angara to the mouth of the Mogi river. HDC - pyropes were found in the Tusham formations. Their size (from 0.1 to 0.5 mm) and good roundness indicate a relatively long-term development of the initial material in the lake reservoir. According to V. G. Rybakov and his colleagues (Rybakov et al., 1994), in the upper reaches of the Angara river, located along the coastline of the ancient Tushamskoye Lake, also found a placer halo of pyropes (45 signs), confined to the contact of the Tushamskaya and Verkholenskaya formations. The roundness of these pyropes is much worse than that of the Tusham pyropes (mostly semi-rounded), and their size reaches 0.9 mm. The color of pyropes is from lilac to violet. The section of the Tusham Formation is characterized by the absence of clear marking horizons and facies lateral variability of sediments formed under conditions of mobile and inactive shallow water. To establish the direction of the drift of terrigenous material into the sedimentation basin and the localization of the supposed province of kimberlite feeding, the sections of the lower member of the Tusham Formation were studied. The structural features of the sandstone member of the Tusham Formation, which constitutes the bulk of the lower part of the section, with a manifested lateral variability of these properties are taken as the parameters of delimitation. These include the mineralogical and granulometric composition of sandstones, textural features, and the presence of psephitic material in the section. The following facies varieties of the Tusham deposits have been identified: 1) coarse-grained, massive, mainly quartz sandstones of the facies varieties of the coastal parts of the lake basin; 2) mixed-grained, massive, quartz, feldspar-quartz sandstones of the facies of the coastal parts of the lake basin; 3) uneven-grained, massive, mainly feldspar-quartz sandstones of the facies of the open parts of the lake basin; 4) fine-medium-grained, massive, polymictic sandstones of the facies of open zones of lacustrine basins; 5) cross-bedded sediments of the facies of submarine deltas; 6) clayey sediments of temporary water flows in the sandstones of the Tusham Formation; 7) gravel-pebble sediments with sandy-argillaceous filling of mud flows in the sandstones of the Tusham Formation. It should be noted that almost everywhere in the section of the Tusham Formation there are “floating” pebbles of mudstones and siltstones and thin (up to 0.2 m) conglomerates resulting from intraformational erosion. The main drift of terrigenous material occurred from the Botuobinsko-Markhinsky uplift and from the Nepa folding zone. In the Tournaisian age, the source of drift was the weathering crust formed on the Lower Paleozoic sediments. The redeposited products of the kaolin weathering crust are ubiquitous in the sandstones and mudstones of the Lower Ushamsk Subformation. In the Visean time, products of the lower part of the weathering crust, together with weakly weathered but disintegrated terrigenous formations of the Lower Paleozoic, entered the paleobasin. This is evidenced by individual pebbles of bluish-green mudstones and fragments of polymictic sandstones. Ilmenite, garnet, and zircon, which are abundant among the titanium-bearing Ordovician sandstones of these uplands, were mainly supplied from the accessory minerals to the sedimentation basin. That is why the sandstones of the middle part of the Tusham Formation are characterized by a zircon-garnet-ilmenite terrigenous-mineralogical association. Middle-Upper Carboniferous deposits are represented by lacustrine-bog and lacustrine-alluvial facies complexes. Swampy plains became widespread, which were replaced by lacustrine-alluvial-proluvial plains. Freshwater lakes prevailed everywhere. In the Late Carboniferous, the degree of isolation of the Angara flora sharply increases (Meijen, 1987). The seasonality of the climate becomes obvious, as in the sections there is fossilized wood with growth rings. The predominance of plants with pycnoxyl stems in the flora indicates that the growing conditions were subtropical. Fig. 52. Scheme of the location of supporting mounted wells and natural explosure in the Priangara region. Fig. 53. Map of isopachs of the Lower Paleozoic deposits of the Middle Priangara. Fig. 54. Relief of the Late Devonian surface (Priangara at the beginning of the Tournaisian age). Fig. 55. Map of the relief of the surface of the Lower Carboniferous deposits. Fig. 56. Lithological-paleogeographic map of the Middle Priangara (Ilimo-Katangsky region, for symbols see Fig. 57). Fig. 57. Symbols for the lithological-paleogeographic map (see fig. 56). Numerous finds of diamonds in channel and terrace alluvial deposits of the river. Lower Tunguska, the halo of distribution of which (314 crystals) is confined to the lower reaches of the Bolshaya Yerema and Lower Tunguska in the area of the Yerema village, and the above lithological-facies data allow us to assign the entire eastern continental margin of the ancient Tushamskoye Lake, including the area of the basin of the Angara river, in the category of the most promising for the discovery of kimberlite pipes and designate it as a promising diamond-bearing area. The Tusham deposits in the area of the Nepa fold zone are very interesting. In the early-non-Carboniferous period, the coastal zone of Lake Tushamskoye stretched here, and at present, diamonds and their satellites have been found in the channel sediments of many rivers and watercourses flowing in the area of the Nepa fold zone. Their highest concentration was found in the area of the mouth of the Iki river, where it reaches 0.7 mg/m3. Fig. 58. Scheme of migration of the Tusham paleolake in the Early Carboniferous epoch (according to N. I. Akulov, 2010): 1 - weathering crust; 2 - underlying Lower Paleozoic rocks; 3-5 - deposits: 3 - Tournaisian (t) age, 4 - Visean (v) century, 5 - Serpukhov (s) century; 6 - Tushamskaya water area; 7 - direction of migration of the lake depocenter; 8 - direction of tectonic movements; 9 - faults; 10 - well and its number. Fig. 59. Scheme of the correlation of the Lower Carboniferous deposits of the Priangara. In the Early Carboniferous, the western part of the Nepa folded zone was a dissected hilly upland adjacent to the ancient Tushamskoye lake, from the side of which pyrope-containing terrigenous material was demolished. It was evidenced by individual signs of pyropes found in the Tusham sandstones of this area ( Iksky area). The Tusham sandstones in the area of the Iksky area contain pebbles of subalkaline effusive rocks (trachyandesites, trachytes, trachybasalts, etc.). In 1991, in the valley of the Chambety river geologists of the Verkhnechulskaya party discovered a Late Devonian volcanic apparatus. The tubular body of complex structure was penetrated by the 24th and 25th wells. It is represented by breccias containing fine- and medium-grained weathered dolerites, medium- and coarse-grained tuffs, basaltic andesites, trachyandesites, and non-rounded sandstone fragments. Sandstones consist of products of destruction of trachyandesites and trachytes (Skripin, 1994). The presence in the Tusham coastal sands accumulated along the western part of the Nepa Upland, pyropes, pyroclastic material in the form of ash and pebbles of effusive rocks of subalkaline composition. Moreover, an increased background of diamond content of modern watercourses in the area of the Neps river and the discovery of a tubular volcanic apparatus make it possible to classify the Iksky area as one of the most promising areas for prospecting for diamondiferous kimberlites. Concluding the consideration of preliminary diamond prospecting works in the Priangara, the following most significant results should be noted: 1) the presence of “floating” pebbles in the Tusham Formation indicates that sedimentation took place when water-gravity flows entered the reservoir, that is, flows overloaded with debris ; 2) monomictic quartz sandstones and products of the kaolin weathering crust suggest that they were formed from areas of weathered Lower Paleozoic rocks, relics of which have been preserved on the Magdon-Educhansky watershed; 3) the development of the Tusham paleolake is due to the lateral displacement of its depocenter from the northeast to the southwest, due to the uplift of the Botu-Obinsko-Markhinsky uplift, which was probably the main supplier of the HDC and diamonds to the paleobasin; 4) the presence of green and bluish-green in the sediments of the coastal part of Lake Tushamskoye Fig. 60. The direction of the lines of geological sections in the investigated territory. Fig. 61. Geological section along the line A-B (see Fig. 60). Fig. 62. Geological section along the line C-D (see Fig. 60). argillite pebbles, formed due to erosion of the Lower Paleozoic rocks, testifies to their sedimentation in a lake reservoir, and not in a sea one, in which argillite pebbles are not preserved (worn out). The schlich method remains the main one in the complex of prospecting methods for diamonds. Nevertheless, when the prospecting operations move to closed areas, where kimberlite bodies are covered by sediments, the situation becomes much more complicated. The resulting schlich areolas in the overlying sediments are areal in nature, which does not allow determining the direction of drift of terrigenous material and reaching their primary source. This is due to the fact that most of the minerals have been redeposited and they have lost contact with the primary sources.
Список литературы

