TYPES OF TESTING WORKS IN SEARCHING FOR DIAMONDS
Abstract and keywords
Abstract (English):
The book contains materials on the search for modern and buried alluvial and primary deposits of diamonds. Much attention is paid to prospecting testing of potentially diamondiferous deposits and provides information on all types of diamondiferous rocks currently known. It is addressed primarily to young geologists who have embarked on a search for diamond deposits. It will find the answer to many questions by many geologists, prospectors and prospectors, leading the search for gold and diamonds. While this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Keywords:
diamonds, deposits, Basaltoids, Impactites, Tuffisites, Metamorphites, Lamproites, Kimberlites, placers, Angarida
Text
No researcher will begin the study of the diamond content of an unfamiliar river by studying the roundness of pebbles or their granulometry, as rightly pointed out by one of the experienced diamond geologists, B.M. Sokolov (1982). First of all, he will begin by testing it for diamonds and their paragenetic satellite dikes. Depending on the purpose, an ordinary, special technical, technological and operational sampling of diamond-bearing placers is distinguished. In this book, we will only deal with the issues of ordinary sampling, which is carried out at all stages of geological exploration and includes a system of operations that ensure the study of the mineral composition of the heavy fraction of terrigenous sediments in order to identify and determine among them the content of diamonds or their heavy concentrate (HC). The data obtained in the course of routine sampling are the initial material for delineating and calculating the reserves of the identified placer. Both pits and ditches are tested vertically along the walls. The volume of each sample is one placer watersink (10 l). In the event that it is cemented, it is preliminarily disintegrated mechanically in a mortar (it is desirable to obtain a crumbling without disturbing the structure of mineral grains). To do this, the cemented fragments are poured with water if the cement is clayey or 5% HCl if it is carbonate. When taking a bulk sample (small-volume or large-volume), it contains all the material obtained when driving a dug hole. Bulk samples taken from trenches or ditches are usually 10-40 m (or more) sections for the entire thickness of the potentially diamondiferous formation. When testing wells, the core is divided along the long axis and half or a quarter of it enters the sample. The entire core is used as a sample out of the most interesting intervals of the well, which allows obtaining more reliable information. Thus, at present, four types of sampling work are distinguished as part of ordinary sampling: schlich, crushing, drilling (core and sludge) and gross (small-volume and large-volume). Slice sampling is the most common type of sampling in prospecting for diamond deposits. Thanks to the schlich sampling, the scattering halos of the HDC are established and the paths of the drift of the terrigenous material are determined. To increase the reliability of the study, sometimes two trays of terrigenous material (20 l) are washed. Sampling for crushing to determine the mineral composition of ancient rocks and the detection of HDC is carried out from near-bed areas. The sample must include material from the “scuff” (from a depth of up to 20 cm from the surface of the raft). For the manufacture of crushed conglomerates, cement is selected in the places of its greatest accumulation. After grinding, the sample is poured into a placer watersink and sieved. The results of the analysis of crushed samples, as well as other information on prospecting and sampling, are plotted on the prospecting map (plan). Small drill rigs of the UPB-25 type are used to open a relatively shallow-lying bedrock, as well as to study loose productive sediments. Cable-tool drill is usually used to open and sample sand-and-shingle deposits of terraces and floodplains under a thick layer of fine-grained formations. Drilling is carried out along profiles across the valleys from bedrock on one side to bedrock on the other. Sampling should preferably be done with a Canadian spoon. Small-volume samples are taken in areas most enriched in paragenetic satellite dikes of diamonds. Such areas are outlined in the course of schlich sampling. The volume of samples varies from 0.5 m3 to 1.5 m3, depending on the nature of the tested deposits and the degree of their diamond content. Samples are taken using pits, ditches, sometimes using a bulldozer or excavator. In connection with the discovery of new sources of diamonds - lamproites, new recommendations for small-volume sampling appeared (Temporary methodological ..., 1988). In particular, it is indicated that small-volume sampling in the search for lamproites and diamond-bearing placers developed on them, due to the fact that the average background concentrations of Suppose that in the course of prospecting for diamonds, one cubic meter of sand and gravel deposits is washed. How much should the resulting concentrate weigh? Based on the experience of geological exploration, it is assumed that one cubic meter of sand and gravel deposits weighs 1.5 tons, and the mass of the heavy fraction minerals contained in it (minerals with a density of more than 2.9 g/cm3) averages 0.5-3 kg. For every ton of small-volume samples washed in the field, we have from 0.3 to 2 kg of concentrate. Due to the fact that the concentrate is washed to a gray concentrate, its weight is always much higher and reaches 3 kg or more. G. F. Feinstein (Feinstein, Lebed, 1988) wrote that when the first diamond-bearing pipes were opened, from each cubic meter of “sands” supplied to beneficiation, from 5 to 50 liters of concentrate was obtained, which indicates a large underwash of the tested sediments. It is important to emphasize that in the course of obtaining a concentrate in the field, all mineral grains must be washed from clay smears and clay “aggregates” (pellets). Washing is usually carried out immediately after unloading the shaker (before depositing) in a sieve, with holes smaller than the size of the washed fraction, in running water. Washing goes on until the release of clay "turbidity" and light gray minerals of the light fraction stops. Large-volume sampling is carried out to confirm the presence of diamonds found in small-volume sampling and to determine the diamond grade. According to G. Kh. Feinstein (1968), this sampling is especially necessary where the alluvium of streams draining the development fields of diamond-bearing and pyro-bearing deposits is devoid of diamond satellite dikes. And in the adjacent areas, river sediments contain large diamonds with an average weight of more than 10-15 mg. The frequency of detecting such diamonds is several times less than in placers with small diamonds, and therefore the probability of finding at least one such crystal in a small-volume sample is small. The required sample volume for large-scale sampling is usually calculated using the