IGNEOUS AND METAMORPHIC APATITES
Аннотация и ключевые слова
Аннотация (русский):
An extensive review describes the unique properties of apatite, which, due to the peculiarities of its structure, allows for diverse isomorphic substitutions both in its cationic part (Mn, Sr, Ba, REE, U, etc.) and in the anionic part (CO 2, SO3, SiO 2, OH, F, Cl, etc.). Since these substitutions occur under well-defined conditions in both endogenous thermal and exogenous low-temperature processes, the composition of apatite turns out to be an indicator of these processes. At the same time, the conditions of formation of most igneous and metamorphic rocks can be judged by the composition of accessory apatite, and the genesis of phosphorus ores, both endogenous (Khibiny, Kiruna type, etc.) and exogenous (phosphorites), is judged by the composition of ore-forming apatite. The review is based on the recent "Irish" review 2020, covering 147 literary sources and compiled by 4 co-authors from Dublin and one from Stockholm [130]. Since the compilers of the "Irish" review practically did not use literature in Russian, it became necessary to seriously supplement it with the data given in the domestic literature, as well with a number of foreign works that are not covered by the "Irish" review. The resulting text should make it much easier for the geologist reader to use apatite in practice as a remarkable mineral-an indicator of various geological processes

Ключевые слова:
apatite, carbonate-apatite (francolite), halogens, sulfate, trace elements, REE, manganese, strontium, neodymium, uranium
Текст