1. Ageikin A. S., Byron I. Yu., Becker A. G. et al. Methodical guidance on prospecting for placers of gold and tin. Magadan: Magadan Book Publishing House. 1982. 218 p.

2. Akishev A. N., Bondarenko I. F., Zyryanov I. V. Technological aspects of the development of poor-commodity diamond deposits. Novosibirsk: Science. 2018. 366 p. ISBN 978-5-02-038755-3

3. Akulov N. I. Exogenous activity of rivers and climate // Geology and geophysics of acti-vated regions of Eastern Siberia. Irkutsk: IEC. 1988. P. 16-17.

4. Akulov N. I. Facial analysis of the Upper Paleozoic intermediate collectors of diamonds in Angarida // Soviet Geology, 1990. No. 5. P. 48-56.

5. Akulov N. I. Buried Upper Paleozoic diamondiferous placers of Angarida // Geology of intermediate diamond collectors. Irkutsk: IEC. 1991. P. 41-44.

6. Akulov N. I. Sampling of potentially diamondiferous deposits and prospecting for dia-mond placers. Irkutsk: ISU. 1991. 80 p.

7. Akulov N. I., Kashik S. A., Fileva T. S. Mineralogy and geochemistry of the weathering crust of the Upper Paleozoic limestones in the south of the Siberian Platform // Geology and Geo-physics. 1992. No. 4. P. 65-71.