Burov-Volorovich formulaSuppose that in the course of prospecting for diamonds, one cubic meter of sand and gravel deposits is washed. How much should the resulting concentrate weigh? Based on the experience of geological exploration, it is assumed that one cubic meter of sand and gravel deposits weighs 1.5 tons, and the mass of the heavy fraction minerals contained in it (minerals with a density of more than 2.9 g/cm3) averages 0.5-3 kg. For every ton of small-volume samples washed in the field, we have from 0.3 to 2 kg of concentrate. Due to the fact that the concentrate is washed to a gray concentrate, its weight is always much higher and reaches 3 kg or more. G. F. Feinstein (Feinstein, Lebed, 1988) wrote that when the first diamond-bearing pipes were opened, from each cubic meter of “sands” supplied to beneficiation, from 5 to 50 liters of concentrate was obtained, which indicates a large underwash of the tested sediments. It is important to emphasize that in the course of obtaining a concentrate in the field, all mineral grains must be washed from clay smears and clay “aggregates” (pellets). Washing is usually carried out immediately after unloading the shaker (before depositing) in a sieve, with holes smaller than the size of the washed fraction, in running water. Washing goes on until the release of clay "turbidity" and light gray minerals of the light fraction stops. Large-volume sampling is carried out to confirm the presence of diamonds found in small-volume sampling and to determine the diamond grade. According to G. Kh. Feinstein (1968), this sampling is especially necessary where the alluvium of streams draining the development fields of diamond-bearing and pyro-bearing deposits is devoid of diamond satellite dikes. And in the adjacent areas, river sediments contain large diamonds with an average weight of more than 10-15 mg. The frequency of detecting such diamonds is several times less than in placers with small diamonds, and therefore the probability of finding at least one such crystal in a small-volume sample is small. The required sample volume for large-scale sampling is usually calculated using the Burov-Volorovich formula , where P is the volume of the most representative sample; A - average weight of diamonds in placers adjacent to the prospecting area; С - average diamond content in placers adjacent to the prospecting area; K is the reliability factor, conventionally taken equal to 2. What should be the minimum bulk sample volume? Let's conditionally establish that the average weight of diamonds in the placer is 100 mg (so as not to miss a diamond with a size of 0.5 ct), and the average minimum (borne) content in the placer is 0.1 ct/m (20 mg/m3). Substituting the given data into the above formula, we obtain To enrich the analyzed material and obtain the necessary concentrate, a primitive field processing plant is being built. Its construction and operation is carried out by a special enrichment detachment, provided with an excavator or bulldozer and an all-terrain vehicle for transporting the test material, the volume of which varies from several tens to several thousand cubic meters. For example, in 1954, the party No. 47 of the Oryol expedition from alluvial deposits of one of the sections of the Chuny river (south of the Siberian platform) 2112 m3 of sands were sampled. As a result of their enrichment, 16 diamond crystals with a total weight of 113.2 mg were recovered. It is easy to calculate that the average grade in this placer is 0.00027 carats/m3. Is it a lot or a little? It is known that in foreign practice, primary deposits are exploited with a diamond content usually from 0.5 to 5-10 carats/t, and placer deposits with a diamond content of about 0.1-0.3 carats/m3 and higher (Berlinsky, 1988). Thus, this placer is characterized by a very low or poor diamond content. Table 2 Classification of diamond placer deposits (Placers of diamonds ..., 2007) Parameter Size, level Size, mln ct Unique Over 20.0 Large 5-20 Average 1-5 Small Up to 1.0 Diamond content, ct/m3 Unique Over 5.0 High 1-5 Average 0.5-1.0 Low lower 0.5 Price, USD/ct Unique Over 100.0 High 50-100 Average 30-50 Low Up to 30.0 S. A. Grakhanov et al. (Placers of diamonds ..., 2007) proposed the following variant of the classification of alluvial diamond deposits (Table 2). In this regard, it should be noted that the main reserves of placer diamonds in Russia are concentrated in Western Yakutia and are distribut-ed over the following regions: Anabarsky (64.2%), Sredne-Markhinsky (13.8%), Malo-Botuobinsky (12.3%), Prilensky ( 4.6%), Muno-Tyungsky (2.3%) and Daldyno-Alakitsky (1.4%). The missing interest belongs to another region of Russia - the Perm Oblast (1.4%). It should be noted that the richest place is the river basin Ebelyakh (Anabar region), where 52.3% of all Russian reserves of placer diamonds are concentrated (Placer diamonds ..., 2007). An important condition for prospecting for diamond-bearing placers is the production of high-quality diamond-bearing concentrates, as well as their thorough analysis at stationary installations, excluding the possibility of contamination with diamonds from other samples. It is noted that in Western Australia, mass finds of diamonds in lamproites began only after a new processing plant was commissioned in August 1978 (Temporary methodical ..., 1988). 5.1. Equipment: tools and materials for field work When carrying out expeditionary work, an ordinary geologist must have: a geological hammer, a mountain compass, a set of topographic maps, a field book, pencils, a geological satchel, a knife, a tape measure, 5% hydrochloric acid, labels and bags for samples. A diamond geologist will need a whole range of equipment and tools, which includes: 1) a set of sieves (roar), which is often mounted in the form of a single, easily movable mechanism - a shaker; 2) marching flush lock; 3) a jigging plant of the Ji-gi type or a portable screw separator; 4) wooden or plastic sizing trays; 5) entrenching tool: a set of shovels (pick and bayonet), pick, crowbar, wedge, chisel, ax, chainsaw; 6) a cast-iron mortar (2-3 l volume) for the manufacture of prototypes from cemented rocks; 7) tarpaulin (awning) of dimensions 2x3 m; 8) a awning and everything you need for sleeping and cooking. In addition to base maps, you must have: 1) 2-3 copies of field maps for applying data (actual material); 2) satellite dikes navigation system and portable position control system (GPS) for binding precise geographic coordinates and altitude data; 3) laptop for registering important objects and data; 4) digital camera and video camera for shooting each tested area and documenting mine workings (pits, ditches); 5) an aircraft - a quadrocopter or drone for aerial survey of the research area; 6) documents for carrying out geological exploration works; 7) a ruler with micron divisions for measuring HDC mineral grains and diamond crystals. Personal protective equipment plays an important role: hunting knife and rifle; mosquito nets and insect repellents; sun hat, gloves and mountain boots for outcrop work; portable generator