The dominant factors controlling the solubility and crystallization of apatite in igneous rocks are the concentrations of SiO2 and P2O5 in the melt and the melt temperature. The solubility of apatite strongly correlates with the degree of assimilation by the melt of the host rocks, and apatite in anatectic melts has much greater solubility than apatite in basaltoid magmas. Therefore, accessory apatite may be absent in some S-type granitoids, since apatite dissolved in the initial magmas, and phosphorus went into P-containing K-feldspar. The water content, pressure and Ca concentration in the melt are not important factors determining the solubility of apatite. The possibility of using accessory apatite as an indicator mineral in 2002 was for the first time reliably proved in the article by E. A. Belousova and her Australian colleagues [84]. It is no coincidence that the text of this article is almost literally reproduced in the Irish Review [130]. First, the authors introduce a useful designation for stable indicator accessory minerals, which they call RIM – resist indicator mineral. Such RIMs include: garnet of mantle origin, pyroxene, chromite and Mg-ilmenite, rutile, magnetite, tourmaline. The necessary conditions for the use of RIM are: (1) wide distribution in the appropriate rock types, (2) a range of composition that is sensitive enough to the crystallization medium to carry significant genetic information, (3) the ability to survive weathering and transportation in a surface environment, and (4) relative ease of recognition, separation and analysis. Since the accessory apatite satisfies all these conditions– it should also be rightfully attributed to the number of such RIM. Indeed, apatite is a widespread accessory mineral; its content directly depends on the phosphorus content in the rock and is inversely proportional to the silicic acid content of igneous rocks. The content of apatite can reach several percent in phosphorus-rich alkaline lavas poor in silica, while apatite is rarely found in phosphorus-poor (0.01% P2O5) rhyolites. The crystallization of phosphate phases is an important process in natural systems, since phosphates contain characteristic impurity elements such as U, Th, Sr and REE, the content of which is controlled by the melt/phosphate mineral equilibria. Moreover – we have already seen that apatite can carry a high proportion of the gross contents of REE, Sr, U and Th. Therefore, the distribution of impurity elements in apatite may be a sensitive indicator of magmatic crystallization processes. Variations in the content of impurity elements in apatites are associated with the parameters of the entire system – such as the activity of SiO2, fO2, total alkali content, aluminum saturation index (ASI). As noted by Ural geologists [73, p. 190], "apatite, through the specifics of its composition, with a wide range of isomorphic substitutions in the composition of cations and anions, carries information about the composition, nature and oxidative regime of the initial magmas, their fluid regime and metallogeny." Based on these (already known) data, E. A. Belousova and colleagues [84] tried to solve two main issues: 1) is it possible to recognize individual types of rocks by the composition of their apatite; (2) to what extent does apatite reflect parameters such as fractionation and degree of oxidation related to ore mineralization processes? To answer these questions, the authors, using modern laser ablation (LA) techniques with ICP-MS analysis, analyzed more than 700 (!) grains of apatite for 28 elements, representing endogenous formations in a wide range of their composition, including also apatites from some industrial types of phosphate-containing iron ores. As a result, it was shown that the slope of the normalized chondrite curves of the REE "spectra" varies systematically from ultramafic to mafic and intermediate and to highly fractionated types of granitoid rocks. Ratio (Ce/Yb)N is very high in apatites from carbonatites and lherzolites of mantle origin (more than 100 and more than 200, respectively), while the values of (Ce/Yb)N in apatites from granite pegmatites are usually less than 1, which reflects both the enrichment of HREE and depletion of LREE. Within a large sample of apatites from granitoid rocks, the chemical composition was closely related to both the degree of fractionation and the degree of oxidation of magma. Since apatite can accept high concentrations of transitional and chalcophilic elements and even As, this makes it possible to recognize apatite associated with certain types of mineralization. Based on multidimensional statistical analysis, the authors proposed a user-friendly scheme for recognizing apatites from various types of rocks by the contents of Sr, Y, Mn and total REE content, the degree of enrichment of LREE and the numerical value of the Eu anomaly. The authors recommend using this scheme to recognize apatites from certain types of rocks or types of mineralization, so that it is possible to determine the origin of apatite grains in heavy mineral concentrates. Below we give examples of some other works showing the use of apatite for the recognition of specific igneous rocks 4.1. Hyperbasites and basites In the Irish review [130], on the logarithmic "biplot" LREE – Sr/Y, apatites from pyroxenites and lherzolites fall (together with carbonatites) into the "ultramafic" UM field – with maximum values of the Sr/Y magnitude and sufficiently high values for the LREE abscissa. According to the data of the Ural geologists [73, p. 190], the mantle type of the initial basaltoid and andesitoid magmas is indicated by the enrichment of apatites with chlorine (up to 1.0–1.5%), which is always accompanied by the accumulation of siderophilic and chalcophilic elements in them. The informativeness of binary graphs was found out, where the contents of U (ppm) are deposited along the abscissa, and the contents of W, Bi, V, Th (ppm) are deposited along the ordinate. On such graphs, it was possible to identify fields (with minor overlaps) corresponding to (1) gabbroids and pyroxenites with Ti-Fe-V mineralization, (2) gabbroids and granitoids with large scarn-magnetite mineralization, (3) granitoids with Cu-porphyry mineralization and (4) granitoids with Au-sulfide mineralization in quartz veins. In general, the new analytical data obtained by them convincingly indicate that the composition of apatite is an important indicator of the metallogenic specialization of mantle and crustal magmas, their composition, oxidative and fluid regimes. In two almost identical articles in 2015, with only some rearrangement of co-authors, V. V. Kholodnov et al. present data on the contents of halogens and sulfur in apatites as criteria for predicting Si-Ni, Fe-Ti and Au mineralization in accretion-collision gabbro-dolerites of the Western Magnitogorsk zone of the Southern. Urals [71; 72]. The F–Cl and F–SO3 graphs show fairly clear clusters corresponding to individual magmatic complexes. In particular, the authors conclude that the rocks of the Khudolazovsky complex, specialized in Cu-Ni mineralization, are characterized by apatite with the highest contents of sulphate sulfur (up to 0.65 wt. %), isomorphic with phosphorus in the composition of the anionic complex (PO4)3–. This apatite has a reduced fluorine content (< 2 wt. %), with a significant content (in olivine gabbro) and chlorine (up to 1.50 wt. %). Such a nature of the ratio of halogens and sulfur in apatite can be recommended as one of the effective indicators for Cu-Ni mineralization. Apatite in the gold-bearing Ulugurtau dyke complex has a moderately elevated chlorine content and a low content of sulphate sulfur. The appearance of apatite-rich late calcite segregations here characterizes the composition of the late magmatic fluid. In 2016, new data were added on diorite intrusions of the Voznesensky and Elenovsky deposits and the Kutuyevsky ore occurrence of the copper-porphyry type [70]. In the apatites of the studied objects, elevated chlorine and sulfur contents were found, characterizing the fluid regime of copper-porphyry ore-magmatic systems and the manifestation of liquid immiscibility in the composition of ore-forming fluids. These data confirm the possibility of using concentrations of halogens and sulphate sulfur in apatites to substantiate the prospects of intrusions of increased basicity for the search for porphyry copper mineralization. The same Ural petrologists in 2018 [50] repeated data on accessory apatites of four gabbroid complexes D3-C1 of the Western Magnitogorsk zone of the Southern Urals. According to the contents of halogens and sulfur, 3 groups of apatites were identified: 1) high-fluorbearing apatites with a moderately increased amount of chlorine and a small amount of sulfur; 2) high-fluorbearing apatites with a reduced amount of chlorine and a small amount of sulfur; 3) low- fluorbearing and low-chlorbearing apatites with an increased amount of sulfur. Based on these data, the authors concluded that the studied complexes have a low potential for Ti-Fe ore content. In the North Karelia, the Early Proterozoic stratified ultramafic-mafic Kivakka intrusion, which is part of the Olang group, has a rounded shape (about 3 km across), a substantially peridotite-gabbronorite composition and lies in the rocks of the Archean basement of the Paanayarva synclinorium, the Baltic/Fennoscandian shield [3]. A zone of low-sulfide EPG-containing mineralization called "Kivakka Reef" has been identified here. This zone is located in olivine gabbronorites, olivine-plagioclase-orthopyroxene cumulates containing, on average, about 50–55 vol.% orthopyroxene, 30–35% plagioclase (cumulus An 79-81 and intercumulus Ab), up to 10 vol.% olivine (Fo79) and clinopyroxene (augite–diopside). In particular, significant variations were found in the compositions of intercumulus apatite grains with a dimension from 5–10 to ∼50 microns. The maximum Cl contents are inherent in the apatite of the EPG mineralization zone and the overlying level directly adjacent to this zone. Significant variations of Cl are noted both in the compositions of different grains and in grains that are heterogeneous in composition and do not show any "correct" (regular) zonality. The Cl content in apatite systematically decreases upwards, with a tendency of parallel increase of F, the maximum concentrations of which are inherent in relatively large (0.2−0.3 mm) subidiomorphic crystals in pegmatoid gabbronorites of the upper stratigraphic level. The increase in the dimension of apatite grains is primarily explained by the relative increase in the concentration of P during magma crystallization. At the same time, the revealed variations indicate more complex isomorphism schemes involving apatite and OH, in addition to Cl and F. The Russian authors [3] believe that the variations they have identified are quite consistent with observations on other stratified intrusions, both very large (Stillwater and Bushveld complexes) and relatively small intrusions of the Karelo-Kola region, in which the enriched Cl apatite is localized in the early (high-magnesian) cumulates of the lower stratigraphic level. E. V. Lobova studied the compositions of amphibole and apatite from rocks of the Reftin magmatic complex (Eastern zone of the Middle Urals) [41]. She found that during the evolution of the complex, amphibians are characterized by a decrease in the contents of Al2O3 and TiO2, which indicates a decrease in the RT parameters of rock formation. A diagram was used where the contents (wt. %) were deposited by abscissa, in apatites F, and by ordinate – Cl, with a range of 0–4 and 0–%, respectively [41, p. 86]: "In the rocks of the first phase, from gabbro to diorites, then to quartz diorites, the chlorine content decreases markedly, and fluorine on the contrary increases <...>. As for the rocks of the second phase, they are also characterized by a decrease in chlorine and an increase in fluorine with an increase in the silicic acid content of rocks from quartz diorites to tonalites." 4.2. Kimberlites Kimberlites are tubular magmatic bodies in a diatreme, usually underlain by coherent rocks of the root zone and associated dike/sill complexes. In a recent work on the classic Kimberley district in the South. In Africa, the questions of the genesis of kimberlites were tried to clarify by studying the composition of accessory apatite - both from the diamond-bearing kimberlite itself and from its accompanying dikes/sills [126]. Early minerals (olivine, spinel, Mg-ilmenite) in the rocks of dikes/sills and the root zone have an indistinguishable composition and, therefore, crystallize from similar primitive melts. Conversely, the compositions of apatite, as a rule, are different in dikes/sills (low Sr content, high and variable Si content) and in kimberlites of the root zone (high and variable Sr content, low Si content). The enrichment of Si apatite in dikes/sills is explained by the conjugate substitution of the PO43– ion with CO32− and SiO44– ions, reflecting a higher CO2 content in the initial melts and the accumulation of silicon in kimberlite magma due to the predominant crystallization of carbonates compared to mica/monticellite. The low Sr content in apatite from dyke/sill rocks reflects the equilibrium of apatite with melt – for carbonate and silicate melts, while the increased Sr content in apatite from kimberlites of the root zone requires crystallization with a reduced CO2 content in the melt. The relative enrichment of CO2 in dikes/sills is evident from the abundance of carbonates, the presence of dolomite inclusions in mesostasis and calcite in some samples and the concomitant decrease in the proportion of other phases of the main mass (for example, serpentine, mica, monticellite). During the late modification of dike/sill rocks, monticellite is usually replaced by carbonates, while olivine and pleonast are relatively stable. This means that the melts forming dikes/sills evolve at higher CO2/H2O ratios. It is unlikely that these two different evolutionary paths were caused by the assimilation of the host rock material by kimberlite melt or the breakthrough of kimberlite magma to the surface, since assimilation processes are not reflected in the isotopic composition of O and Sr of late olivine crusts or carbonates. The authors suggest that higher concentrations of CO2 are preserved in kimberlite dikes/sills of higher pressures – without their degassing in near-surface conditions. On the contrary, the release of CO2 from the melts of the root zone of kimberlites increased the ratio of H2O/CO2 in the melt and contributed to the crystallization of mica and monticellite due to dolomite and calcite. It is believed that apatite compositions can help in distinguishing kimberlites from lamproites (higher LREE, Sr, F, and S contents, lower Si content) and carbonatites (higher LREE, F, Cl, and S contents, lower Fe content). However, the compositions of kimberlite apatite overlap the compositions of apatite from ailikites, probably due to similar compositions of the melt at a late stage. Recently, Russian geologists have also studied apatite from the Middle Paleozoic kimberlite Monchary tube in the Khompu-May field of Central Yakutia [47]. The mineral turned out to be F-apatite, and in general, the study confirmed the already known patterns showing that apatite has a late magmatic nature, therefore its composition is associated with the influence of fluids enriched with F and Sr. At the same time, certain differences between the studied apatite and apatites from diamond-bearing kimberlite bodies, carbonatites, xenoliths of peridotites and eclogites of South Africa, Canada and China were revealed. A trivial conclusion is made that the impurity composition of apatite can be used in the comparative study of kimberlite and other rocks. 4.3. Granitoids As can be seen from the Irish review [130], apatite from anatectic S-type granites is depleted by light rare-earth elements (LREE) and Th, while apatite from younger igneous granites of I-type (”mafic granites") generally contains similar (or even higher) chondrite normalized REE contents compared to medium rare-earth elements (MREE), as well as more U. On the logarithmic "biplot" LREE – Sr/Y, apatites form two separate fields: IM and S. The IM field (median, intermediate values on both axes) includes granodiorites and "mafic" I-granites with low values of the ASI index. The S field includes anatectic granites of the S-type, as well as "felsic" granites of the I-type, with a high value of the ASI index. With some average values for the LREE abscissa, they are clearly distinguished by the minimum values for the Sr/Y ordinate. Since in rocks with a high ASI index (ASI >1.1), monazite crystallizes as the primary phase, taking the main amount of REE from the melt, acid melts that generate S-type anatectic granitoids poor in alkalis and calcium are characterized by a gentle appearance of the apatite "spectrum" of REE normalized by chondrite. This is due to the depletion of apatite by the light REE (LREE), which monazite absorbed. Consequently, the observed pattern can be explained by simultaneous or later crystallization of apatite with respect to monazite, which reduces the amount of Th and LREE available for apatite. In particular, since La goes into monazite much more vigorously than Sm, the reduced La/Sm ratio in monazite-cogenetic apatite can be used to recognize such acid magmas. Since the solubility of apatite strongly depends on the degree of assimilation by the melt of the host rocks, it is quite possible that the composition of the REE of igneous apatite may be associated not only with ASI, but also with the sequence of crystallization of apatite relative to K-feldspar, which takes a significant amount of P, Sr, La, Ce, Pr and Eu from the melt. Therefore, in very acidic melts, where the phosphorus-bearing K-feldspar KAl2[PSiO8] was formed, accessory apatite turns out to be either highly depleted of La and Ce (as well as Sr), or, due to its high solubility in the initial melts, it does not crystallize at all. In a recent collective work [138], the characteristics of igneous apatites of two regions of the granite belts of the Northern and Eastern parts of China – the Luming and Lower Yangtze – were studied in order to study their potential in petrogenesis, mineralization and tectonic evolution of granites. Apatites from those and other granites are mainly fluorapatites, and show strong negative anomalies of Eu, indicating the crystallization of plagioclase earlier than apatite. The negative correlation of Eu/Eu* (δEu) – Mn, δEu – δCe and δEu – Ga in apatites means that the initial magmas of both granites were moderately reduced. The Sr/Y ratios of apatites with respect to δEu also show that both granites are not adakitic in nature, which is consistent with the non-adakitic composition of the host rocks. Apatites of the Lower Yangtze containing more chlorine (0.02–1.45 wt.