8. Akulov N. I., Kashik S. A., Mazilov V. N. Weathering crust of the southern coast of Lake Baikal // Geology and Geophysics. 1996. Vol. 37. No. 10. P. 82-87.

9. Akulov N. I. Angarida as a Middle Paleozoic continent of the Northern Hemisphere // DAN, 2003a. V. 389. No. 3. P. 341-344.

10. Akulov N. I. Middle Paleozoic tectonic-magmatic activation on the Siberian platform // lithosphere. 2003b. No. 2. P. 121-134.

11. Akulov N. I. Diamond content of Angarida // National Geology. 2010a. No. 1. P. 23-28.

12. Akulov N. I. Sedimentary basins of Angarida. Novosibirsk: Academic publishing house "GEO". 2010b. 222 p. ISBN 978-5-904682-28-6

13. Akulov N. I., Vladimirov B.M. Heavy diamonds concentrates from various genetic types of lower Carboniferous intermediate reservoirs and their role in predicting primary sources of di-amonds (south of the Siberian platform) // Diamond Geology in the "ALROSA" Joint Stock Com-pany - present and future (Company geologists by 50 - summer jubilee of the diamond mining in-dustry in Russia). Peaceful. 2005. P. 54-63.

14. Diamond-bearing placers of Western Yakutia / I. S. Rozhkov, G. P. Mikhalev and B. I. Prokopchuk, E. A. Shamshin. M.: Nauka. 1967. 280 p.

15. Anikin L. P., Chubarov V. M., Yeremina T. S. et al. Accessory minerals and a new find of diamonds in the basalts of the Plosky Tolbachik volcano, Kamchatka // Volcanism and related processes. Petropavlovsk-Kamchatsky: IViS. 2015. P. 214-222.

16. Anfilogov V. N. On the signs of mechanical and chemical impact on diamond crystals of the Ural deposits // Diamonds and diamond content of the Timan-Ural region. Materials of the All-Russian meeting. Syktyvkar. 2001. P. 149-150.

17. Anfilogov V. N., Korablev L.Ya., Korablev A.G. The nature of diamondiferous "tuff-isites" of the Northern Urals // DAN, 2000. V. 371. No. 4. P. 493-495.

18. Arkhipov A. G. The last route of the "Mir" underground mine: Investigation of the caus-es of the catastrophe on August 4, 2017 St. Petersburg: Polytechnic. 2019. 264 p. DOI: 10.25960 / 7325-1147-5 ISBN 978-5-7325-1147-5.

19. Armand N. N., Belousov V. D., Bykhovsky L. Z. and oth. Dictionary of the geology of placers. M.: Nedra, 1985. 197 p.

20. Afanasyev V. P., Varlamov D. A., Garanin V. K. Dependence of wear of kimberlite min-erals on conditions and distance of transportation // Geology and Geophysics. No. 10. 1984. P. 119–125.

21. Afanasyev V. P. Typification of schlichomineralogical prospecting environments of the Yakutian diamondiferous province // Soviet Geology. 1989. No. 1. P. 24-33.

22. Afanasyev V. P., Zinchuk N. N. Mineralogical prospecting for diamond deposits: devel-opment, state, prospects // Geology of diamonds: past, present, future. Voronezh: VSU Publishing House. 2005. P. 1291-1318.

23. Afanasyev V. P., Zinchuk N. N., Tychkov S. A. The problem of the Precambrian dia-mond content of the Siberian platform // Bulletin of the Voronezh University. Geology. 2002. Is-sue. 1. P. 19–36.

24. Afanasyev V. P., Nikolenko E. I., Tychkov N. S. et al. Mechanical wear of indicator min-erals of kimberlites: experimental research // Geology and geophysics. 2008. 49 (2). P. 120-127.

25. Afanasyev V. P., Pokhilenko N. P. Popigai Impact Diamonds: New Russian Raw Materi-als for Existing and Future Technologies // Innovatics and Expertise. 1 (10). 2013. P. 8-15.

26. Afanasyev V. P., Zinchuk N. N., Pokhilenko N.P. Exploration mineralogy of diamond. Novosibirsk: Academic publishing house "Geo", 2010. 650 p.

27. Batalov V. L. Regularities in the distribution of diamonds in the alluvial placers of the Urals and the method of their exploration. Abstract of the thesis. dis. Cand. geol.-min. sciences. Perm, 1967.18 p.

28. Beskrovanov V. V., Shamshina E. A. On the origin of diamond alluvial deposits with un-identified primary sources // Otechestvennaya geologiya. 2000. No. 5. S. 3-6.

29. Belov S. V., Lapin A. V., Tolstov A. V. and others. Minerageny of platform magmatism (traps, carbonatites, kimberlites). Novosibirsk: Publishing house of the SB RAS. 2008. 537 p.

30. Berlinsky A. I. Separation of minerals. M.: Nedra. 1988. 288 p.

31. Bogatykh I. Ya., Vaganov V. I., Golubev Yu. K. et al. On the discovery of magmatic sources of diamonds in the Urals // Otechestvennaya geologiya. 2000. No. 1. P. 66-69.