or small-sized power plant; gas cylinders for cooking; money to buy the necessary things, as well as a first-aid kit. The data collection methodology is further subdivided into three categories, each of which represents a collection technique: observation, diary, photography, and video filming. In the diary, each field route is recorded by the date of its conduct, the composition of the search group according to surname, the purpose of the route and the exact binding of each described observation point. All this will serve as the basis for reporting on the results of the exploration work. The researcher records measurements and observations related to specific outcrops, their general characteristics. It is very important that all documentation is completed at the outcrop or mine working itself, and not carried out after returning to the camp. Geological observations include a description of the composition of the bedrock, geological features of occurrence and types of overlying deposits. A preliminary assessment of the environmental conditions in the area of the future mine and in the adjacent territory should be carried out. When carrying out work in areas with identified diamond content, drilling crews with self-propelled drilling rigs are involved, and when tracing paleovalleys and preliminary contouring of ore bodies - geophysical research methods (VES survey, magnetic survey, etc.). Since the extensive literature is devoted to drilling and geophysical research methods, and the main attention will be paid to jigging devices below, here we will focus only on tools for driving mine workings manually and sampling for the purpose of flushing them on a jig plant. Bayonet and pick-up shovels are used as such tools, and when working with cemented deposits - picks and metal wedges (Fig. 17). In the process of driving workings, workers (miners) often use home-made, improved varieties of shovels: bayonet - tunneling and collecting - shovel (loading). The choice of a shovel with a particular width of the working blade should be made on the basis of the following rule: the higher the specific gravity of the rock, the smaller the blade of the shovel should be. This is because it has been established in practice that the least fatigue of the worker and higher labor productivity are achieved when placed on shovel no more than 8-9 kg of rock. Often, the rocks of the block, which are of primary interest in diamond prospecting, turn out to be strongly cemented or represent a monolithic conglomerate. In such cases, a pick, crowbar, chisel and wedges are used. A pick can be one-sided (one-blade), two-sided and a pick-hoe (see fig. 17). The peculiarity of the latter is that instead of a point, it ends with a blade. In most cases, in double-sided tools, one blade has a tip, like a regular pick, and the other has a blade, like a pick-hoe. Usually, experienced miners sharpen, harden and beat off tools before starting tunneling work. Their hardening is carried out by heating over a fire to a red-hot color and shaping with a hammer, and then cooled in cold water with tempering to a purple color. It is no coincidence that we dwelt in such detail on mining tools, since all geological exploration work is based on mine workings, the competent implementation of which can greatly facilitate the work of miners, save time or conduct mining work not where it is good to “dig”, but there, where it is truly necessary. The search for paleo placer deposits is accompanied by a whole complex of lithological studies. First of all, natural outcrops of rocks are comprehensively studied. In their absence, excavation of pits, ditches or clearing is carried out. Description of sedimentary rocks along the section is carried out from bottom to top, in the following sequence: E Granulometric type (sandstones, mudstones, etc.). E Form of occurrence (formation, lens, interlayer, etc.). E Power. E Structural and textural features. E Color. E Material composition (roundness, sorting, field mineralogy). E Genetic traits (wave-break marks, traces of turbidity and underwater landslides, drying cracks, nodules, etc.). E Type of cement (clay, carbonate, quartz, ferruginous, etc.), the nature of cementation (basal, pore, contact, etc.). E Paleontological remains (flora, fauna, ichthyofauna, etc.). E Contact (blurry, clear, gradual, unclear). E Cyclicity and rhythm (rhythms, cycles, mesocycles, macrocycles). E Sampling for granulometric (30 g), petrographic (thin section, 30 g), palinological (150 g) and clay (100 g) analyzes. Fig. 17. Tools for driving mine workings manually (according to A. R. Sushon, 1976): shovels: a - spade, b - tunneling, in - loading (scoop); picks: d - one-sided (straight and oblique), d - double-sided; wedges: e - square, g - rectangular, and h - round. As a result, the bag with the selected sample should weigh 300-350 g. Thus, the sample volume for all types of lithological analyzes should be equal to the volume of a 200-gram glass. Samples of rocks for all types of analyzes are taken from each type of rocks or lithological variety, and in homogeneous strata - every 5 m. It should be remembered that samples are taken for chemical analysis only from the weathering crust, as well as from various chemogenic formations (10 g each of them). The chemical composition of the fine-pellet fraction is performed after its laboratory elutriation and drying (2-3 g is required for analysis). Particular attention is paid to sampling for crushing with the purpose of detecting HDC. Its volume is usually 15-20 kg. The rocks that make up the ancient sedimentary bodies enriched with diamonds or their satellite dikes are usually called intermediate reservoirs, although oil geologists are very indignant about this and demand to call reservoirs only those rocks that contain oil fluids and ensure their mobility. Nevertheless, the term intermediate reservoirs is deeply rooted and is widely used by diamond geologists. Intermediate reservoirs are usually consolidated and overlain by “waste” rock strata. Consequently, all diamondiferous paleoros are intermediate collectors of diamonds, but not all intermediate collectors are paleoros. The most expedient search for paleo placer deposits in places where intermediate diamond collectors emerge on the day surface. Such places are usually located along the outskirts of such large structures as the ancient mainland of Angarida and the Anabar anteclise on it. If shallowly buried intermediate diamond collectors are found within a promising area, it is most reasonable to drill shallow wells that open the intermediate collector along a sparse grid over the entire area. Based on the data obtained during drilling, a plan of the investigated area is built taking into account the location of the found diamonds and their satellite dikes. Based on this, further, more detailed searches for paleo-placer deposits are being carried out, but already proceeding from the analysis of the regularities of the formation of an intermediate reservoir, its enclosing sediments and the supposed locations of their primary sources.
References