%) and less fluorine (1.1–3.85 wt.%) are associated with the dehydration of slabs, whereas apatites from Luming having a lower Cl content (0–0.04 wt.%) and a higher F content (3.36–5.29 wt.%), suggest an association of granites with partial melting of the juvenile crust material. Based on the positive correlation in SO3 – Li granites, (La/Sm)N – Yb/Sm)N and obvious variations (La/Yb)N compared to Eu/Eu*, it is concluded that these host rocks must be ore-bearing. In addition, the geochemical characteristics of apatites from Luming show low F/Cl ratios, stable La/Sm ratios, low values of δEu (0.04–0.43, on average 0.21) and high values of δCe (0.96–1.12, on average 1.02), indicating that the magmas of these granites are associated with plate dehydration and are associated with Cu–Mo–W mineralization caused by the mutual effect of subduction of the Paleoceanic Plate and intraplate expansion. For comparison, rather high ratios of F/Cl, La/Sm, low values of δEu (0.12–0.23, on average 0.16), high values of δCe (0.98–1.09, on average 1.04) and low Sr/Th ratios in luminescent apatites indicate that granites containing Mo–W mineralization arose as a result of partial melting of juvenile crust material. E. A. Belousova and co-authors studied apatite from granitoids associated with the famous Australian giant – the Pb-Zn-Cu deposit of Mount Isa ores [85]. It was found that the distribution of REE, Sr, Y, Mn and Th in apatite correlated with parameters such as the SiO2 content, the degree of iron oxidation, the total amount of alkalis and the aluminum saturation index (ASI). The relative accumulation of Y, HREE and Mn and the relative depletion of Sr in the studied apatites reflect the degree of fractionation of the host granite. Apatites from highly oxidized plutons tend to have higher concentrations of LREE compared to MREE. Manganese concentrations in apatite are higher in the reduced granitoids because Mn2+ directly replaces Ca2+. The La/Ce ratio of apatite correlates well with the content of K2O and Na2O in the whole rock, as well as with the degree of oxidation and the value of ASI. The authors conclude that since the composition of the impurity elements of apatite reflects the chemical composition of the entire rock, it can be a useful indicator mineral for recognizing ore-mineralized granite series, where certain mineralization styles are associated with granitoids that have specific geochemical signatures. Detection by cathodoluminescence of a clear zonality in apatites from granite Shap in the North. In England, it was a real gift for petrologists who previously did not have a suitable tool for judging the evolution of granite magmas [95]. Grains of accessory apatite were analyzed for REE and other impurity elements by the LA-ICP-MS method. Based on the obtained figures, diagnostic graphs were constructed: Sr (0–500 ppm) – Y (0–600 ppm), Ce (0–6000 ppm) – U (0–50 ppm), as well as the normalized chondrite "spectrum" of REE. In general, it is possible to see 3 distinct zones in apatite crystals: a small core, a thick mantle and a thin shell. In the Sr – Y graph, the cores contains less Sr than the shell. On the Ce – U graph, the core is very variable, with a large spread of points, whereas the points of the mantle and shell are located compactly in the center of the graph with some trend repeating the trend of the rock – decreasing uranium and REE as crystallization. The "spectrum" of REE is quite flat, although it shows enrichment with light REE, with a very small negative anomaly of europium. The contents of all REE in the mantle of zonal crystals are much less variable than in the cores and shells. As a result, the following general conclusions were made. 1. Cathodoluminescent images of zonal apatite in combination with the analysis of trace elements by the LA-ICP-MS method provide powerful tools for deciphering the processes of crystallization of granites. Usually, the long history of apatite crystallization, combined with the absence of subsequent changes in the mineral, allows us to recreate a complete picture of the evolution of the magmatic system. 2. Many apatite crystals from the Shap granite contain texturally identifiable cores that have variable composition and show numerous evidences of partial dissolution, reflecting an early magmatic evolution dominated by magma mixing. A lot of inherited cores were found in apatites from the Shapsky granite. The recognition of such inheritance has serious implications for the interpretation of the REE profiles of granite rocks. 3. The later growth of apatite (mantle formation) occurred in a relatively stable medium with a constant magma composition and records the history of crystallization in gradually more isolated melt foci. 4. There are no signs of rapid volumetric diffusion in these apatites, and the zones differ in different contents of impurity elements, including Sr and REE. 5. The growth and preservation of apatite is strictly controlled by the crystallization of biotite in granite. Fluid inclusions in minerals are a valuable tool for judging the composition of ore-forming fluids that have retained their primary composition. The Chinese team of authors [131] applied a new subtle method of microanalysis - X-ray fluorescence analysis induced by synchrotron radiation (SRXRF) to study both apatite itself and fluid inclusions in it. Prismatic crystals of accessory apatite from the Mesozoic Yuerya granite, with which gold deposits are associated, were analyzed. Chondrite-normalized REE "spectrum" shows that granite belongs to the S-type. It has been shown that the main components of fluid inclusions in apatite are Zn, Cu and Cl. According to the authors, this proves the relationship between the mineralization of gold and the evolution of granite magma. 4.4. Alkaline rocks In the Irish review [130], on the logarithmic "biplot" LREE – Sr/Y, alkaline rocks form a separate ALK field. This is the rightmost field on the biplot, with maximum values on the LREE abscissa, but with wide (non-diagnostic) variations of values for the Sr/Y ordinate. Although the Khibiny apatites have been studied for a very long time, only in recent years have there been studies performed by modern methods. Among a number of works, we can name one of the relatively recent ones (2013), which provides data on the zonality of the Khibiny massif with respect to the content, morphology and composition of accessory and rock-forming fluorapatite [35]. The authors showed that the amount of Na, REE and Si impurities in the composition of apatite consistently decreases in the direction from the massif to the Main ring structure composed of melteigite-urtites and rischorrites. Within the same ring structure, the purest apatite is characteristic of rich ores of large deposits, where it is freed not only from Na and REE, but also from Sr in favor of Ca. The fractal dimension of fluorapatite aggregates in all textural types of apatite-nepheline rocks (ores) corresponds to the dimension of various fractured structures, which, along with the mineral composition of apatite-nepheline rocks and data on the zonality of the host foidolites, indicates the superimposed nature of apatite mineralization. In O. B. Dudkin's summary [20], taking into account new geological materials, variations in the composition of apatite in a number of Khibiny deposits of different structures are traced. Basically, the composition of apatite is linked to the composition of rocks. Generalization made it possible to identify an age range of deposits in which younger and younger magmatic processes are consistently increasing. Academician Lilia Kogarko (maiden name Basilevich) emphasized a long-known fact: Khibiny fluoro-apatite is extremely rich in strontium (on average 4.5 wt. % SrO) and REE, the content of which reaches 8891 ppm. The absence of the Eu anomaly means the residual nature of the Khibiny alkaline magma and indicates that the differentiation of primary olivine-melanefelinite magma developed without the fractionation of plagioclase, which is the main mineral concentrator of Sr and Eu in basalt magmatic systems [31]. Nepheline syenites of the Pilansberg alkaline complex (South Africa) underwent extensive subsolidic balancing and alteration under the influence of a late fluid rich in Cl and Na [111]. As a result of the substitution of primary aluminosilicates, rinkite, eudialyte and fluorapatite, complex complexes of secondary minerals were formed. The composition of minerals of the apatite group formed during these processes of change reflects the content of Sr- and REE, the ratio of Na/Cl and pH of secondary fluids. The minerals of the apatite group were formed in the following sequence: igneous fluorapatite  strontium britolite-(Ce)  strontium fluorapatite  Sr-apatite  rich in Sr, Na and REE minerals approaching by stoichiometry to belovite-(Ce) and deloneite(Ce)  britolite (Ce). The increase in the alkalinity of secondary fluids is reflected in the increase of Sr replacing Ca in apatite, and culminates in the formation of Sr-apatite containing 62.1 wt.% Sro (~4.17 f.e. Sr). 4.5. Carbonatites Carbonatites are genetically closely related to alkaline rocks. Although the full reality of carbonate magma has already been proved experimentally, the genesis of some carbonatites remains a subject of debate, since they are considered metasomatic (for example, some South Ural [38]). On the logarithmic "biplot" LREE - Sr/Y [130], carbonatites fall into the "mafic" UM field together with pyroxenites, lherzolites and "mafic I-granites with a low ASI index. For this field, the highest values for the ordinate Sr/Y and moderately high values for the abscissa LREE are characteristic. In carbonatites (as in some granite pegmatites), phosphate minerals can be so abundant that they become rock-forming. In addition, they have very characteristic differences from other igneous apatites. In this regard, the review of the international team on the composition of apatite carbonatites published in 2017 is of great value, based on ~600 electron probe and 400 laser-ablation mass spectrometric analyses of apatites in 80 samples from 50 localities around the world [91]. Most igneous apatites from the rocks under consideration are Cl-poor fluorapatite or F-rich hydroxyapatite (≥ 0.3 f.e. fluorine) with 0–4.5 wt.% LREE2O3, 0–0.8 wt.% Na2O, and relatively low concentrations of ions replacing Ca (up to 1000 ppm Mp, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which shows a significant correlation with the type of host rock. Silica, (SO4)2– and (VO4)3– anions replacing (PO4)3–, as a rule, are found in greater quantities in crystals from calcite carbonatites than from dolomite ones – up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and up to 660 ppm V. Hydrothermal apatite in carbonatites is formed as a replacement product of primary apatite or is deposited in cracks and pores in the form of euhedral crystals and aggregates associated with typical late-stage minerals (for example, quartz and chlorite). This apatite is usually depleted in Sr, REE, Mn and Th, but enriched with F (up to 4.8 wt.%) compared to its magmatic predecessor, and also differs from the latter in at least some key REE ratios (for example, shows (La/Yb)N ≤25 or negative anomaly Ce). The only significant exceptions are replacement zones rich in Sr (± REE, Na) and new formations of igneous apatite in some dolomite-containing carbonatites. Their crystallization conditions and initial liquid were apparently very different from the more common strontium- and REE-depleted rocks. Based on the new data presented in this work, the distribution of trace elements between apatite and carbonatite magmas, the solubility of phosphates in these magmas and the change in the composition of minerals of the apatite group from spatially bound carbonatite rocks are critically overestimated. In 2020, a Chinese team studied apatites from three Chinese REE deposits associated with carbonatites: Shasyundun, Miaoya and Bayan Obop [114]. Magmatic apatite, which occurs mainly in samples from Shasyundun, is euhedral and usually shows a growth zone with a yellow-green luminescent core and a purple luminescent rim. Euhedral to subhedral metasomatic apatite from Miaoi and Bayan Ob is characterized by a cloudy appearance, while most grains are associated with dissolved monazite. Hydrothermal apatite from Bayan Obo, usually occurring in the form of aggregates in close connection with fluorite and barite, is anhedral, with green or light purple luminescence. Apatites, differing in color and structure, are characterized by different compositions of impurity elements. Magmatic apatite contains the highest concentrations of Mn (on average 457 ppm) and Sr (on average 18285 ppm) and is characterized by a steep slope, the curve of the "spectrum" normalized by chondrite. Metasomatic apatite, which has undergone repeated precipitation-dissolution, contains lower concentrations of Mn (on average 272 ppm) and Sr (on average 9945 ppm). It is characterized by highly variable REE spectra with the La/SmN ratio varying from 0.13 to 5.61, and lower average values of La/YbN, La/SmN and Sr/Y (46, 2.2 and 18, respectively) than magmatic apatite. Hydrothermal apatite is characterized by convex upward normalized chondrite curves of the "spectrum" of REE with the lowest ratios of La/YbN, La/SmN and Sr/Y (13, 0.69 and 5.8, respectively). The average concentrations of Mn and Sr in this apatite are 270 and 6610 ppm, respectively. An important problem of REE mineralization associated with carbonatites on cratonic margins and in orogenic belts is the late metasomatic and hydrothermal processing of minerals, erasing their primary geochemical marks. In 2020, a Chinese team tried to clarify the role of late metasomatosis using the isotopy of strontium and carbon in calcites and apatites of the already known Miaoi carbonatite deposit located in the orogenic belt of Southern Qinling [135]. Calcite carbonatites in Miaoi are usually found in the form of rods and dikes embedded in syenite, and can be subdivided into equal-grained (type I) and uneven-grained (type II). Calcite in type I carbonatite is characterized by the highest concentrations of Sr (up to 22000 ppm) and REE (195–542 ppm) with low values (La/Yb)N=2.1–5.2. Here the values of 87Sr/86Sr = 0.70344–0.70365 and 13Ccarb = 7.1–4.2 % are also recorded here, which is consistent with the mantle nature of carbonatite. In type II carbonatite, calcite is poorer in strontium (Sr = 1708–16322 ppm) and REE (67–311 ppm), having variable values (La/Yb)N=0.2-3.3 and (La/Sm)N=0.2–2.0. Here 87Sr/86Sr and 13Ccarb vary greatly: from 0.70350 to 0.70524 and from 7.0 to 2.2, respectively. Fluorapatite in carbonatites of types I and II is characterized by similar trace element and isotopic compositions. Both demonstrate variable LREE concentrations, and at the same time, relatively stable almost chondrite Y/Ho ratios. Fluorapatite is characterized by constant isotopic compositions of Sr with a corresponding average ratio of 87Sr/86Sr equal to 0.70359, which suggests that the mineral remained relatively closed with respect to contamination. Taken together, these data suggest that the fluids dissolved in carbonatite, together with the possible assimilation of syenites during Mesozoic metasomatism, left an imprint on the original trace element and isotope signatures created in early Paleozoic magmatism. Hydrothermal processing led to the dissolution-redeposition of calcite and fluorapatite, which served as the dominant source of REE mineralization during a much younger metasomatic activation. In the study of carbonatites in Malawi [87], the analysis of apatite from five carbonatites with magmatic textures. allows you to outline the contours of the field of primary magmatic apatite (PIA) with δ18O = +2,5 – +6,0 (VSMOW), comparable to the compositions of primary igneous carbonate (PIC). In 10 samples of carbonatite from Songwe Hill, paired values were obtained – both δ18O CARB and δ18Ophosph. Values like δ18Ocarbs in carbonates (as well as the value of δ13Сcarb) show a general growth trend from the beginning to the end of evolution – from +7.8 to +26.7% (VSMOW). The value of δ18Ophosph shows the opposite trend, decreasing from the PIA field to negative values: from +2.5 to -0.7% (VSMOW). These contrasting results are interpreted as the result of the interaction of minerals with the fluid at different temperatures and compositions. The simulation allows for the possibility of exposure to both carbon dioxide fluid and the mixing of meteoric and magmatic waters. As a result, a model is proposed in which brecciation leads to depressurization of the ore system and rapid precipitation of apatite. It is assumed that a convective cell interacting with meteoric water is formed in carbonatite. REE is likely to be transported into this convective cell and precipitate due to a decrease in salinity and/or temperature. In 2012, the Ukrainian team [19] studied TR-apatites with determination of the content of Ca, P, Si, Na, Sr, TR and other elements from the tweitosite-pyroxenites, ringites and beforsites of the Chernihiv carbonatite massif. Apatites of the studied rocks turned out to be quite different. Apatites of tweitosite-pyroxenites and ringites are characterized by an inhomogeneous structure of the apatite matrix. In the latter there are areas enriched and depleted by TR and Si. The isomorphic entry of TR together with Si into the structure of such apatites occurs according to the britolite scheme. In addition, these apatites contain numerous inclusions of newly formed minerals resulting from the decay of primary TR-apatites. Such inclusions of exolution minerals are more often represented by britolite and bastnesite. Apatite from beforsites is characterized by a homogeneous grain structure and an increased concentration of TR, Na and Sr. Such apatites are characterized by a belovite isomorphism scheme. The revealed differences in the structure of apatites from the mentioned rocks and the values of the concentration of impurity elements in them are explained by the different chemical composition and physico-chemical conditions of crystallization of the host rocks. In 2011, Yekaterinburg student E. Krestyaninov [38] studied apatite from the Mauk manifestation of carbonatites, located in the Chelyabinsk region on the Southern. The Urals. The genesis of these carbonatites (as well as other South Ural ones) is the subject of discussion. Apatite turned out to be quite chloride (F/Cl = 2.1¬2.6, F = 1.7–1.8%, Cl = 0.7–0.8%), moderately rare-earth (REE = 740 ppm). The relatively low value of La/Yb = 4.3 gives rise to a flat appearance of the "spectrum" of REE normalized by chondrite. After making a number of comparisons with apatites from other carbonatites, the author leaned towards the idea of the metasomatic nature of Mauk carbonatites, which (among other things) makes them promising for the detection of gold mineralization. As noted by Ural geologists [36], in the apatites of the "oreless" calcite carbonatites of the South Urals, the REE content is very low, 4-48 ppm, they are also poor in Sr, Y and Zr content. However, in the dolomite variety of these carbonatites, the amount of REE (about 800 g/t) and the contents of Sr, Y, Zr (respectively 370, 177 and 70 ppm) are significantly higher. A decisive contribution to understanding the genesis of carbonatites was made in 2017 by Siberian geologists who studied the carbonate and apatite-fluorite association in the lamproite series rocks of the high-potassium intrusive Ryabinovy massif that this mineralization was formed during silicate-carbonate liquation with the separation of P, F and SO3-containing carbonatite melt, which, in turn, then divided into immiscible sulfate-carbonate and sulfate-phosphate-fluoride fractions. During the silicate-carbonate liquation in the ultrabasic lamproite system, the carbonatite melt concentrated LREE, U, Th, Ba and Sr with the participation of P and F, and Ti, Zr, Nb, Ta went into the silicate melt. Apatite, like biotite, has an inverse zonality in the content of F. Apatite inclusions from olivine-diopside-phlogopite and diopside-phlogopite lamproites differ in significant enrichment of LREE, as well as Th and U in comparison with apatite from minette and syenite porphyries; the difference in HREE contents is insignificant. When the "primary" carbonatite magma is divided into pure carbonatite and phosphate-fluoride fraction, apatite-fluorite veins with rare-earth apatite, carbonates and fluorocarbonates with LREE are formed. As a result of the removal of the so-called salt fraction, pure calcite-dolomite carbonatite, depleted by scattered elements, is formed. 