32. Bobrievich A. P., Bondarenko M. N., Gnevushev M. A. and others. Diamonds of Siberia, M.: Gosnauchte-hizdat, 1957, 158 p.

33. Bykhovsky L. Z., Gurvich S. I., Patyk-Kara N. G. and others. Geological criteria for prospecting placers. M.: Nedra. 1981. 253 p.

34. Burmin Yu. A. Epochs of crust formation and eluvial placers. M.: Nedra. 1988. 253 p.

35. Burov A.P. How to search for diamonds. M.: GOSGEOLTEKHIZDAT. 1957.160 p.

36. Busharina S.V. New data on the composition of typomorphic minerals of the diamondif-erous Krasnovishersky region // Izvestiya USMU. Issue 14. Yekaterinburg, 2002. P. 86-94.

37. Vaganov V. I., Golubev Yu. K., Minorin V. E. Methodological guide for the assessment of predicted resources of diamonds, noble and non-ferrous metals. Issue "Almazy" / Edited by Yu.K. Golubev. M.: TsNIGRI. 2002. 106 p.

38. Vladimirov B. M., Znamerovsky V. N. Kimberlite pipe in the south of the Siberian plat-form // DAN USSR. 1960. V. 139. No. 2. 438-441.

39. Voskresensky S. S. Placer geomorphology. M.: MSU. 1985. 208 p.

40. Temporary guidelines for forecasting and prospecting for primary deposits of lamproite-type diamonds / V. I. Vaganov, F. V. Kaminsky, V. A. Kononov et al. M.: TsNIGRI. 1988. 61 p.

41. Geology, forecasting, methods of prospecting, evaluation and exploration of diamond deposits // V. E. Minorin, V. M. Podchasov, I. Ya. Bogatykh and others. Book 2. Placer deposits. Yakutsk: Publishing house of the SB RAS. 2004. 424 p.

42. Gordeev E. I., Karpov G. A., Anikin L. P. et al. Diamonds in lavas of the Tolbachik Fis-sure Eruption // DAN. 2014. Vol. 454. No. 2. P. 204-206.

43. Grakhanov S. A. Placers of diamonds in the northeastern Siberian platform and their primary sources // National geology. 2006. No. 5. P. 20–28.

44. Grakhanov O. S., Serov I. V. Ancient placers of near drift in the Sredne-Markhinsky di-amond-bearing region // Geology and prospecting. Izv. of Universities. 2009. No. 3. P. 22-27.

45. Grakhanov S. A., Koptil V. I. Triassic paleoplacers deposits of diamonds in the north-eastern Siberian platform // Geology and geophysics. 2003. T. 44. No. 11. P. 1191-1201.

46. Grakhanov S. A., Shatalov V. I., Shtyrov V. A. and others Placers of diamonds in Russia. Novosibirsk: "Geo" Academic Publishing House. 2007. 457 p.

47. Gubarev V. S. The Tail of the "Diamond Dragon" // Science and Life. 2004. No. 11. P. 40-47.

48. Jakes A. L. Kimberlites and lamproites of Western Australia / Transl. from English E.N. Mountain and others; ed. N.V. Sobolev. M.: Mir. 1989. 430 p.

49. Law of the Russian Federation of 21.02.92, No. 2395-1 "On Subsoil", as amended on 30.12.08, M.: 2008.

50. Zakharova E.M. Shot prospecting and analysis of concentrates. M.: Nedra, 1974.160 p.

51. Zinchuk N. N., Kotelnikov D. D., Sobolev S. V. The structure and mineralogical features of the weathering crusts of kimberlites on small pipes in Yakutia // Bull. of MSN. Dept. of geol. 1997. V. 72. Issue. 5. P. 56-64

52. Zinchuk N. N., Boris E. I., Yanygin Yu. T. Peculiarities of diamond minerageny in an-cient sedimentary strata (on the example of the Upper Paleozoic deposits of the Siberian platform) // Mirny: Joint-stock company "ALROSA" Yakutsk research geological exploration enterprise TsNIGRI. 2004. 172 p.

53. Yekimova T. E., Lavrova L. D., Petrova M. A. Diamond inclusions in rock-forming min-erals of metamorphic rocks // DAN USSR. 1992. 1. T. 322. No. 2. P. 366-368.

54. Ivanova N.S. The problem of the genesis of diamond deposits of the Vishera group // Vestnik RUDN. Engineering Research Series. 2011. No. 1. P. 67-73.

55. Instructions for the preparation and preparation for publication of sheets of the State Ge-ological Map of the Russian Federation at a scale of 1: 200000. M.: Nedra. 1995. 224 p.

56. Cameral processing of materials from geological survey works at a scale of 1: 200000. Guidelines. Issue 2. / A. I. Bourdais, V. S. Antipov, V. I. Berger et al. St. Petersburg: VSEGEI Pub-lishing House. 1999. 384 p.