1. Ageikin A. S., Byron I. Yu., Becker A. G. et al. Methodical guidance on prospecting for placers of gold and tin. Magadan: Magadan Book Publishing House. 1982. 218 p.

2. Akishev A. N., Bondarenko I. F., Zyryanov I. V. Technological aspects of the development of poor-commodity diamond deposits. Novosibirsk: Science. 2018. 366 p. ISBN 978-5-02-038755-3

3. Akulov N. I. Exogenous activity of rivers and climate // Geology and geophysics of acti-vated regions of Eastern Siberia. Irkutsk: IEC. 1988. P. 16-17.

4. Akulov N. I. Facial analysis of the Upper Paleozoic intermediate collectors of diamonds in Angarida // Soviet Geology, 1990. No. 5. P. 48-56.

5. Akulov N. I. Buried Upper Paleozoic diamondiferous placers of Angarida // Geology of intermediate diamond collectors. Irkutsk: IEC. 1991. P. 41-44.

6. Akulov N. I. Sampling of potentially diamondiferous deposits and prospecting for dia-mond placers. Irkutsk: ISU. 1991. 80 p.

7. Akulov N. I., Kashik S. A., Fileva T. S. Mineralogy and geochemistry of the weathering crust of the Upper Paleozoic limestones in the south of the Siberian Platform // Geology and Geo-physics. 1992. No. 4. P. 65-71.

8. Akulov N. I., Kashik S. A., Mazilov V. N. Weathering crust of the southern coast of Lake Baikal // Geology and Geophysics. 1996. Vol. 37. No. 10. P. 82-87.

9. Akulov N. I. Angarida as a Middle Paleozoic continent of the Northern Hemisphere // DAN, 2003a. V. 389. No. 3. P. 341-344.

10. Akulov N. I. Middle Paleozoic tectonic-magmatic activation on the Siberian platform // lithosphere. 2003b. No. 2. P. 121-134.

11. Akulov N. I. Diamond content of Angarida // National Geology. 2010a. No. 1. P. 23-28.

12. Akulov N. I. Sedimentary basins of Angarida. Novosibirsk: Academic publishing house "GEO". 2010b. 222 p. ISBN 978-5-904682-28-6

13. Akulov N. I., Vladimirov B.M. Heavy diamonds concentrates from various genetic types of lower Carboniferous intermediate reservoirs and their role in predicting primary sources of di-amonds (south of the Siberian platform) // Diamond Geology in the "ALROSA" Joint Stock Com-pany - present and future (Company geologists by 50 - summer jubilee of the diamond mining in-dustry in Russia). Peaceful. 2005. P. 54-63.

14. Diamond-bearing placers of Western Yakutia / I. S. Rozhkov, G. P. Mikhalev and B. I. Prokopchuk, E. A. Shamshin. M.: Nauka. 1967. 280 p.

15. Anikin L. P., Chubarov V. M., Yeremina T. S. et al. Accessory minerals and a new find of diamonds in the basalts of the Plosky Tolbachik volcano, Kamchatka // Volcanism and related processes. Petropavlovsk-Kamchatsky: IViS. 2015. P. 214-222.

16. Anfilogov V. N. On the signs of mechanical and chemical impact on diamond crystals of the Ural deposits // Diamonds and diamond content of the Timan-Ural region. Materials of the All-Russian meeting. Syktyvkar. 2001. P. 149-150.

17. Anfilogov V. N., Korablev L.Ya., Korablev A.G. The nature of diamondiferous "tuff-isites" of the Northern Urals // DAN, 2000. V. 371. No. 4. P. 493-495.

18. Arkhipov A. G. The last route of the "Mir" underground mine: Investigation of the caus-es of the catastrophe on August 4, 2017 St. Petersburg: Polytechnic. 2019. 264 p. DOI: 10.25960 / 7325-1147-5 ISBN 978-5-7325-1147-5.

19. Armand N. N., Belousov V. D., Bykhovsky L. Z. and oth. Dictionary of the geology of placers. M.: Nedra, 1985. 197 p.

20. Afanasyev V. P., Varlamov D. A., Garanin V. K. Dependence of wear of kimberlite min-erals on conditions and distance of transportation // Geology and Geophysics. No. 10. 1984. P. 119–125.

21. Afanasyev V. P. Typification of schlichomineralogical prospecting environments of the Yakutian diamondiferous province // Soviet Geology. 1989. No. 1. P. 24-33.

22. Afanasyev V. P., Zinchuk N. N. Mineralogical prospecting for diamond deposits: devel-opment, state, prospects // Geology of diamonds: past, present, future. Voronezh: VSU Publishing House. 2005. P. 1291-1318.

23. Afanasyev V. P., Zinchuk N. N., Tychkov S. A. The problem of the Precambrian dia-mond content of the Siberian platform // Bulletin of the Voronezh University. Geology. 2002. Is-sue. 1. P. 19–36.

24. Afanasyev V. P., Nikolenko E. I., Tychkov N. S. et al. Mechanical wear of indicator min-erals of kimberlites: experimental research // Geology and geophysics. 2008. 49 (2). P. 120-127.

25. Afanasyev V. P., Pokhilenko N. P. Popigai Impact Diamonds: New Russian Raw Materi-als for Existing and Future Technologies // Innovatics and Expertise. 1 (10). 2013. P. 8-15.

26. Afanasyev V. P., Zinchuk N. N., Pokhilenko N.P. Exploration mineralogy of diamond. Novosibirsk: Academic publishing house "Geo", 2010. 650 p.

27. Batalov V. L. Regularities in the distribution of diamonds in the alluvial placers of the Urals and the method of their exploration. Abstract of the thesis. dis. Cand. geol.-min. sciences. Perm, 1967.18 p.

28. Beskrovanov V. V., Shamshina E. A. On the origin of diamond alluvial deposits with un-identified primary sources // Otechestvennaya geologiya. 2000. No. 5. S. 3-6.

29. Belov S. V., Lapin A. V., Tolstov A. V. and others. Minerageny of platform magmatism (traps, carbonatites, kimberlites). Novosibirsk: Publishing house of the SB RAS. 2008. 537 p.

30. Berlinsky A. I. Separation of minerals. M.: Nedra. 1988. 288 p.

31. Bogatykh I. Ya., Vaganov V. I., Golubev Yu. K. et al. On the discovery of magmatic sources of diamonds in the Urals // Otechestvennaya geologiya. 2000. No. 1. P. 66-69.