4.6. Pegmatites Following the predecessors, the St. Petersburg mineralogist V. V. Gordienko [12] considers 6 formations of granite pegmatites in descending order of their formation depth: (1) ceramic  (2) mica-bearing  (3) rare-metal-rare-earth- (4) rare-metal ceramic . (5) rare-metal-rare-earth-amazonite (6)  crystal-bearing All these formations contain accessory apatite, although in varying amounts [12, p. 114]: "The content of apatite in various types of pegmatites varies widely (from 0.05 to 0.2%, sometimes reaching 1.5%), and apatite of the crystalline formation is characterized by the greatest" In general, these formations also differ in the composition of apatites [12, p. 116]: "The vast majority of granite pegmatite apatite belongs to F-apatite (F-minal content from 65 to 8%), with a variable amount of Mn. The variations of the latter are quite significant (from 0.1 to 10% MnO)". Mn contents consistently increase from primitive pegmatite formations to highly specialized ones. The contents of REE will change more difficult, differing in the generation of apatite [12, p. 118]: «From early to late generations of apatite, the content of REE and Y decreases, and the most recent generations of apatite (V and VI) also obey this trend». Strontium behaves differently and even accumulates in late generations, reaching a maximum (up to 0.3%) in generation apatites V. Gordienko explains this in terms of thermodynamics [12, p. 118]: "Such a feature finds a good explanation based on the average values of «Z SrO (137.3 kcal/mol) and CaO (144.5 kcal/mol), which indicates an energetically unfavorable isomorphic substitution of Ca for Sr in oxygen compounds." Apatites of the formation (5) occupy a separate position [12, p. 118], "where, in addition to the usual mango-fluoro-apatite, silicate-apatite (the britolite–abucumalite group) is found, characterized by an abnormally high content of REE and Y (REE and Y more than 40%) and a reduced content of F-minal ( <...>. Both of these varieties of apatite are at the same time close to each other in Mn content (0.9–4.0% MnO) and correspond to that in apatites from the pegmatite formation (4)". In general, as we can see, granite pegmatites are distinguished by a special peculiarity of the geochemistry and mineralogy of phosphorus. Firstly, phosphates can be so abundant here that they no longer become accessory, but rock-forming minerals. Secondly, other phosphates are often formed here instead of calcium phosphate of apatite – for example, iron-manganese. One of such minerals is Ca-Mn phosphate beusite CaMn2[PO4]2, named after our famous geochemist and mineralogist A. A. Beusa. In Polish pegmatites, beusite was described in association with the equally unusual manganese fluorapatite [120]. An association of phosphate minerals, including beusite, high-manganese fluorapatite, chlorapatite, hydroxylapatite and an admixture of alluadite and mitridatite, usually accompanied by high-manganese oxides, also enriched in Ba, Ca, Mg, Ni, Bi, Pb, is found in granite pegmatites localized in serpentinites of the Shklyary massif in Lower Silesia. These pegmatites are a subclass of muscovite-rare metal pegmatites. Beusite is usually developed here in the form of a substantially manganese, Ca-Fe-Mg phase, devoid of the usual lamellar accretions with triphylin or sarcopside, which becomes more and more manganese in the course of the process. In terms of its manganese content, beusite from Shklyar is on a par with beusite from Cross Lake pegmatites in Canada, considering as an example of the richest manganese phosphate in the world. Apparently, high-manganese fluorapatite containing up to 19.3 wt.% MpO, and a mineral of the apatite group with a dominant Mp (up to 31.5 wt.%MpO) are two types of apatite, which are also record manganese, Nodules were found in the outer parts of the granite pegmatites of Cema (San Luis province, Argentina), very exotic Fe-Mn phosphates [122]. Two complexes of phosphate associations were identified here. The first Association – bauset of willeit-siclari with tanecetum and farolitos among the major products of substitution values of Fe/(Fe+Mn) from 0.46 to 0.48 for sclerite and MgO content up to 2.14 wt.%. The second association is lithiophilite-siclari with farolitos and guerolito among the major secondary products, with low values of Fe/(Fe+Mn) of the order of 0.37–0.39 for lithiophilite and low MgO content of about 1 wt.%. As can be judged by the composition of these Fe-Mn phosphate nodules, the first association had higher crystallization temperatures. The enrichment of Mn apatites observed in these pegmatites with low differentiation can be explained by the early crystallization of other Fe-enriched minerals, such as sherl, in the near-band parts of pegmatites. Crystallization of this silicate leads to depletion of Fe activity in residual pegmatite melts. Equally surprising, Al-Li-Be-Ca-Sr secondary phosphates have been described in lithium rare-metal pegmatites of Eastern Argentina [103]. Dendritic montebrasite secretions in albite are widespread here, mainly in the northern parts of the bodies, while lepidolite is widespread in the south. Dendritic secretions are confined to block pegmatites at the boundary with the quartz core. They have been substantially changed. 3 stages were identified: 1 – two generations of secondary montebrasite in fusion with hydroxylherderite, augelite and fluorapatite (acidic aqueous fluids, 450-420 oC, 2 kbar); 2 – gojacite-crandallite and hydroxyapatite formed when equilibrium is reached between pegmatite and host rocks during the arrival of Ca, Sr and S from host rocks when cooled to 300oC; 3 – at low temperatures, the remains of montebrasite and all its products of change are a source of leaching and phosphorus scattering and Si introduction. Pseudomorphoses are formed, consisting of kaolinite, quartz, lithium muscovite, feldspar (adular) and microliths of previous stages. Even more exotic phosphates can be formed by hydrothermal and hypergenic alteration of granite pegmatites, especially those whose parent granites belong to anatectic granites of the S-type. In the high-alumina primary melts formed from metapelites, apatite was highly soluble - better than in low-alumina, due to Ca deficiency, which goes into plagioclase. Therefore, there are so many non–calcium phosphates in the residual (pegmatite) melts that arose from the original high-alumina ones, in particular, iron-manganese ones, as can be judged from the data of Spanish geologists who studied tin-tungsten deposits associated with the pegmatites of the Halama batholith near Salamanca [113]. There are almost 2 dozen such rare fofats in the tablet they gave! In the hydrotherms following the pegmatites, these rare phosphates are transformed and other equally rare ones are obtained, such as montebrasite LiAlPO4(OH) and childrenite Fe2+AlPO4(OH)2•H2O. In the Danilovsky manifestation of rare-metal granite pegmatites in the Altai Mountains, most of the REE is contained in orthite, monazite and xenotime, therefore, in fluorapatite, the amount of REE is small (about 350 ppm), with a predominance of light among them [15]. 4.7. Metamorphites During the metamorphism of rocks, as detailed in the Irish review [130], the composition of accessory apatite undergoes serious changes. The authors separately consider low-graded metamorphites (mainly green shale facies) and high-graded (up to granulites), where apatite changes are especially significant. On the logarithmic "biplot" LREE – Sr/Y, the compositions of metamorphic apatites form two disjoint fields: LM and HM. The LM field (a wide, non-diagnostic range of values for the Sr/Y ordinate and minimum values for the LREE abscissa) are low- and medium-graded metamorphites, which are characterized by dissolution and re-deposition of apatite – with a corresponding loss of REE. The HM field (low values of Sr/Y and LREE content greater than 1000 g/t) are high-grade metamorphites and metasomatites; here are also the compositions of anatectic metamorphite leukosomes. An increase in the temperature of metamorphism up to anatexis reduces the REE content in primary magmatic apatites and lowers Sr/Y – due to a simultaneous increase in Y concentrations and a decrease in Sr concentrations. The works not covered by the Irish review include many articles by domestic geologists, as well as a number of foreign studies. Voronezh geologists [58] studied mineral parageneses, morphology and composition of apatites from iron-siliceous formations of different ages (FSF) Voronezh crystal massif. Two generations of apatite, differing in composition and morphology, have been established in Mesoarchean FSF. At the peak of metamorphism of the Mesoarchean FSF (more than 900 ° C), fluorapatite-1 was stable, preserved in the form of small crystals enclosed in large secretions of ortho- and clinopyroxenes. The metamorphic fluid was characterized by sufficiently high HF fugitives. Apatite-2 crystallized during the second and/or third less thermal (700 °C) metamorphic events. It is present in the development sites of later minerals – garnet, grunerite, chlorite. The composition of apatite-2 corresponds to hydroxyapatite with an admixture of chlorine, which indicates the water-salt composition of the equilibrium fluid. This is confirmed by the finding of pseudo-toxic water-salt fluid inclusions with low concentrations of 1.9-4.9 wt.% NaCl eq. In magnetite quartzites of the Neoarchean and Paleoproterozoic FSF fluorapatites are stable. In general, a decrease in fluorine fugitivity in the metamorphic fluid from the Mesoarchean to the Paleoproterozoic was found, which is due to a decrease in the amount of apatite in the rocks of the Neoarchean and Paleoproterozoic ferruginous-siliceous formations relative to the Mesoarchean. Deposits of Fe-Ni ores representing metamorphosed former laterites have been described in Northern Greece [97]. Among the accessory minerals, chlorine–free fluorohydroxyapatite with an average composition (wt. %) CaO = 51.35, FeO = 2.80, P2O5 = 41.4 and (F + H2O) = 5 is described. The mineral occurs in small grains (from <10 to 50 microns) scattered in an ore matrix composed of goethite, hematite, magnetite, shamosite and quartz, or forms an intermediate zone in zonal chromite crystals (strongly enriched with Mn, Ni and Co) – between the chromite core and the magnetite shell. Structures of plastic and brittle deformations are visible in apatite. Quartz and magnetite inclusions are found in the poikyloblastic grains of apatite. All these data together prove that apatite is metamorphic, formed during the gradual dissolution of the primary apatite of laterites, approximately simultaneously with the rock-forming minerals of ores. The newly formed fluorapatite is described in the metamorphites of the Alps foundation, which is part of the remarkable "crowns" growing on monazite-1 and consisting of allanite and fluorapatite, which are considered by the authors [102] as products of the "decay" of primary monazite-1. These "crowns" contain monazite-2 growths – as evidence of polymetamophism. The authors write [102, p. 1102]: "From a geological point of view, this means that polymetamorphic monazite-containing rock will become the most suitable for the growth of new monazite when it passes a phase of strong regression between P-T peaks. In the case of orogenic events separated by large time intervals, such periods of low temperature will usually be usually located between the peaks of metamorphism". Among the characteristic minerals of metamorphites can be called goyazite SrAl3(PO4)(PO3OH)(OH)6 aluminum and strontium phosphate from the crandallite group. Although the findings of gojacite in pegmatites were previously known, but in 2017 Ural geologists discovered it in metamorphic paraslates (and propylites formed from them) in the folded Pre-Jurassic basement of the West Siberian Plate [23]. According to the authors, primary feldspar and monazite served as the source of the substance for goyazite. Finally, the appearance of an association of florencite and crandallite, described, in particular, by Bulgarian mineralogists, can be attributed to the characteristic relatively low-temperature metamorphic transformations of igneous apatite [105]. They described the transformations of igneous apatite, which in the processes of argillization of the epithermal sulfide Cu-Ag Chelopech deposit at temperatures of 200–300 oC turned into an association of florencite and crandallite. Florencite (Ce,La,Nd)Al3(PO4)2(OH)6 and crandallite CaAl3(PO4)2(OH)5.H2O are the extreme aluminum members of the group of aluminum-sulfate phosphates (APS), which, in turn, is part of the supergroup of alunite. This supergroup contains more than 40 mineral species with the general formula DG3(TO4)2(OH, H2O, F)6, where D – major cations (K+, Na+, NH4+ , H3O+, Ag+, Pb2+, Ca2+, Ba2+, Sr2+, Bi3+, REE3+) with coordination numbers greater than or equal to 9; G – Al3+, Fe3+, Cu2+ or Zn2+ in octahedral coordination; T – is basically S6+, P5+ and As5+ in tetrahedral coordination. Minerals of the APS group are formed in endogenous and hypergenic processes, as products of Al-containing minerals changes in relatively oxidizing environments with an abundance of S and P, in a wide temperature range of 15–400 oC. And depending on the situation, solid solutions are formed in the minerals of the APS group. Some varieties of these minerals are characteristic of high-sulfur epithermal systems, where they are formed as a result of either endogenous (magmatic-hydrothermal) or hypergenic processes of change with gradual heating. The initial phase for the formation of florencite and crandallite was igneous apatite. It turned out to be unstable under conditions of low pH and oxidizing environment of the formation of these ores. Detritus apatites (as well as sphenes-titanites and zircons) of Archean age in tuffs (near the famous Oklo river!) in Gabon, underwent a low-temperature hydrothermal change in the chlorite facies of metamorphism somewhere at the end of the Ediacaran (approx. 560 million years). At the same time, the contents of Ti, Al, Fe, Ca, REE, U, Pb in titanites (sphenes) and zircons underwent a strong change (in–out), while the grains of accessory apatite turned out to be quite stable. Trying to understand what is the matter, the French-Japanese team of authors [107], relying on the redistribution of REE, U and Pb in titanite and zircon, came to the conclusion that the processes of hydrothermal change occurred in an alkaline environment, at pH >8. Ukrainian authors who studied the contents of paramagnetic centers (PC) in 11 groups of metamorphic (including metasomatic) rocks obtained valuable data on the dependence of the content of PC on the conditions of crystallization (recrystallization) of apatite [28, p. 61]: "Samples from metamorphic rocks are characterized by high values of O-centers in the absence of Mn2+ ions in the cationic positions of M(1) <...>. In samples from metasomatic granites <...>, F-O-F-centers are significantly (about 50 times) smaller, OH-containing PC are absent, with a high content of Mn2+ ions in both structural positions <...>. The low concentration of O-centers is most likely due to the presence of H2Ostr molecules." By the method of ICP-MS with laser ablation, Buryat geologists [76] studied the compositions of two morphological varieties of rock-forming metasomatic apatite from amphibolized gabbro of the Oshurkovsky massif in the South of Transbaikalia. Here apatite ranges from 2–3 to 6–10 wt%, and in the zones of hydrothermal change reaches 40–45 wt%. High concentrations (ppm) of REE (8156–9546), with sharp enrichment with LREE, weak europium anomaly (Eu/Eu* = 0.85–0.90), strong accumulation of Sr (9844–11567) with moderate concentrations of Mn (440–491), Y (138–160), U (5.9–6.6) and Th (19–22). Irkutsk geologists [55] studied apatite from apatite-phlogopite-ribekite near-contact metasomatites associated with calcite and dolomite-ankerite carbonatites of the Onguren dyke-vein complex in the Western Near-Baikal region. These metasomatites are characterized by high concentrations (ppm) of LnCe (up to 11200), U (23), Sr (up to 7000), Li (up to 400), Zn (up to 600), Th (up to 700). REE concentrators in alkaline metasomatites are fluorapatite containing up to 2.7 wt. % (LnCe)2O3, as well as monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), eshinite-(Ce).