57. Kaminsky F. V. Kimberlites and diamonds of the People's Republic of China. VIEMS. 1988. Issue. 2.58 p.

58. Kilizhekov O. K., Tolstov A. V. Regularities of the formation and placement of industri-al diamond placers in the Nakyn kimberlite field (Yakutian diamond province) // Science and edu-cation. 2017. No. 1 (85). P. 12-20.

59. Kononova V. A., Bogatikov O. A., Kondrashov I. A. Kimberlites and lamproites: criteria for similarities and differences // Petrology. 2011. V.19. No. 1. P. 35–55.

60. Kossinsky Yu. Soviet diamonds on the international market // Izvestia. No. 220. 1990. 8 August.

61. Kostrovitskiy S. I., Spezius Z. V., Yakovlev D. A. et al. Atlas of primary diamond depos-its of the Yakutian kimberlite province. Mirny: NIGP "ALROSA" JSC, "MGT" LLC . 2015. 480 p.

62. Crater V. M. Search and exploration of minerals. M.-L.: State publishing house of geological literature. 1940. 790 p.

63. Kremenetsky A. A., Karas S. A., Tolstov A. V. Geochemical prospecting for kimberlite pipes in closed areas. problems and solutions // Regional geology and metallogeny. 2006. No. 27. P. 126-139. HYPERLINK "/contents.asp?id=33415135&selid=13616752"

64. Kryukov A. V., Peterson L. N. A new type of section at the base of the Upper Paleozoic cover in the Tunguska syneclise // Rep. of AS of the USSR. 1978. V. 238. No. 3. P. 663-665.

65. Kryukov V. A., Samsonov N. Yu., Kryukov Ya. V. Interregional technological chains in the development of the Popigai deposit of diamond-lonsdaleite raw materials // EKO. No. 8. 2016. P. 51-66.

66. Kudryavtseva G. P., Posukhova T. V., Verzhak V. V. et al. Morphogenesis of diamond and heavy concentrates in kimberlites and related rocks of the Arkhangelsk kimberlite province. M.: Arctic Circle. 2005. 624 p.

67. Kutyev F. Sh., Kutyeva G. V. Diamonds in Kamchatka basaltoids // DAN USSR. 1975. Vol. 321. No. 1. P. 183-186.

68. A. A. Kukharenko Mineralogy of placers. M.: Gosgeoltekhizdat. 1961. 320 p.

69. Lamproites / Ed. by O. A. Bogatikova. M.: Nauka. 1991. 300 p.

70. Lavrova L. D., Pechnikov V. A., Pleshakov A. M. and others. A new genetic type of diamond deposits. M.: Scientific World, 1999. 221p.

71. Lukyanova L. I., Mareichev A. M., Mashak I. M. et al. The first finds of manifestations of llama-proite magmatism in the Southern Urals // DAN USSR. Geology. V. 324. 1992. No. 6. P. 1260-1264.

72. Malakhov I. A., Busharina S. V. Composition of typomorphic heavy diamond concen-trates in uneven-aged terrigenous rocks of the Krasnovishersk region in the Northern Urals as an indicator of their origin // Izvestiya USMU. Issue 10. Yekaterinburg. 2000. P. 33-43.

73. Maltsev M. V., Tolstov A. V., Fomin V. M. et al. New kimberlite field in Yakutia and typomorphic features of its indicator minerals // Bulletin of the VSU. Series: Geology. 2016. No. 3. P. 86-94.

74. Maltsev M. V., Tolstov A. V. Conditions for localization and criteria for prospecting for kimberlites (on the example of the Ygyattinsky diamondiferous region, western Yakutia) / Scien-tific and methodological foundations for forecasting, prospecting, evaluating deposits of dia-monds, noble and non-ferrous metals / Proceedings of the VIII International Scientific and Practi-cal Conference. Novosibirsk. 2018. P. 109.

75. Masaitis V. L., Mikhailov M. V., Selivanovskaya T. V. Popigai meteorite crater. M.: Nauka. 1975. 124 p.

76. Masaitis V. L., Mashak M. S., Raikhlin A. I., Selivanovskaya T. V., Shafranovsky G. I. Diamond-bearing impactites of the Popigai astrobleme. SPb.: VSEGEI, 1998.179 p.

77. Meijen S.V. Fundamentals of paleobotany. M.: Nedra. 1987. 403 p.

78. Methodological recommendations for paleogeological methods of forecasting and pro-specting for buried diamond deposits on the Siberian platform / G. Kh. Fainshtein, A. E. Bessolitsyn, E. N. Belov, E.M. Vashchenko et al. Irkutsk: Vost.-Sib. Pravda Publishing House. 1985. 44 p.

79. Methodological guide to Geological survey at a scale of 1: 50,000. L.: Nedra. 1978. V. 2. 287 p.

80. Methods of sampling and processing of samples in prospecting for diamond deposits / M. I. Malanyin, A. P. Krupenin, V. P. Prokopchuk et al. M.: Nedra. 1984. 183 p.