32. Bobrievich A. P., Bondarenko M. N., Gnevushev M. A. and others. Diamonds of Siberia, M.: Gosnauchte-hizdat, 1957, 158 p.

33. Bykhovsky L. Z., Gurvich S. I., Patyk-Kara N. G. and others. Geological criteria for prospecting placers. M.: Nedra. 1981. 253 p.

34. Burmin Yu. A. Epochs of crust formation and eluvial placers. M.: Nedra. 1988. 253 p.

35. Burov A.P. How to search for diamonds. M.: GOSGEOLTEKHIZDAT. 1957.160 p.

36. Busharina S.V. New data on the composition of typomorphic minerals of the diamondif-erous Krasnovishersky region // Izvestiya USMU. Issue 14. Yekaterinburg, 2002. P. 86-94.

37. Vaganov V. I., Golubev Yu. K., Minorin V. E. Methodological guide for the assessment of predicted resources of diamonds, noble and non-ferrous metals. Issue "Almazy" / Edited by Yu.K. Golubev. M.: TsNIGRI. 2002. 106 p.

38. Vladimirov B. M., Znamerovsky V. N. Kimberlite pipe in the south of the Siberian plat-form // DAN USSR. 1960. V. 139. No. 2. 438-441.

39. Voskresensky S. S. Placer geomorphology. M.: MSU. 1985. 208 p.

40. Temporary guidelines for forecasting and prospecting for primary deposits of lamproite-type diamonds / V. I. Vaganov, F. V. Kaminsky, V. A. Kononov et al. M.: TsNIGRI. 1988. 61 p.

41. Geology, forecasting, methods of prospecting, evaluation and exploration of diamond deposits // V. E. Minorin, V. M. Podchasov, I. Ya. Bogatykh and others. Book 2. Placer deposits. Yakutsk: Publishing house of the SB RAS. 2004. 424 p.

42. Gordeev E. I., Karpov G. A., Anikin L. P. et al. Diamonds in lavas of the Tolbachik Fis-sure Eruption // DAN. 2014. Vol. 454. No. 2. P. 204-206.

43. Grakhanov S. A. Placers of diamonds in the northeastern Siberian platform and their primary sources // National geology. 2006. No. 5. P. 20–28.

44. Grakhanov O. S., Serov I. V. Ancient placers of near drift in the Sredne-Markhinsky di-amond-bearing region // Geology and prospecting. Izv. of Universities. 2009. No. 3. P. 22-27.

45. Grakhanov S. A., Koptil V. I. Triassic paleoplacers deposits of diamonds in the north-eastern Siberian platform // Geology and geophysics. 2003. T. 44. No. 11. P. 1191-1201.

46. Grakhanov S. A., Shatalov V. I., Shtyrov V. A. and others Placers of diamonds in Russia. Novosibirsk: "Geo" Academic Publishing House. 2007. 457 p.

47. Gubarev V. S. The Tail of the "Diamond Dragon" // Science and Life. 2004. No. 11. P. 40-47.

48. Jakes A. L. Kimberlites and lamproites of Western Australia / Transl. from English E.N. Mountain and others; ed. N.V. Sobolev. M.: Mir. 1989. 430 p.

49. Law of the Russian Federation of 21.02.92, No. 2395-1 "On Subsoil", as amended on 30.12.08, M.: 2008.

50. Zakharova E.M. Shot prospecting and analysis of concentrates. M.: Nedra, 1974.160 p.

51. Zinchuk N. N., Kotelnikov D. D., Sobolev S. V. The structure and mineralogical features of the weathering crusts of kimberlites on small pipes in Yakutia // Bull. of MSN. Dept. of geol. 1997. V. 72. Issue. 5. P. 56-64

52. Zinchuk N. N., Boris E. I., Yanygin Yu. T. Peculiarities of diamond minerageny in an-cient sedimentary strata (on the example of the Upper Paleozoic deposits of the Siberian platform) // Mirny: Joint-stock company "ALROSA" Yakutsk research geological exploration enterprise TsNIGRI. 2004. 172 p.

53. Yekimova T. E., Lavrova L. D., Petrova M. A. Diamond inclusions in rock-forming min-erals of metamorphic rocks // DAN USSR. 1992. 1. T. 322. No. 2. P. 366-368.

54. Ivanova N.S. The problem of the genesis of diamond deposits of the Vishera group // Vestnik RUDN. Engineering Research Series. 2011. No. 1. P. 67-73.

55. Instructions for the preparation and preparation for publication of sheets of the State Ge-ological Map of the Russian Federation at a scale of 1: 200000. M.: Nedra. 1995. 224 p.

56. Cameral processing of materials from geological survey works at a scale of 1: 200000. Guidelines. Issue 2. / A. I. Bourdais, V. S. Antipov, V. I. Berger et al. St. Petersburg: VSEGEI Pub-lishing House. 1999. 384 p.

57. Kaminsky F. V. Kimberlites and diamonds of the People's Republic of China. VIEMS. 1988. Issue. 2.58 p.

58. Kilizhekov O. K., Tolstov A. V. Regularities of the formation and placement of industri-al diamond placers in the Nakyn kimberlite field (Yakutian diamond province) // Science and edu-cation. 2017. No. 1 (85). P. 12-20.

59. Kononova V. A., Bogatikov O. A., Kondrashov I. A. Kimberlites and lamproites: criteria for similarities and differences // Petrology. 2011. V.19. No. 1. P. 35–55.

60. Kossinsky Yu. Soviet diamonds on the international market // Izvestia. No. 220. 1990. 8 August.

61. Kostrovitskiy S. I., Spezius Z. V., Yakovlev D. A. et al. Atlas of primary diamond depos-its of the Yakutian kimberlite province. Mirny: NIGP "ALROSA" JSC, "MGT" LLC . 2015. 480 p.

62. Crater V. M. Search and exploration of minerals. M.-L.: State publishing house of geological literature. 1940. 790 p.

63. Kremenetsky A. A., Karas S. A., Tolstov A. V. Geochemical prospecting for kimberlite pipes in closed areas. problems and solutions // Regional geology and metallogeny. 2006. No. 27. P. 126-139. HYPERLINK "/contents.asp?id=33415135&selid=13616752"

64. Kryukov A. V., Peterson L. N. A new type of section at the base of the Upper Paleozoic cover in the Tunguska syneclise // Rep. of AS of the USSR. 1978. V. 238. No. 3. P. 663-665.