Список литературы

1. Avdonina I.S., S.V. Pribavkin. Magmatic anhydrite and apatite in epidote-bearing porphyries in the Middle Urals // Lithosphere, 2013, No. 4. P. 62–72. Авдонина И.С., Прибавкин С.В. Магматический ангидрит и апатит в эпидотсодержащих порфирах Среднего Урала // Литосфера, 2013, № 4. С. 62–72.

2. Arzhannikova A.V., Jolivet M., Arzhannikov S. G., Vassallo, R., Chauvet, A. The age of formation and destruction of the Mesozoic-Cenozoic surface alignment in East Sayan // GEOL. and geofiz., 2013, vol. 54, No. 7. Pp. 894–905. Аржанникова А.В., Жоливе М., Аржанников С.Г., Вассалло Р., Шове А. Возраст формирования и деструкции мезозойско-кайнозойской поверхности выравнивания в Восточном Саяне // Геол. и геофиз., 2013, т. 54, № 7. С. 894–905.

3. Barkov A.Y. Nikiforov A.A. A new criterion of search areas of platinum mineralization of the type "Kivakka reef" // Vestn. Voronezh. State University. Ser. Geology, 2015, No. 4. pp. 75–83. [electronic resource]. Барков А.Ю., Никифоров А.А. Новый критерий поиска зон платинометалльной минерализации типа «Кивакка риф» // Вестн. Воронеж. гос. ун. Сер. Геология, 2015, № 4. С. 75–83. [Электронный ресурс].

4. Baturin G.N. Phosphate Accumulation in the Ocean. – M.: Nauka, 2004. 464 pp. Батурин Г.Н. Фосфатонакопление в океане. – М.: Наука, 2004. 464 с.

5. Baturin G.N. Phosphorites at the Bottom of the Oceans. – M.: Nauka, 1978. 232 pp. Батурин Г.Н. Фосфориты на дне океанов. – М.: Наука, 1978. 232 с.

6. Baturin. G.N. Phosphorites of the Sea of Japan // Oceanology, 2012, vol. 52, No. 5. p. 721. Батурин Г.Н. Фосфориты Японского моря // Океанология, 2012, т. 52, № 5. С. 721.

7. Baturin G.N., Dubinchuk V.T. Genesis of uranium minerals and rare earths in the bone detritus of rare metal deposits // Dokl. RAS, 2011, vol. 438, No. 4. pp. 506–509. Батурин Г.Н., Дубинчук В.Т. Генезис минералов урана и редких земель в костном детрите редкометалльных месторождений // Докл. РАН, 2011, т. 438, № 4. С. 506–509.

8. Baturin, G.N., Dubinchuk V.T., Azarova L.A. Anashkina N.A., Ozhogin D.O. The apatite and associated igneous minerals in ferromanganese crusts from the Magellan Mountains // Oceanology, 2006, vol. 46, No. 6. Pp. 922–928. Батурин Г.Н., Дубинчук В.Т., Азарнова Л.А., Анашкина Н.А., Ожогин Д.О. Апатит и ассоциирующие с ним минералы в железомарганцевых корках с Магеллановых гор // Океанология, 2006, т. 46, № 6. С. 922–928.

9. Bliskovsky V.Z. Material Composition and Dressing of Phosphorite Ores. – M.: Nedra, 1983. 200 pp. Блисковский В.З. Вещественный состав и обогатимость фосфоритовых руд. – М.: Недра, 1983. 200 с.

10. Bocharnikova T.D., Kholodnov V.V., Shagalov V.E. Halogens in apatite – as a reflection of the fluid regime in petro- and ore genesis of the Magnitogorsk ore-magmatic complex (Southern Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, № 9. Pp. 28–33. Бочарникова Т.Д., Холоднов В.В., Шагалов В.Е. Галогены в апатите – как отражение флюидного режима в петро- и рудогенезе Магнитогорского рудно-магматического комплекса (Южный Урал) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, № 9. С. 28–33.

11. Gorbachev N.C., Shapovalov Yu.B., Kostyuk V.A. Experimental study of the system apatite–carbonate–H2O at P = 0.5 GPA, T= 1200 oC: efficiency of fluid transport in carbonatites // Dokl. Rus. Acad. Sci., 2017, vol. 473, No. 3. Pp. 331–335. Горбачев Н.С., Шаповалов Ю.Б., Костюк А.В. Экспериментальные исследования системы апатит–карбонат–Н2О при Р = 0.5 ГПА, Т= 1200 oC: эффективность флюидного транспорта в карбонатитах // Докл. РАН, 2017, т. 473, № 3. С. 331–335.

12. Gordienko V.V. Typomorphism of the chemical composition of garnet and apatite granitic pegmatites // Vopr. geokhim. and typomorphism of minerals, 2008, No. 6. Pp. 114–128. Гордиенко В.В. Типоморфизм химического состава граната и апатита гранитных пегматитов // Вопр. геохим. и типоморфизм минералов, 2008, №6. С. 114–128.

13. Grabezhev A.I., Voronina L.K. Sulfur in apatites from copper-porphyry systems of the Urals // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 68–70 (Tr. IGG URO RAN, vol. 159). Грабежев А.И., Воронина Л.К. Сера в апатитах из медно-порфировых систем Урала // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 68–70 (Тр. ИГГ УрО РАН, вып. 159).

14. Gusev A.I., Gusev N.I. Magnetite-apatite mineralization in the Western part of the Central Asian fold belt // Modern high technologies, 2013, no 2. Pp. 74–78. Гусев А.И., Гусев Н.И. Апатит-магнетитовое оруденение западной части Центрально-Азиатского складчатого пояса // Современные наукоемкие технологии, 2013, №2. С. 74–78.

15. Gusev A. I., Gusev N.I. Geochemistry of ores and minerals pegmatite manifestations of Danilovskoe (Gorny Altai) // Intern. Journ. of applied and fundamental research, 2016, №10. Pp. 102–106. Гусев А.И., Гусев Н.И. Геохимия руд и минералов пегматитового проявления Даниловское (Горный Алтай) // Международный журнал прикладных и фундаментальных исследований, 2016, №10. С. 102–106.

16. Denisova Yu. V. Thermometry apatite from the Nikolaishor granite massif (polar Urals) // 7 readings in the memory of corresponding member. RAS S.N. Ivanov: All-Russian scientific conference dedicated to the 70th anniversary of the founding of the Ural branch of the Russian mineralogical society, Yekaterinburg, 2018, IGG URO RAN. – Yekaterinburg: IGG URO RAN, 2018. Pp. 61–63. Денисова Ю.В. Термометрия апатита из гранитов Николайшорского массива (Приполярный Урал) // 7 Чтения памяти член-корр. РАН С.Н. Иванова: Всероссийская научная конференция, посвященная 70-летию основания Уральского отделения Российского минералогического общества, Екатеринбург, 2018, ИГГ УрО РАН. – Екатеринбург: ИГГ УрО РАН, 2018. С. 61–63.

17. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Isotopic studies of bone remains of Yakut Pleistocene horses // Ice and snow, 2013, № 2. Pp. 93–101. Ди Маттео А., Кузнецова Т.В., Николаев В.И., Спасская Н.Н., Якумин П. Изотопные исследования костных остатков якутских плейстоценовых лошадей // Лед и снег, 2013, № 2. С. 93–101.

18. Dubyna O.V., Krivak S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Y. A. regularities of REE, Y, and Sr in apatite endogenous deposits of the Ukrainian shield (according to the ICP-MS) // Mineral. W., 2012, vol. 34, No. 2. Pp. 80–99. Дубина О.В., Кривдiк С.Г., Самчук А.I., Красюк О.П., Амашукелi Ю.А. Закономерности распределения REE, Y и Sr в апатитах эндогенных месторождений Украинского щита (по данным ICP-MS) // Мiнерал. ж., 2012, т. 34, № 2. С. 80–99.

19. Dubyna O.V., Krivak S. G., Sobolev V.B. Isomorphism in TR-apatite of the Chernigov carbonatite massif. Izomorphism in TR-apatites of the Chernigivsky carbonatite massif // Mineral. Zh., 2012. vol. 34, No. 3. Pp. 22–33. Дубина О.В., Кривдiк С.Г., Соболев В.Б. Iзоморфiзм в TR-апатитах Чернiгiвського карбонатитового масиву // Мiнерал. ж., 2012. т. 34, №3. С. 22–33.

20. Dudkin O.B. Apatite as a possible indicator of the sequence of formation of rocks of the Khibiny deposits // Petrology and mineralogy of the Kola region: 5 All-Russian. Fersman scientific session, dedicated to the 90th anniversary of the birth of E.K. Kozlov, Apatity 14–15 Apr., 2008. – Apatity: Geol. Inst. KSC RAS, 2008. Pp. 94–97. Дудкин О.Б. Апатит как возможный индикатор последовательности формирования пород хибинских месторождений // Петрология и минерагения Кольского региона: 5 Всеросс. Ферсмановская научная сессия, посвящ. 90-летию со дня рождения д. г.-м. н. Е. К. Козлова, Апатиты 14-15 апр., 2008. – Апатиты: Геол. ин-т КНЦ РАН, 2008. С. 94–97.

21. Dudkin O.B. REE of the Khibiny massif // Geology and Strategic Minerals of the Kola region: Proceedings of 10 Vseros. (with intern. participation) Fersman scientific session dedicated to 150th anniversary of the birth of Academician V.I. Vernadsky, Apatity, 7–10 Apr., 2013. – Apatity: Geol. Inst. KSC RAN, 2013. Pp. 124–127. Дудкин О.Б. Редкие земли Хибинского массива // Геология и стратегические полезные ископаемые Кольского региона: Труды 10 Всерос. (с междун. участием) Ферсмановской научной сессии, посвящ. 150-летию со дня рождения акад. В. И. Вернадского, Апатиты, 7–10 апр., 2013. – Апатиты: Геол. ин-т КНЦ РАН, 2013. С. 124–127.