81. Milashov V. A. Diamond. L.: Nedra. 1989. 152 p.

82. Minorin V. E. Predictive exploration models of diamond-bearing placers in Russia. M.: TsNIGRI. 2001. 117 p.

83. Nikolayev M. V., Grigorieva E. E., Samsonov N. Yu. and others. Diamond-lonsdaleite raw materials of the Popigai astrobleme - a new type of high-tech materials: price formation // Innovations № 3 (221). 2017. P. 102-107

84. Enrichment of diamond-containing bedrock and sand / M. I. Malanyin, A. P. Krupenin, M.M. Cherkashina et al. M.: Gosgeoltekhizdat. 1961. 243 p.

85. Obruchev V., Zotina M. Eduard Zyuss. M.: Journal and newspaper association. 1937. 232 p.

86. On amendments to the Procedure for considering applications for obtaining the right to use subsoil for geological exploration of subsoil (except for subsoil in federal subsoil plots and local subsoil plots), approved by order of the Ministry of Natural Resources of Russia dated No-vember 10, 2016 No. 583. Registered by the Ministry of Justice of Russia 28 november 2017

87. Orlov Yu. L. Mineralogy of diamond. M.: Nauka. 1984. 264 p.

88. On the state and use of mineral resources of the Russian Federation in 2016 and 2017. State report / N. A. Vasilkova, A. A. Gorev, V. A. Danilchenko, L. A. Dorozhkina et al. M.: Min-eral-Info. 2018. 370 p.

89. Patyk-Kara N.G. Minerageny of placers: types of placer provinces. M.: IGEM. 2008. 526 p.

90. Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, Impact Formations / Ed. by O. A. Bogatikova, O. V. Petrova, A. F. Morozov; ed.-in-chief L.V. Sharpenok. SPb: VSEGEI. 2009. 200 p.

91. Petrography and mineralogy of kimberlite rocks in Yakutia / A. P. Bobrievich, I. P. Ilupin, I.T. Kozlov et al. M.: Nedra. 1964. 192 p.

92. Field research during geological survey work on a scale of 1: 200 000. Methodical recommendations. Issue 3 / V.S. Antipov, V.I. Berger, A.I. Bourdais et al. SPb: VSEGEI. 2000.112 p.

93. The procedure for considering applications for obtaining the right to use subsoil for the purpose of geological study of subsoil areas / Approved by order of the Ministry of Natural Re-sources of the Russian Federation No. 61. dated 15.03.05, Registered with the Ministry of Justice of the Russian Federation on 26.04.05, No. 6559 // Rossiyskaya Gazeta No. 98 (3767) dated 12.05.05.

94. The order of consideration of applications for obtaining the right to use subsoil for the formation of specially protected geological objects / Approved by order of the Ministry of Natural Resources of the Russian Federation No. 712 dated 24.12.04. Registered in the Ministry of Justice of the Russian Federation on December 17, 2004, No. 6194 // Rossiyskaya Gazeta No. 286 (3663) dated December 24, 2004. 2004a.

95. The procedure for considering applications for obtaining the right to use subsoil for the purpose of collecting mineralogical, paleontological and other geological collection materials / Approved by order of the Ministry of Natural Resources of the Russian Federation No. 711 dated November 29, 2004. Registered with the RF Ministry of Justice No. 6196 on December 17, 2004 // Rossiyskaya Gazeta No. 286 (3663) dated 24.12.04, 2004b.

96. Posukhova T.V., Sokolova M.A. Diamonds and their concentrates in diamond-bearing deposits of the Laptev Sea basin // National geology. No. 2. 2018. P. 59-69.

97. Pokhilenko N. P., Afanasyev V. P., Tolstov A. V. et al. Impact diamonds - a new type of high-tech raw materials // ECO. No. 12. 2012. P. 5-11.

98. Order of the State Committee for Ecology of the Russian Federation No. 81 dated 11.02.1998 “On Approval of the Methodology for Calculating the Amount of Damage from Groundwater Pollution”. M. 1998.

99. Prokopchuk B.I. On the history of the formation of uneven-aged diamond placers in the north-east of the Siberian platform // Rep. AS of the USSR. Ser. geol. 1966. No. 4. P. 41-55.

100. Prokopchuk B. I. Diamond placers and methods of forecasting and prospecting them. M.: Nedra. 1979. 248 p.

101. Prokopchuk B. I., Kolesnikov S. K., Levin V. I. et al. New data on the scale of coal-coal sedimentation in the north of the Siberian platform // Rep. of AS of the USSR. 1983. V. 269. No. 5. P. 1168-1173.

102. Protsenko E. V., Tolstov A. V., Gorev N. I. Criteria for prospecting for kimberlites and new prospects for primary diamond content in Yakutia // Ores and metals. No. 4. 2018. P. 14-23.