65. Kryukov V. A., Samsonov N. Yu., Kryukov Ya. V. Interregional technological chains in the development of the Popigai deposit of diamond-lonsdaleite raw materials // EKO. No. 8. 2016. P. 51-66.

66. Kudryavtseva G. P., Posukhova T. V., Verzhak V. V. et al. Morphogenesis of diamond and heavy concentrates in kimberlites and related rocks of the Arkhangelsk kimberlite province. M.: Arctic Circle. 2005. 624 p.

67. Kutyev F. Sh., Kutyeva G. V. Diamonds in Kamchatka basaltoids // DAN USSR. 1975. Vol. 321. No. 1. P. 183-186.

68. A. A. Kukharenko Mineralogy of placers. M.: Gosgeoltekhizdat. 1961. 320 p.

69. Lamproites / Ed. by O. A. Bogatikova. M.: Nauka. 1991. 300 p.

70. Lavrova L. D., Pechnikov V. A., Pleshakov A. M. and others. A new genetic type of diamond deposits. M.: Scientific World, 1999. 221p.

71. Lukyanova L. I., Mareichev A. M., Mashak I. M. et al. The first finds of manifestations of llama-proite magmatism in the Southern Urals // DAN USSR. Geology. V. 324. 1992. No. 6. P. 1260-1264.

72. Malakhov I. A., Busharina S. V. Composition of typomorphic heavy diamond concen-trates in uneven-aged terrigenous rocks of the Krasnovishersk region in the Northern Urals as an indicator of their origin // Izvestiya USMU. Issue 10. Yekaterinburg. 2000. P. 33-43.

73. Maltsev M. V., Tolstov A. V., Fomin V. M. et al. New kimberlite field in Yakutia and typomorphic features of its indicator minerals // Bulletin of the VSU. Series: Geology. 2016. No. 3. P. 86-94.

74. Maltsev M. V., Tolstov A. V. Conditions for localization and criteria for prospecting for kimberlites (on the example of the Ygyattinsky diamondiferous region, western Yakutia) / Scien-tific and methodological foundations for forecasting, prospecting, evaluating deposits of dia-monds, noble and non-ferrous metals / Proceedings of the VIII International Scientific and Practi-cal Conference. Novosibirsk. 2018. P. 109.

75. Masaitis V. L., Mikhailov M. V., Selivanovskaya T. V. Popigai meteorite crater. M.: Nauka. 1975. 124 p.

76. Masaitis V. L., Mashak M. S., Raikhlin A. I., Selivanovskaya T. V., Shafranovsky G. I. Diamond-bearing impactites of the Popigai astrobleme. SPb.: VSEGEI, 1998.179 p.

77. Meijen S.V. Fundamentals of paleobotany. M.: Nedra. 1987. 403 p.

78. Methodological recommendations for paleogeological methods of forecasting and pro-specting for buried diamond deposits on the Siberian platform / G. Kh. Fainshtein, A. E. Bessolitsyn, E. N. Belov, E.M. Vashchenko et al. Irkutsk: Vost.-Sib. Pravda Publishing House. 1985. 44 p.

79. Methodological guide to Geological survey at a scale of 1: 50,000. L.: Nedra. 1978. V. 2. 287 p.

80. Methods of sampling and processing of samples in prospecting for diamond deposits / M. I. Malanyin, A. P. Krupenin, V. P. Prokopchuk et al. M.: Nedra. 1984. 183 p.

81. Milashov V. A. Diamond. L.: Nedra. 1989. 152 p.

82. Minorin V. E. Predictive exploration models of diamond-bearing placers in Russia. M.: TsNIGRI. 2001. 117 p.

83. Nikolayev M. V., Grigorieva E. E., Samsonov N. Yu. and others. Diamond-lonsdaleite raw materials of the Popigai astrobleme - a new type of high-tech materials: price formation // Innovations № 3 (221). 2017. P. 102-107

84. Enrichment of diamond-containing bedrock and sand / M. I. Malanyin, A. P. Krupenin, M.M. Cherkashina et al. M.: Gosgeoltekhizdat. 1961. 243 p.

85. Obruchev V., Zotina M. Eduard Zyuss. M.: Journal and newspaper association. 1937. 232 p.

86. On amendments to the Procedure for considering applications for obtaining the right to use subsoil for geological exploration of subsoil (except for subsoil in federal subsoil plots and local subsoil plots), approved by order of the Ministry of Natural Resources of Russia dated No-vember 10, 2016 No. 583. Registered by the Ministry of Justice of Russia 28 november 2017

87. Orlov Yu. L. Mineralogy of diamond. M.: Nauka. 1984. 264 p.

88. On the state and use of mineral resources of the Russian Federation in 2016 and 2017. State report / N. A. Vasilkova, A. A. Gorev, V. A. Danilchenko, L. A. Dorozhkina et al. M.: Min-eral-Info. 2018. 370 p.

89. Patyk-Kara N.G. Minerageny of placers: types of placer provinces. M.: IGEM. 2008. 526 p.

90. Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, Impact Formations / Ed. by O. A. Bogatikova, O. V. Petrova, A. F. Morozov; ed.-in-chief L.V. Sharpenok. SPb: VSEGEI. 2009. 200 p.

91. Petrography and mineralogy of kimberlite rocks in Yakutia / A. P. Bobrievich, I. P. Ilupin, I.T. Kozlov et al. M.: Nedra. 1964. 192 p.

92. Field research during geological survey work on a scale of 1: 200 000. Methodical recommendations. Issue 3 / V.S. Antipov, V.I. Berger, A.I. Bourdais et al. SPb: VSEGEI. 2000.112 p.

93. The procedure for considering applications for obtaining the right to use subsoil for the purpose of geological study of subsoil areas / Approved by order of the Ministry of Natural Re-sources of the Russian Federation No. 61. dated 15.03.05, Registered with the Ministry of Justice of the Russian Federation on 26.04.05, No. 6559 // Rossiyskaya Gazeta No. 98 (3767) dated 12.05.05.