22. Dudchenko N.O. The peculiarity of the formation of a nitrogen-based radical in biogenic hydroxylapatite on the EPR data // Mineral. Zh., 2011, vol. 33, No. 3. Pp. 46–49. Дудченко Н.О. Особливостi формування азотвмiсного радикала у зразках бiогенного гiдроксилапатиту за даними ЕПР // Мiнерал. ж., 2011, т. 33, №3 . С. 46–49

23. Erokhin Yu.V., Ivanov K.S., Ponomarev V.S. Goyazite from metamorphic rocks of the Pre-Jurassic basement of the West Siberian megabasin // Vestn. Ural. branch Ros. mineral. Soc., 2016, No. 13. Pp. 52–61. Ерохин Ю.В., Иванов К.С., Пономарев В.С. Гояцит из метаморфических пород доюрского фундамента Западно-Сибирского мегабассейна // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2016, № 13. С. 52–61.

24. Erokhin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleimenov D.A., Berzin S.V. Phosphates from meteorites "Ural", "Ozernoye" and "Chelyabinsk" // Vestn. Ural. branch Ros. mineral. Soc., 2014, No. 11. Pp. 39–47. Ерохин Ю.В., Хиллер В.В., Иванов К.С., Бурлаков Е.В., Клейменов Д.А., Берзин С.В. Фосфаты из метеоритов "Урал", "Озерное" и "Челябинск" // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2014, № 11. С. 39–47.

25. Zanin Yu.N., Zamiralov A.G., Fomin A.N., Pisarev G.M. Strontium in the structure of sedimentary apatite in the process of catagenesis // Dokl. Russian Academy of Sciences, 1997, vol. 352, No. 2. Pp. 235–237. Занин Ю.Н., Замирайлова А.Г., Фомин А.Н., Писарева Г.М. Стронций в структуре осадочного апатита в процессах катагенеза // Докл. РАН, 1997, т. 352, № 2. С. 235–237.

26. Ivanovskaya A.V., Zanin Yu. N. Phosphorites of the stalinogorsk formation of the Middle Riphean Turukhansk uplift, Eastern Siberia // Lithosphere, 2008, №1. Pp. 90–99. Ивановская А.В., Занин Ю.Н. Фосфориты стрельногорской свиты среднего рифея Туруханского поднятия, Восточная Сибирь // Литосфера, 2008, №1. С. 90–99.

27. Ilyin V.A. Ancient (Ediacaran) Phosphorites. – M.: GEOS, 2008. 160 Pp. (Tr. GIN RAS, vol. 587). Ильин А.В. Древние (эдиакарские) фосфориты. – М.: ГЕОС, 2008. 160 с. (Тр. ГИН РАН, вып. 587).

28. Kalinichenko E.A., Brik A.B., Kalinichenko A. M., Gatsenko V.A., Frank-Kamenetskaya O.V., Bagmut N.N. The particular properties of apatites from different species of the Chemerpole (Middle Near-Bug) according radiospectroscopy // Mineral. Z., 2014, vol. 36, No. 4. Pp. 50–65. Калиниченко Е.А., Брик А.Б., Калиниченко А.М., Гаценко В.А., Франк-Каменецкая О.В., Багмут Н.Н. Особенности свойств апатитов из разных пород Чемерполя (Среднее Побужье) по данным радиоспектроскопии // Мiнерал. ж., 2014, т. 36, № 4. С. 50–65.

29. Katkova V.I. Pseudomorphs of bioapatite on octocalciumphosphate // Vestn. In-ta geol. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2012, No. 6. Pp. 11–14. Каткова В.И. Псевдоморфозы биоапатита по октакальцийфосфату // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2012, № 6. С. 11–14.

30. Kiseleva D.V., Zaitseva M.V. Determination of the trace element composition of REE in biogenic apatite of Upper Devonian conodonts (Southern Urals) by the ISP-MS method with laser ablation // Ural Mineralogical School, 2017, No. 23. Pp. 98–101. Киселева Д.В., Зайцева М.В. Определение микроэлементного состава РЗЭ в биогенном апатите верхнедевонских конодонтов (Южный Урал) методом ИСП-МС с лазерной абляцией // Уральская минералогическая школа, 2017, № 23. С. 98–101.

31. Kogarko L.N. Rare-earth potential of apatite in deposits and waste products of apatite-nepheline ores of the Khibiny massif // Tr. Fersman sci. sessions of the GI KSC RAN, 2019, No. 16. Pp. 271–275. Когарко Л.Н. Редкоземельный потенциал апатита в месторождениях и отходах производства апатито-нефелиновых руд Хибинского массива // Тр. Ферсмановской науч. сессии ГИ КНЦ РАН, 2019, № 16. С. 271–275.

32. Kolonin R.G., Shironosova G.P., Palessky S.V., Fedorin M.A., Kandinv M.N., Pohova V.I., Repina S.A., Shvetsova I.V. Rare-earth elements of Ural monazites and models of physico-chemical conditions of mineral formation // Mineralogy of the Urals-2007: Mater. 5 Vseros. Meeting, Miass, August 20-25, 2007: Collection of scientific articles. – Miass, Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. Pp. 246–250. Колонин Р.Г., Широносова Г.П., Палесский С.В. , Федорин М.А., Кандинов М.Н., Попова В.И., Репина С.А., Швецова И.В. Редкоземельные элементы монацитов Урала и модели физико-химических условий минералообразования // Минералогия Урала-2007: Матер. 5 Всерос. совещ., Миасс, 20–25 августа 2007 г.: Сборник научных статей. – Миасс, Екатеринбург: УрО РАН, 2007. С. 246–250.

33. Konovalova E.V., Pribilkin S.V., Zamyatin D.A., Kholodnov V.V. Sulfur in apatites of granites of the Shartash massif and the Berezovsky gold deposit // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 134–138 (Tr. IGG URO RAN, vol. 159). Коновалова Е.В., Прибавкин С.В., Замятин Д.А., Холоднов В.В. Сера в апатитах гранитов Шарташского массива и Березовского золоторудного месторождения // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 134–138 (Тр. ИГГ УрО РАН, вып. 159).

34. Konovalova E. V., Kholodnov V. V., Pribavkin S. V., Zamyatin D. A. Elements-mineralizer (sulfur and Halogens) in Apatity Shartash granite massif and Berezovsky gold deposits // Lithosphere, 2013, No. 6. Pp. 65–72. Коновалова Е.В., Холоднов В.В., Прибавкин С.В., Замятин Д.А. Элементы-минерализаторы (сера и галогены) в апатитах Шарташского гранитного массива и Березовского золоторудного месторождения // Литосфера, 2013, № 6. С. 65–72.

35. Konopleva N.G., Ivanyuk G.Yu., Pakhomovsky Ya.A., Yakovenchuk V.N., Mikhailova Yu.A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula) // Zap. Rus. Mineral. Soc. 2013, vol. 142, No. 3. Pp. 65–83. Коноплева Н.Г., Иванюк Г.Ю., Пахомовский Я.А., Яковенчук В.Н., Михайлова Ю.А. Типоморфизм фторапатита в Хибинском щелочном массиве (Кольский полуостров) // Зап. Рос. минерал. о-ва, 2013, т. 142, № 3. С. 65–83.

36. Korinevsky V.G., Filippova K.A., Kotlyarov V.A., korinevsky E.V., Artemyev D.A. Trace elements in minerals of some rare species of the Southern Urals // Lithosphere, 2019, vol. 19, No. 2. Pp. 269–292. Кориневский В.Г., Филиппова К.А., Котляров В.А., Кориневский Е.В., Артемьев Д.А. Элементы-примеси в минералах некоторых редко встречающихся пород Южного Урала // Литосфера, 2019, т. 19, №2. С. 269–292.

37. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. Halogens and sulfur in hydroxyl-bearing minerals in East Verkhoturye diorite-granodiorite array of mineralizatsii in the form of native copper (Middle Urals) // Yearbook-2017: the Collection. – Ekaterinburg: IGG URO RAN, 2018. Pp. 189–193 (Tr. IGG URO RAN, vol. 165). Коровко А.В., Холоднов В.В., Прибавкин С.В., Коновалова Е.В., Михеева А.В. Галогены и сера в гидроксилсодержащих минералах Восточно-Верхотурского диорит-гранодиоритового массива с минерализаций в виде самородной меди (Средний Урал) // Ежегодник-2017: Сборник. – Екатеринбург: ИГГ УрО РАН, 2018. С. 189–193 (Тр. ИГГ УрО РАН вып. 165).

38. Krestianinov E.A. Apatite as an indicator of the genesis of carbonatite Mayksk manifestations (South Ural) // Metallogeny of ancient and modern oceans, 2011, №1. Pp. 252–255. Крестьянинов Е.А. Апатит как индикатор генезиса Маукского карбонатитового проявления (Южный Урал) // Металлогения древних и современных океанов, 2011, №1. С. 252–255.

39. Lemesheva S.A., Golovanova O.A., Turenkov S. V. Study of the characteristics of the composition of bone tissues // Chemistry for sustainable development, 2009, vol. 17, No. 3. Pp. 327–332. Лемешева С.А., Голованова О.А., Туренков С.В. Исследование особенностей состава костных тканей человека // Химия в интересах устойчивого развития, 2009, т. 17, № 3. С. 327–332.

40. Liferovich, R.P., Bayanova T. B., Gogol O.V., Sherstennikov O.G., Delenitsin O.A.. Genesis intersects phosphate mineralization within the Kovdor will phoscorite-carbonatite complex // Vestn. MSTU. Tr. Murmansk. State Technical University. 1998, vol. 1, No. 3. Pp. 61–68. Лиферович Р.П., Баянова Т.Б., Гоголь О.В., Шерстеникова О.Г., Деленицин О.А. Генезис посткарбонатитовой фосфатной минерализации в пределах Ковдорского фоскорит-карбонатитового комплекса // Вестн. МГТУ. Тр. Мурманск. гос. техн. ун–та, 1998, т. 1, №3. С. 61–68.

41. Lobova E.V. Evolution of amphibole and apatite from rocks of the Reftinsky complex (Eastern zone of the Middle Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, No. 9. Pp. 84–87, 152. Лобова Е.В. Эволюция амфибола и апатита из пород Рефтинского комплекса (Восточная зона Среднего Урала) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, №9. С. 84–87, 152.

42. Malkov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral composition and trace elements of fossilized bones of sea lizards located in Kargort (Komi Republic) // Vestn. Inst geol. Komi SC URO RAN, 2004, No. 1. Pp. 12–16. Мальков Б.А., Лысюк А.Ю., Иванова Т.И. Минеральный состав и микроэлементы окаменелых костей морских ящеров местонахождения Каргорт (Республика Коми) // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2004, № 1. С. 12–16.

43. Maslov A.V. Pre-Ordovician phosphorites and paleoceanography: a brief geochemical excursion into the systematics of rare earth elements // Lithosphere, 2017, No. 1. Pp. 5–30. [electronic resource]. Маслов А.В. Доордовикские фосфориты и палеоокеанография: краткий геохимический экскурс в систематику редкоземельных элементов // Литосфера, 2017, № 1. С. 5–30. [Электронный ресурс].

44. Maslov A.V. Phosphorites of the Neoproterozoic–Cambrian and paleoceanography: data on the distribution of rare earth elements // Yearbook-2015: Collection. - Yekaterinburg: IGG URO RAN, 2016. pp. 102-107. (Tr. IGG URO RAN, issue 163). Маслов А.В. Фосфориты неопротерозоя–кембрия и палеоокеанография: данные по распределению редкоземельных элементов // Ежегодник-2015: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2016. С. 102–107. (Тр. ИГГ УрО РАН, вып. 163).

45. Mineev D.A. Lanthanides in Minerals. – M.: Nedra, 1969. 182 pp. Минеев Д.А. Лантаноиды в минералах. — М.: Недра, 1969. 182 с.

46. Mineev D.A. Lanthanides in Ores of Rare-Earth and Complex Deposits – M.:Nauka, 1974. 237 pp. Минеев Д.А. Лантаноиды в рудах редкоземельных и комплексных месторождений – М.:Наука, 1974. 237 с.

47. Oparin N.A., Oleinikov O.B., Baranov L.N. Apatite from kimberlite pipe Manchary (Central Yakutia) // Natural resources of the Arctic and Subarctic, 2020, vol. 25, No. 3. Pp. 15–24. Опарин Н.А., Олейников О.Б., Баранов Л.Н. Апатит из кимберлитовой трубки Манчары (Центральная Якутия) // Природные ресурсы Арктики и Субарктики, 2020, т. 25, № 3. С. 15–24.