103. Razumikhin N. V., Timashkova Z. N. Experimental data on the patterns of distribution of some heavy minerals on various morphological elements of the placers / Patterns of the distri-bution of minerals. M. I960. V. 17. P. 224-237.

104. Rosen O. M., Zorin Yu. M., Zayachkovsky A. A. The discovery of diamond in connec-tion with eclogites in the Precambrian of the Kokchetav massif // Rep. of AS of the USSR. 1972. V. 203. No. 3. P. 674-676.

105. Placers of diamonds of Russia / S. A. Grakhanov, V. I. Shatalov, V. A. Shtyrov et al. Novosibirsk: Academic publishing house "GEO". 2007. 457 p.

106. Romanchikov M. A. Instructions on technology and control of sample enrichment. Mirny: Amakinskaya expedition. 1983. 20 p.

107. Placers of Diamonds of the World / V. M. Podchasov, M. N. Yevseev, V. E. Minorin et al. M.: Geoin-formark. 2005. 747 p.

108. Rukhin L.B. Foundations of general paleogeography. L.: Gostoptekhizdat. 1962. 557 p.

109. Rybakov V. G., Kalmykov S. M., Denisenko E. P. New data on the diamond content of the basin of the upper reaches of the Nizhniy Tunguska river // Geology of intermediate reservoirs of diamonds. Novosibirsk: Nauka. 1994. P. 21-25.

110. Rybalchenko A. Ya., Kolobyanin V. Ya., Rybalchenko T. M. On a new type of magma-tism as a possible source of Ural diamonds // Modeling of geological systems and processes: Ma-terials of region. scientific. conf. Perm: PSU. 1996. P. 111-113.

111. Rybalchenko A. Ya., Kolobyanin V. Ya., Lukyanova L. I. et al. On a new type of primary sources of diamonds in the Urals // DAN RAN. 1997. V. 353, No. 1. P. 90-93.

112. Rybalchenko A. Ya., Rybalchenko T. M., Silayev V. I. Theoretical foundations of fore-casting and prospecting for primary deposits of tuffisite-type diamonds // Izvestia of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. Issue 1 (5). 2011. P. 54-66.

113. Sarsadskikh N. N. The search for diamond deposits by minerals - satellites // Inform. pack. VSEGEI. 1958. No. 5. P. 122-131.

114. Salikhov R. F., Tolstov A. V., Salikhova V. V. Reconstruction of the paleorelief in the search for buried kimberlite bodies in closed trap-saturated territories (for example, the Alakit-Markhinsky field) // Ores and metals. 2020. No. 1. P. 39-50.

115. Silayev V. I., Shanina S. N., Rakin V. I. Diamonds from tuffisites of the Urals (crystal morphology and fluid inclusions) // Problems of mineralogy, petrography and metallogeny: Mate-rials of scientific readings in memory of P.N. Chirvinsky. Issue 13. Perm: PSU. 2010. P. 3–23.

116. Silayev V. I., Karpov G. A., Rakin V. I. et al. Diamonds in the products of the fissure Tolbachik eruption 2012-2013, Kamchatka // Bulletin of Perm University. Geology. 2015. P. 5-27.

117. Simonenko V. I., Tolstov A. V., Vasilyeva V. I. A new approach to geochemical pro-specting for kimberlites in closed areas // Exploration and conservation of mineral resources. 2008. No. 4-5. P. 108-112. HYPERLINK /contents.asp?id=33215841

118. Skripin A.I. Angara-Tunguska diamondiferous province // Geology of intermediate di-amond collectors. Novosibirsk: Science. 1994.S. 6-11.

119. Sokolov B. N. Formation of diamond placers. M.: Nauka. 1982. 92 p.

120. Strakhov N. M. Fundamentals of the theory of lithogenesis / Types of lithogenesis and their placement on the surface of the Earth. M.: Nauka. 1962. Vol. 1. 212 p.

121. Sushon A. R. Geological prospecting works. Textbook for the training of workers in production. M.: Nedra. 1976. 263 p.

122. Tolstov A. V., Serov I. V., Bogush I. N. et al. New perspectives of the Sredne-Markhinsky region / Natural and technogenic placers. Problems. Solutions". Simferopol: Field Press. 2007. P. 210-218.

123. Tolstov A. V., Fomin V. M., Razumov A. N. and others. New approaches to prospecting for diamond deposits in the Yakutsk diamond province // Zbirnik naukovikh prats of the Ukrainian State Geological and Exploration Institute No. 1. 2013. P. 154-160. HYPERLINK /contents.asp?id=34328485.

124. Tolstov A.V., Grakhanov O. S. New prospects for the development of buried diamond placers in Yakutia / Geology and mineral resources of the North-East of Russia. Materials of the All-Russian scientific-practical conference. 2014. P. 487-492.

125. Tolstov A. V., Protsenko E. V., Koshkarev D. A. Features of forecasting the primary di-amond content of the left bank of the Lena river / Geology and mineral resources of the North-East of Russia. Materials of the IX All-Russian Scientific and Practical Conference: in 2 volumes. 2019. P. 182-185.