94. The order of consideration of applications for obtaining the right to use subsoil for the formation of specially protected geological objects / Approved by order of the Ministry of Natural Resources of the Russian Federation No. 712 dated 24.12.04. Registered in the Ministry of Justice of the Russian Federation on December 17, 2004, No. 6194 // Rossiyskaya Gazeta No. 286 (3663) dated December 24, 2004. 2004a.

95. The procedure for considering applications for obtaining the right to use subsoil for the purpose of collecting mineralogical, paleontological and other geological collection materials / Approved by order of the Ministry of Natural Resources of the Russian Federation No. 711 dated November 29, 2004. Registered with the RF Ministry of Justice No. 6196 on December 17, 2004 // Rossiyskaya Gazeta No. 286 (3663) dated 24.12.04, 2004b.

96. Posukhova T.V., Sokolova M.A. Diamonds and their concentrates in diamond-bearing deposits of the Laptev Sea basin // National geology. No. 2. 2018. P. 59-69.

97. Pokhilenko N. P., Afanasyev V. P., Tolstov A. V. et al. Impact diamonds - a new type of high-tech raw materials // ECO. No. 12. 2012. P. 5-11.

98. Order of the State Committee for Ecology of the Russian Federation No. 81 dated 11.02.1998 “On Approval of the Methodology for Calculating the Amount of Damage from Groundwater Pollution”. M. 1998.

99. Prokopchuk B.I. On the history of the formation of uneven-aged diamond placers in the north-east of the Siberian platform // Rep. AS of the USSR. Ser. geol. 1966. No. 4. P. 41-55.

100. Prokopchuk B. I. Diamond placers and methods of forecasting and prospecting them. M.: Nedra. 1979. 248 p.

101. Prokopchuk B. I., Kolesnikov S. K., Levin V. I. et al. New data on the scale of coal-coal sedimentation in the north of the Siberian platform // Rep. of AS of the USSR. 1983. V. 269. No. 5. P. 1168-1173.

102. Protsenko E. V., Tolstov A. V., Gorev N. I. Criteria for prospecting for kimberlites and new prospects for primary diamond content in Yakutia // Ores and metals. No. 4. 2018. P. 14-23.

103. Razumikhin N. V., Timashkova Z. N. Experimental data on the patterns of distribution of some heavy minerals on various morphological elements of the placers / Patterns of the distri-bution of minerals. M. I960. V. 17. P. 224-237.

104. Rosen O. M., Zorin Yu. M., Zayachkovsky A. A. The discovery of diamond in connec-tion with eclogites in the Precambrian of the Kokchetav massif // Rep. of AS of the USSR. 1972. V. 203. No. 3. P. 674-676.

105. Placers of diamonds of Russia / S. A. Grakhanov, V. I. Shatalov, V. A. Shtyrov et al. Novosibirsk: Academic publishing house "GEO". 2007. 457 p.

106. Romanchikov M. A. Instructions on technology and control of sample enrichment. Mirny: Amakinskaya expedition. 1983. 20 p.

107. Placers of Diamonds of the World / V. M. Podchasov, M. N. Yevseev, V. E. Minorin et al. M.: Geoin-formark. 2005. 747 p.

108. Rukhin L.B. Foundations of general paleogeography. L.: Gostoptekhizdat. 1962. 557 p.

109. Rybakov V. G., Kalmykov S. M., Denisenko E. P. New data on the diamond content of the basin of the upper reaches of the Nizhniy Tunguska river // Geology of intermediate reservoirs of diamonds. Novosibirsk: Nauka. 1994. P. 21-25.

110. Rybalchenko A. Ya., Kolobyanin V. Ya., Rybalchenko T. M. On a new type of magma-tism as a possible source of Ural diamonds // Modeling of geological systems and processes: Ma-terials of region. scientific. conf. Perm: PSU. 1996. P. 111-113.

111. Rybalchenko A. Ya., Kolobyanin V. Ya., Lukyanova L. I. et al. On a new type of primary sources of diamonds in the Urals // DAN RAN. 1997. V. 353, No. 1. P. 90-93.

112. Rybalchenko A. Ya., Rybalchenko T. M., Silayev V. I. Theoretical foundations of fore-casting and prospecting for primary deposits of tuffisite-type diamonds // Izvestia of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. Issue 1 (5). 2011. P. 54-66.

113. Sarsadskikh N. N. The search for diamond deposits by minerals - satellites // Inform. pack. VSEGEI. 1958. No. 5. P. 122-131.

114. Salikhov R. F., Tolstov A. V., Salikhova V. V. Reconstruction of the paleorelief in the search for buried kimberlite bodies in closed trap-saturated territories (for example, the Alakit-Markhinsky field) // Ores and metals. 2020. No. 1. P. 39-50.

115. Silayev V. I., Shanina S. N., Rakin V. I. Diamonds from tuffisites of the Urals (crystal morphology and fluid inclusions) // Problems of mineralogy, petrography and metallogeny: Mate-rials of scientific readings in memory of P.N. Chirvinsky. Issue 13. Perm: PSU. 2010. P. 3–23.

116. Silayev V. I., Karpov G. A., Rakin V. I. et al. Diamonds in the products of the fissure Tolbachik eruption 2012-2013, Kamchatka // Bulletin of Perm University. Geology. 2015. P. 5-27.

117. Simonenko V. I., Tolstov A. V., Vasilyeva V. I. A new approach to geochemical pro-specting for kimberlites in closed areas // Exploration and conservation of mineral resources. 2008. No. 4-5. P. 108-112. HYPERLINK /contents.asp?id=33215841

118. Skripin A.I. Angara-Tunguska diamondiferous province // Geology of intermediate di-amond collectors. Novosibirsk: Science. 1994.S. 6-11.

119. Sokolov B. N. Formation of diamond placers. M.: Nauka. 1982. 92 p.

120. Strakhov N. M. Fundamentals of the theory of lithogenesis / Types of lithogenesis and their placement on the surface of the Earth. M.: Nauka. 1962. Vol. 1. 212 p.