48. Pavlenko Y.V. Phosphates Streltsovsky ore field in South-Eastern Transbaikalia (part II) // Vestn. Zabaikalsky State University, 2021, vol. 27. No.3. pp. 42-52. Павленко Ю.В. Фосфаты Стрельцовского рудного поля Юго-Восточного Забайкалья (часть II) // Вестн. Забайкальского гос. ун-та, 2021, т. 27. №3. С. 42–52.

49. Potapov S.S. Repina S.A., Potapov D.S. Mineralogical and chemical features of the tooth of a mammoth // Mineralogy of technogenesis, 2007, vol. 8. Pp. 139–145. Потапов С.С., Репина С.А., Потапов Д.С. Минералого-химические особенности зуба мамонта // Минералогия техногенеза, 2007, т. 8. С. 139–145.

50. Rakhimov I.R., Kholodnov V.V., Salikhov D.N. Accessory apatite from gabbroids late Devonian–early Carboniferous West of the Magnitogorsk zone: morphology and chemical composition, indicator metallogenic role // Geological Bulletin, 2018, no. 3. Pp. 109–123. Рахимов И.Р., Холоднов В.В., Салихов Д.Н. Акцессорные апатиты из габброидов позднего девона–раннего карбона Западно-Магнитогорской зоны: особенности морфологии и химического состава, индикаторная металлогеническая роль // Геологический вестник, 2018, № 3. С. 109–123.

51. Ripp G.S., Khodyreva E.V., Isbroken I.A., Ramelow M.O., Lastochkin E.I., Posokhov V.F. Genetic nature of the apatite-magnetite ores of the North-Gurvunur deposit (Western Transbaikalia) // Geol. rudn. deposits, 2017, vol. 59, No. 5. Pp. 419–33. Рипп Г.С., Ходырева Е.В., Избродин И.А., Рампилов М.О., Ласточкин Е.И., Посохов В.Ф. Генетическая природа апатит-магнетитовых руд Северо-Гурвунурского меторождения (Западное Забайкалье) // Геол. рудн. м-ний, 2017, т. 59, № 5. С. 419–433.

52. Rosen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Calculation of the mineral composition of phosphate to facial reconstructions of the chemical analyses (program MINILITH) // Type of sedimentogenesis and lithogenesis and their evolution in the history of the Earth: materials of the 5th all-Russian lithological conference, Ekaterinburg, 14–16 Oct. 2008. Vol. 2. – Ekaterinburg: URO RAN, 2008. Pp. 200–203. Розен О.М., Аббясов А.А., Батурин Г.Н., Литвинова Т.В. Расчет минерального состава фосфоритов для фациальных реконструкций по химическим анализам (программа MINILITH) // Типы седиментогенеза и литогенеза и их эволюция в истории Земли: Материалы 5 Всероссийского литологического совещания, Екатеринбург, 14–16 окт. 2008. Т. 2. – Екатеринбург: УрО РАН, 2008. С. 200–203.

53. Rosen, O. M., Solov'ev A. V. Fission-track dating of apatite from the core of the deep wells of the Siberian platform – an indicator of the intense heating of the sedimentary cover during the intrusion of platobasalts // Geology, Geophysics and mineral resources of Siberia: materials of the 1st Scientific and practical conference, Novosibirsk, 29-31 Jan., 2014. Vol. 2. – Novosibirsk: SNIIGGIMS, 2014. Pp. 162–163. Розен О.М., Соловьев А.В. Трековое датирование апатитов из керна глубоких скважин Сибирской платформы — показатель интенсивного прогрева осадочного чехла во время внедрения платобазальтов // Геология, геофизика и минеральное сырье Сибири: Материалы 1 Научно-практической конференции, Новосибирск, 29-31 янв., 2014. Т. 2. – Новосибирск: СНИИГГМС, 2014. С. 162–163.

54. Ryabov V.V., Simonov O.N., Snisar S.G. Fluorine and chlorine in apatites, micas and amphiboles of the trap layered intrusions of the Siberian platform // Geol. and geofiz., 2018, vol. 59, No. 4. Pp. 453–466. [Electronic resource]. Рябов В.В., Симонов О.Н., Снисар С.Г. Фтор и хлор в апатитах, слюдах и амфиболах расслоенных трапповых интрузий Сибирской платформы // Геол. и геофиз., 2018, т. 59, № 4. С. 453–466. [Электронный ресурс].

55. Savelyeva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatites of the Onguren carbonatite complex (Western Baikal region): geochemistry and composition of accessory minerals//Geol. rudn. deposits, 2017, vol.59. No. 4. Pp. 319–346. Савельева В.Б., Базарова Е.П., Шарыгин В.В., Карманов Н.С., Канакин С.В. Метасоматиты Онгуренского карбонатитового комплекса (Западное Прибайкалье): геохимия и состав акцессорных минералов // Геол. рудн. м-ний, 2017, т. 59. № 4. С. 319–346.

56. Savenko A.V. On the physico-chemical mechanism of diagenetic formation of modern ocean phosphorites // Geochemistry, 2010, No. 2. Pp. 208–215. Савенко А.В. О физико-химическом механизме диагенетического формирования современных океанских фосфоритов // Геохимия, 2010, №2. С. 208–215.

57. Savenko V.S., Savenko A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle. – M.: GEOS, 2007. 248 Pp. Савенко В.С., Савенко А.В. Геохимия фосфора в глобальном гидрологическом цикле. – М.: ГЕОС, 2007. 248 с.

58. Savko K.A., Pilyugin S.M., Novikova M.A. Composition of apatite from rocks of different ages of ferruginous-siliceous formations of the Voronezh crystalline massif – as an indicator of the fluid regime of metamorphism / Vestn. Voronezh. state University. Ser. Geology. 2007, No. 2. Pp. 78–93. Савко К.А., Пилюгин С.М., Новикова М.А. Состав апатита из пород разновозрастных железисто-кремнистых формаций Воронежского кристаллического массива – как показатель флюидного режима метаморфизма / Вестн. Воронеж. гос. ун-та. Сер. Геология. 2007, № 2. С. 78–93.

59. Safin T. H., Dubinin A.V., Kuznetsov, A. B., Rimskaya-Korsakova, M. N. A study of the age of biogenic apatite from nodules of the Cape basin by the strontium isotope chemostratigraphy and establishing growth rates oxyhydroxide phases // Marine studies: 8th conference of young scientists, Vladivostok, June 6–9, 2018: conference proceedings. – Vladivostok: Dalnauka, 2018. Pp. 102–106. Сафин Т.Х., Дубинин А.В., Кузнецов А.Б., Римская-Корсакова М.Н. Исследование возраста биогенного апатита из конкреций Капской котловины методом стронциевой изотопной хемостратиграфии и установление скоростей роста оксигидроксидных фаз // Океанологические исследования: 8 конференция молодых ученых, Владивосток, 6-9 июня, 2018: Материалы конференции. – Владивосток: Дальнаука, 2018. С. 102–106.

60. Serova A.A., Spiridonov E.M. Three types of apatite in Norilsk sulfide ores // Geochemistry, 2018, No. 5. Pp. 474–484 [Electronic resource]. Серова А.А., Спиридонов Э.М. Три типа апатита в норильских сульфидных рудах // Геохимия, 2018, № 5. С. 474–484 [Электронный ресурс].

61. Soloviev A.V. Study of Tectonic Processes in the Areas of Convergence of Lithospheric Plates by Methods of Isotope Dating and Structural Analysis: Abstract. dis. for the application of a scientist. degree of Doctor of Geological Sciences – M.: GIN RAS, 2005. 49 pp. Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит методами изотопного датирования и структруного анализа: Автореф. дис. на соискание учен. степени доктора геол.-мин. наук. – М.: ГИН РАН, 2005. 49 с.

62. Soloviev V.A., Garver J.I. Post-collisional exhumation of the complexes in Northern Kamchatka (Lesnovsk lifting) // Dokl. Russian Academy of Sciences, 2012, vol. 443, No. 1. Pp. 92–96. Соловьев А.В., Гарвер Дж.И. Постколлизионная эксгумация комплексов Северной Камчатки (Лесновское поднятие) // Докл. РАН, 2012, т. 443, № 1. С. 92–96.

63. Soroka E.I., Leonova L.V. Anfimov A.L., Apatite shell of the Devonian foraminifera (Safianovsk copper-pyrite deposit, the Middle Urals) // Izv. Uralsk. state. Gorny University, 2018, No. 3(51). Pp. 34–39. Сорока Е.И., Леонова Л.В., Анфимов А.Л. Апатитовые раковины девонских фораминифер (Сафьяновское медноколчеданное месторождение, Средний Урал) // Изв. Уральск. гос. Горного ун-та, 2018, № 3(51). С. 34–39.

64. Taylor S.R., McLennan S.M. Continental Crust: its Composition and Evolution: Russian translation). - M.: Mir, 1988. 384 p. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. – М.: Мир, 1988. 384 с.

65. Felitsyn S.B., Bogomolov E.S. Isotope-geochemical systematics of gold-bearing biogenic apatites from the Lower Paleozoic deposits of Baltoscandia // Dokl. RAS, 2013, vol. 451, No. 6. pp. 680–683. Фелицын С.Б., Богомолов Е.С. Изотопно-геохимические систематики золотосодержащих биогенных апатитов из нижнепалеозойских отложений Балтоскандии // Докл. РАН, 2013, т. 451, № 6. С. 680–683.

66. Faore G. Fundamentals of Isotope Geology: Russian translation. – M.: Mir, 1989. 590 pp. Фор Г. Основы изотопной геологии. – М.: Мир, 1989. 590 с.

67. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Refinement of the atomic structure of apatite of the albinoi tissue of Upper Devonian conodonts // Crystallography, 2014, vol. 59, No. 1. Pp. 46–52. Франк-Каменецкая О.В., Рождественская И.В., Россеева Е.В., Журавлев А.В. Уточнение атомной структуры апатита альбидной ткани позднедевонских конодонтов // Кристаллография, 2014, т. 59, № 1. С. 46–52.

68. Khattak N.U., Asif Khan Mohammad, Ali Nawab, Abbas S. M., Tahirkheli T.K. Evaluation of time and level of implementation of the carbonatite complex Silly Patti, district Malakand, North-Western Pakistan: the limitations of the data dating signs of the fission tracks // Geol. and geofiz., 2012, vol. 53, No. 8. Pp. 964–974. Хаттак Н.У., Азиф Хан Мухаммад, Али Наваб, Аббас С.М., Тахиркели Т. К. Оценка времени и уровня внедрения карбонатитового комплекса Силлай Патти, район Малаканд, Северо-Западный Пакистан: ограничения, накладываемые данными датирования по следам распада // Геол. и геофиз., 2012, т. 53, № 8. С. 964–974.

69. Kholodnov V.V., Konovalova E.V. Morphology and other typomorphic properties of apatite in granitoids of the Urals with quartz-vein gold mineralization // Ural mineralogical school of 2012. – Ekaterinburg: IGG URO RAN, 2012. Pp. 186–191. Холоднов В.В., Коновалова Е.В. Морфология и другие типоморфные свойства апатита в гранитоидах Урала с кварц-жильным золотым оруденением // Уральская минералогическая школа-2012. – Екатеринбург: ИГ и Г УрО РАН, 2012. С. 186–191.

70. Kholodnov V.V., Salikhov D.N., Rakhimov I.R. Halogens and sulfur in apatite – as an indicator of potential ore-bearing late Paleozoic magmatic complexes of the West Magnitogorsk zone on Cr-Ni, Fe-Ti and Au mineralization // Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories, 2016, No. 11. Pp. 168–170. Холоднов В.В., Салихов Д.Н., Рахимов И.Р. Галогены и сера в апатитах – как индикатор потенциальной рудоносности позднепалеозойских магматических комплексов Западно-Магнитогорской зоны на Сг-Ni, Fe-Ti и Au оруденение // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий, 2016, № 11. С. 168–170.