126. Trofimov V. S. Genetic types of placers and regularities of their placement // Laws of placement of minerals. M.: Gosgortekhizdat. 1960. V. 4. P. 5-19.

127. Trushkov Yu.N. Theoretical connection of placers with primary sources and reconstruc-tion of the latter (geometric model on the simplest examples) // Placers of gold and their connec-tion with primary deposits in Yakutia. Yakutsk, 1972. P. 5-31.

128. Ward F. The old and new face of diamond // Abroad. 1979. No. 16. P. 18-19.

129. Ustinov V.N. Methods of paleogeographic research in forecasting and searching for buried diamond deposits // Ores and metals. 2008. No. 5. P. 27-40.

130. Ustinov V.N. Predictive and prospecting types of manifestation of buried kimberlite fields in terrigenous diamond reservoirs. Notes of Mining University. 2009a. V. 183. P. 149-159.

131. Ustinov V.N. Forecasting and prospecting for buried diamond deposits based on a comprehensive study of Late Paleozoic terrigenous reservoirs. Abstract of the dissertation for the degree of Doctor of Geological and Mineralogical Sciences. St. Petersburg, 2009b. 40 p. http: //local.www.geokniga.org/books/19768.

132. Feinstein G.Kh. Methods of prospecting for industrial diamond deposits in the south of the Siberian platform (temporary instruction). Irkutsk: VostSibNI-IGGIMS. 1968. 51 p.

133. Fainshtein G. Kh., Lebed G. G. Cities are behind us. Awakened Genies: Sib. notes. Irkutsk: Vost.-Sib. book publishing house, 1988. 304 p.

134. Frolov A. A., Tolstov A. V., Belov S. V. Carbonatite deposits in Russia. Moscow: VIMS. 2003. 494 p.

135. Khramov A. N. Standard series of paleomagnetic poles for the plates of Northern Eurasia: connection with the problems of paleogeodynamics of the USSR territory // Paleomagnetism and paleogeodynamics of the USSR territory. L.: VNII-GRI. 1991.135-149.

136. Khmelkov A. M. The main minerals of kimberlites and their evolution in the process of halo formation (on the example of the Yakutsk diamondiferous prov-ince). Novosibirsk: ARTA. 2008. 252 p. ISBN 5-902700-11-6

137. Shatalov V. I., Grakhanov S. A., Yegorov A. N. et al. A new industrial type of diamond placers in the Yakutsk diamondiferous province // National geology. 2002. No. 4. P. 15–19.

138. Shamshina E. A. Weathering crust of kimberlite rocks of Yakutia. Novosi-birsk: Nauka. 1979. 151 p.

139. Shafranovsky I. I. Diamonds. M.-L.: Nauka. 1964. 173 p.

140. Shilo N. A. The doctrine of placers. Vladivostok: Dalnauka. 2002. 575 p.

141. Erlikh E. Deposits and history. St. Petersburg: Written by pen, 2016. 379 p.

142. Anand M., Taylor L.A., Misra K.C., Carlson W.D. et al. Nature of dia-monds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds // Lithos. 2004. 77. Р. 333-348. Doi: 10.1016/j. lithos.2004.03.026

143. Bardet M.G. Geologie du diamant Materes du B.R.G.M. Premierpartic, generalites. Paris. 1973. 83 p.

144. Chirico P.G., Malpeli K.C. A methodological toolkit for field assessments of artisanally mined alluvial diamond deposits: U.S. Geological Survey Techniques and Methods book 11, chap. D2. U.S. Geological Survey, Reston, Virginia 2014. 28 p. ISSN 2328-7055. https: // dx.doi.org/10.3133/tm11D2.

145. Claoue-Long J.C., Sobolev N. L., Shatsky V. S. and Sobolev A.,V. Zircon response to diamond-pressure metamorphism in the Kokchetav massif, USSR. // Geology. 1991. V.19. P. 710-713.

146. Clifford T.N. Tectono-metallogenic units and metallogenic provinces of Africa // Earth Planet Sci Lett. 1966. No 1. P. 421-434.

147. Michel J.C. Les nouvelles provinces diamantiferes a kimberlite et lamproite de Kimberley. Western Australia // Chronique de la recherché miniere. 1988. No 492. P. 33-40.

148. Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature. 1990. V. 343. 6260. P. 742-746.

149. Sobolev N.V., Tomilenko A.A., Kuz'min D.V. et al. Prospects of search for diamondif-erous kimberlites in the northeastern Siberian platform //Geology and Geophysics. 2018. V. 59. № 10. P. 1365-1379.

150. Shigley J.E., Chapman J., Ellison R.K. Discovery and mining of the Argyle diamond deposit, Australia // Gems & Gemology. 2001. Vol. 37. No. 1. P. 26–41.

151. Williams A. F. The Genesis of Diamond. London. E. Benn. Vol.1. 1932. 636 p.

Войти или Создать
* Забыли пароль?