121. Sushon A. R. Geological prospecting works. Textbook for the training of workers in production. M.: Nedra. 1976. 263 p.

122. Tolstov A. V., Serov I. V., Bogush I. N. et al. New perspectives of the Sredne-Markhinsky region / Natural and technogenic placers. Problems. Solutions". Simferopol: Field Press. 2007. P. 210-218.

123. Tolstov A. V., Fomin V. M., Razumov A. N. and others. New approaches to prospecting for diamond deposits in the Yakutsk diamond province // Zbirnik naukovikh prats of the Ukrainian State Geological and Exploration Institute No. 1. 2013. P. 154-160. HYPERLINK /contents.asp?id=34328485.

124. Tolstov A.V., Grakhanov O. S. New prospects for the development of buried diamond placers in Yakutia / Geology and mineral resources of the North-East of Russia. Materials of the All-Russian scientific-practical conference. 2014. P. 487-492.

125. Tolstov A. V., Protsenko E. V., Koshkarev D. A. Features of forecasting the primary di-amond content of the left bank of the Lena river / Geology and mineral resources of the North-East of Russia. Materials of the IX All-Russian Scientific and Practical Conference: in 2 volumes. 2019. P. 182-185.

126. Trofimov V. S. Genetic types of placers and regularities of their placement // Laws of placement of minerals. M.: Gosgortekhizdat. 1960. V. 4. P. 5-19.

127. Trushkov Yu.N. Theoretical connection of placers with primary sources and reconstruc-tion of the latter (geometric model on the simplest examples) // Placers of gold and their connec-tion with primary deposits in Yakutia. Yakutsk, 1972. P. 5-31.

128. Ward F. The old and new face of diamond // Abroad. 1979. No. 16. P. 18-19.

129. Ustinov V.N. Methods of paleogeographic research in forecasting and searching for buried diamond deposits // Ores and metals. 2008. No. 5. P. 27-40.

130. Ustinov V.N. Predictive and prospecting types of manifestation of buried kimberlite fields in terrigenous diamond reservoirs. Notes of Mining University. 2009a. V. 183. P. 149-159.

131. Ustinov V.N. Forecasting and prospecting for buried diamond deposits based on a comprehensive study of Late Paleozoic terrigenous reservoirs. Abstract of the dissertation for the degree of Doctor of Geological and Mineralogical Sciences. St. Petersburg, 2009b. 40 p. http: //local.www.geokniga.org/books/19768.

132. Feinstein G.Kh. Methods of prospecting for industrial diamond deposits in the south of the Siberian platform (temporary instruction). Irkutsk: VostSibNI-IGGIMS. 1968. 51 p.

133. Fainshtein G. Kh., Lebed G. G. Cities are behind us. Awakened Genies: Sib. notes. Irkutsk: Vost.-Sib. book publishing house, 1988. 304 p.

134. Frolov A. A., Tolstov A. V., Belov S. V. Carbonatite deposits in Russia. Moscow: VIMS. 2003. 494 p.

135. Khramov A. N. Standard series of paleomagnetic poles for the plates of Northern Eurasia: connection with the problems of paleogeodynamics of the USSR territory // Paleomagnetism and paleogeodynamics of the USSR territory. L.: VNII-GRI. 1991.135-149.

136. Khmelkov A. M. The main minerals of kimberlites and their evolution in the process of halo formation (on the example of the Yakutsk diamondiferous prov-ince). Novosibirsk: ARTA. 2008. 252 p. ISBN 5-902700-11-6

137. Shatalov V. I., Grakhanov S. A., Yegorov A. N. et al. A new industrial type of diamond placers in the Yakutsk diamondiferous province // National geology. 2002. No. 4. P. 15–19.

138. Shamshina E. A. Weathering crust of kimberlite rocks of Yakutia. Novosi-birsk: Nauka. 1979. 151 p.

139. Shafranovsky I. I. Diamonds. M.-L.: Nauka. 1964. 173 p.

140. Shilo N. A. The doctrine of placers. Vladivostok: Dalnauka. 2002. 575 p.

141. Erlikh E. Deposits and history. St. Petersburg: Written by pen, 2016. 379 p.

142. Anand M., Taylor L.A., Misra K.C., Carlson W.D. et al. Nature of dia-monds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds // Lithos. 2004. 77. R. 333-348. Doi: 10.1016/j. lithos.2004.03.026

143. Bardet M.G. Geologie du diamant Materes du B.R.G.M. Premierpartic, generalites. Paris. 1973. 83 p.

144. Chirico P.G., Malpeli K.C. A methodological toolkit for field assessments of artisanally mined alluvial diamond deposits: U.S. Geological Survey Techniques and Methods book 11, chap. D2. U.S. Geological Survey, Reston, Virginia 2014. 28 p. ISSN 2328-7055. https: // dx.doi.org/10.3133/tm11D2.

145. Claoue-Long J.C., Sobolev N. L., Shatsky V. S. and Sobolev A.,V. Zircon response to diamond-pressure metamorphism in the Kokchetav massif, USSR. // Geology. 1991. V.19. P. 710-713.

146. Clifford T.N. Tectono-metallogenic units and metallogenic provinces of Africa // Earth Planet Sci Lett. 1966. No 1. P. 421-434.

147. Michel J.C. Les nouvelles provinces diamantiferes a kimberlite et lamproite de Kimberley. Western Australia // Chronique de la recherché miniere. 1988. No 492. P. 33-40.

148. Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature. 1990. V. 343. 6260. P. 742-746.

149. Sobolev N.V., Tomilenko A.A., Kuz'min D.V. et al. Prospects of search for diamondif-erous kimberlites in the northeastern Siberian platform //Geology and Geophysics. 2018. V. 59. № 10. P. 1365-1379.

150. Shigley J.E., Chapman J., Ellison R.K. Discovery and mining of the Argyle diamond deposit, Australia // Gems & Gemology. 2001. Vol. 37. No. 1. P. 26–41.

151. Williams A. F. The Genesis of Diamond. London. E. Benn. Vol.1. 1932. 636 p.

Login or Create
* Forgot password?