71. Kholodnov V.V., Salikhov D.N., Rakhimov I.R., Shagalov E.S., Konovalova E.V. Halogens and sulfur in apatites as a sign of specialization and Late Paleozoic accretion-collisional gabbro-dolerites of the West Magnitogorsk zone on Cu-Ni and Au mineralization // Yearbook-2014: Collection. – Ekaterinburg: IGG URO RAN, 2015. Pp. 214–221 (Tr. IGG URO RAN, vol. 162). Холоднов В.В., Салихов Д.Н., Рахимов И.Р., Шагалов Е.С., Коновалова Е.В. Галогены и сера в апатитах как признак специализации и позднепалеозойских аккреционно-коллизионных габбро-долеритов Западно-Магнитогорской зоны на Сu-Ni и Au оруденение // Ежегодник-2014: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2015. С. 214–221 (Тр. ИГГ УрО РАН, вып. 162).

72. Kholodnov V.V., Salikhov D.N., Shagalov E.S., Konovalova E.V., Rakhimov I.R. The Role of halogens and sulfur in apatites in the assessment of potential ore-bearing gabbros of the Late Paleozoic of West Magnitogorsk zone (S. Ural) on Cu-Ni, Fe-Ti and Au mineralization // Mineralogy, 2015, No. 3. Pp. 45–61. Холоднов В.В., Салихов Д.Н., Шагалов Е.С., Коновалова Е.В., Рахимов И.Р. Роль галогенов и серы в апатитах при оценке потенциальной рудоносности позднепалеозойских габброидов Западно-Магнитогорской зоны (Ю. Урал) Сu-Ni, Fe-Ti и Au оруденение // Минералогия, 2015, № 3. С. 45–61.

73. Kholodnov V.V., Shagalov E.S., Konovalova E.V. Geochemistry of apatite in intrusive rocks of the Urals characterized by various ore specialization // Yearbook-2009: Collection. – Yekaterinburg: IGG UrO RAN, 2010. Pp. 190–195 (Tr. IGG UrO RAN, issue 157). Холоднов В.В., Шагалов Е.С., Коновалова Е.В. Геохимия апатита в интрузивных породах Урала, характеризующихся различной рудной специализацией // Ежегодник-2009: Сборник. – Екатеринбург: ИГГ УрО РАН, 2010. С. 190–195 (Тр. ИГГ УрО РАН, вып. 157).

74. Chaika I.F., Izokh A.E. Phosphate-fluoride-carbonate mineralization in rocks of lamproite series of Rybinov massif (Central Aldan): mineralogical and geochemical characteristics and genesis problem // Mineralogy, 2017, vol. 3, No. 1. Pp. 38–51. Чайка И.Ф., Изох А.Э. Фосфатно-фторидно-карбонатная минерализация в породах лампроитовой серии массива Рябиновый (Центральный Алдан): минералого-геохимическая характеристика и проблема генезиса // Минералогия, 2017, т. 3, №1. С. 38–51.

75. Chaikina M. V. Bulina N. V., Prosanov I.Yu., Ishchenko A.V., Medvedko O.V., Aronov A.M. Mechanochemical synthesis of hydroxyapatite with SIO44– substitutions // Chemistry for sustainable development, 2012, vol. 20, No. 4. P. 477-489. Чайкина М.В., Булина Н.В., Просанов И.Ю., Ищенко А.В., Медведко О.В., Аронов А.М. Механохимический синтез гидроксилапатита с SIO44– замещениями // Химия в интересах устойчивого развития, 2012, т. 20, №4. С. 477–489.

76. Chuprov A.A., Badmatsyrenova R.A., Batueva A.A. Apatite mineralization of the Oshurekov gabbro-pegmatite massiv, Transbaikalia: data from LA-ICP-MS analysis // Metallogeny of ancient and modern oceans, 2021, vol. 27. Pp. 144–146. Чупрова А.А., Бадмацыренова Р.А., Батуева А.А. Апатитовая минерализация Ошурековского габбро-пегматитового массива, Забайкалье: данные ЛА-ИСП-МС анализа // Металлогения древних и современных океанов, 2021, т. 27. С. 144–146.

77. Shatrov V.A., Voitsekhovsky G.V. Reconstruction of phosphate formation environments // Geol. and geophys., 2009, vol. 50, No. 10. Pp.1104–1118. Шатров В.А., Войцеховский Г.В. Реконструкция обстановок фосфатообразования // Геол. и геофиз., 2009, т. 50, №10. С.1104–1118.

78. Shironosova G.P., Kolonin G.R. Thermodynamic modeling of REE distribution between monazite, fluorite and apatite // Dokl. RAN, 2013, vol. 450, No. 4. Pp. 455–459. Широносова Г.П., Колонин Г.Р. Термодинамическое моделирование распределения РЗЭ между монацитом, флюоритом и апатитом // Докл. РАН, 2013, т. 450, № 4. С. 455–459.

79. Shnug E., Haneklaus N. Extraction of uranium from phosphate ores: ecological aspects // Atomic engineering abroad, 2013, No. 9. Pp. 20–24. Шнуг Э., Ханеклаус Н. Извлечение урана из фосфатных руд: экологические аспекты // Атомная техника за рубежом, 2013, №9. С. 20–24.

80. Yudovich Ya.E., Ketris M.P. Geochemical Indicators of Lithogenesis (Lithological Geochemistry). – Syktyvkar: Geoprint, 2011. 740 pp. Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). – Сыктывкар: Геопринт, 2011. 740 с.

81. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geochemistry of Рhosphorus. – Syktyvkar: IG Komi SC UrO RAN, 2020. 512 pp. Юдович Я.Э., Кетрис М.П., Рыбина Н.В. Геохимия фосфора. – Сыктывкар: ИГ Коми НЦ УрО РАН, 2020. 512 с.

82. Adcock C.T., Hausrath E.M., Forster P.M., Tschauner O., Sefein K.J. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation // Amer. Mineral., 2014, vol. 99, № 7. P. 1221–1232.

83. Barham M., Murray J., Joachimski M.M., Williams D.M. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean // J. Geol. Soc., 2012, vol.169, № 2. P. 119–122.

84. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor., 2002, vol. 76, № (1). P. 45–69.

85. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland // Aust. J. Earth Sci., 2001, vol. 48. Р. 603–619.

86. Bromiley G.D. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? // Lithos, 2021, vol. 384–385. 105900.

87. Broom-Fendley S., Heaton T., Wall F., Gunn G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi // Chem. Geol., 2016. 440. P. 275–287. [Electronic resource].

88. Brown W.F., Lehr J.R., Smith J.R., William A.F. Crystallography of octocalciumphosphate // J. Amer. Chem. Soc., 1957, vol. 79, № 19. P. 5378–5379.

89. Buggisch W., Joachimsry M.M., Sevastopulo G., Morrow J.R. Mississippian δ13Сkarb and conodont apatite δ18O records – Their relation to the Late Palaeozoic Glaciation // Palaeogeogr., Palaeoclim., Palaeoecol., 2008, vol. 69, № 3–4. P. 273–292.

90. Cavazza W., Federici I., Okay A.I., Zattin M. Apatite fission-track thermochronology of the Western Pontides (NW Turkey) // Geol. Mag., 2012., vol. 149, № 1. P. 133–140.

91. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couёslan C., Xu C., Kynický J., Mumin A.H., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos : An International Journal of Mineralogy, Petrology and Geochemistry, 2017, vol. 274-275. P. 188–213. [Electronic resource].

92. Charlier В., Namurn O., Bolle O., Latypov R., Duchesne J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks // Earth-Science Reviews, 2015, vol. 141. P. 56–81.

93. Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth-Science Reviews, 2015, vol. 149. P. 181–202.

94. Corcoran D.V., Dore A. G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins // Earth-Science Reviews, 2005, vol. 72, № 3–4. P. 129–168.

95. Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites // Contrib. Mineral. Petrology, 2003, vol. 145. P. 568–577.

96. Dutta A., Fermani S., Tekalur S.A., Vanderberg A., Falini G. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions // J. Cryst. Growth., 2011, vol. 336, № 1. P. 50–55.

97. Economou-Eliopoulos M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance // J. Geochem. Explor., 2003, vol. 80, № 1. P. 41–54.

98. Elrick M., Reardon D., Labor W., Martin J., Desrochers A., Pope M. Orbital-scale climate change and glacioeustasy during the earlyate Ordovician (pre-Hirnantian) determined from σ18O values in marine apatite // Geology, 2013, vol. 41, № 7. P. 775–778.

99. Emerson N.R., Simo J.A. (Toni), Byers C.W., Fournelle J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation // Palaeogeogr., Palaeoclim., Palaeoecol., 2004, vol. 210. P. 215–233.

100. Enkelmann E., Ehlers T.A., Buck G., Schatz A.-K. Advantages and challenges of automated apatite fission track counting // Chem. Geol., 2012, vol. 322-323. P. 278–289.

101. Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F. Hydroxyapatite crystal formation in the presence o polysaccharide // Cryst. Growth and Des., 2016, vol. 16, № 3. P. 1247–1255.

102. Finger F., Krenn E., Schulz B., Harlov D., Schiller D. "Satellite monazites" in polymetamorphic basement rocks of the Alps: Their origin and petrological significance // Amer. Mineral., 2016, vol. 101, № 5-6. P. 1094–1103.

103. Galliski M.Á., Černý P., Márquez-Zavala M.F., Chapman R. An association of secondary Al—Li—Be—Ca—Sr phosphates in the San Elas pegmatite, San Luis, Argentina // Can. Miner., 2012, vol. 50, № 4. P. 9339–9342.

104. Garcia A.K. Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability // Precambrian. Res., 2020, vol. 349. 105389.

105. Georgieva S., Velinova N. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria // Докл. Бълг. АН, 2014, vol. 67, № 12. P. 1669–1678.

106. Héran M.-A., Lécuyer C., Legendre S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate // Palaeogeogr., Palaeoclim., Palaeoecol., 2010, vol. 285, № 3-4. P. 331–342.

107. Horie K., Hidaka H., Gauthier-Lafaye F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral // Phys. Chem. Earth, 2008, vol. 33. P. 962–968.

108. Joachimski M.M., von Bitter P.H., Buggisch W. Constraints on Pennsylvanian glacioeustatiс sea-level changes using oxygen isotopes of conodont apatite // Geology, 2006, vol. 34, № 4. Р. 277–280.

109. Kocsis L., Dulai A., Bitner M.A., Vennemann T. Cooper Matthew Geochemical compositions of Neogene phosphatic brachiopods: Implications for ancient environmental and marine conditions // Palaeogeogr., Palaeoclim., Palaeoecol., 2012, vol. 326-328. P. 66–77.

110. Krneta S., Ciobanu C.L., Cook N.J., Ehrig K., Kontonikas-Charos A. A petrogenetic tool // Lithos: An International Journal of Mineralogy, Petrology and Geochemistry, 2016, vol. 262. P. 470–485. [Electronic resource].

111. Lieberovich R.F., Mitchell R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa // Mineral. Mag., 2006, vol. 70, № 5. P. 463–484.

112. Liu Wen-hao, Zhang J., Li Wan-ting, Sun T., Jiang Man-rong, Wang J., Wu Jian-yang, Chen Cao-jun // Diqiu kexue = Earth Sci. : Zhongguo dizhi daxue xuebao Zhongguo dizhi daxue xuebao, 2012, vol. 37, № 5. P. 966–980.

113. Llorens T., Moro M.C. Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfras Sn-W District, Salamanca, Spain // Mineral. Mag., 2012, vol. 76, № 1. P. 1–24.

114. Lu J., Chen W., Ying Y., Jiang S., Zhao K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis // Lithos, 2020, vol. 398. 106276.

115. Matton O., Cloutier R., Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec) // Palaeogeogr., Palaeoclim.., Palaeoecol., 2012, vol. 361-362. P. 73–83.

116. Onac B.P., Effenberger H.S., Breban R.C. High-temperature and “exotic” minerals from the Cioclovina Сave, Romania: A review // Stud. Univer. Babes-Bolyai. Geol., 2007, vol. 52, № 2. P. 3–10.

117. Otero O., Lécuyer C., Fourel F., Martineau F., Mackaye H.T., Vignaud P., Brunet M.l. Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa // Geology, 2011, vol. 39, № 5. P. 435–438.

118. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta, 2019, vol. 246. P. 515–540. [Electronic resource].

119. Parat F., Holtz F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions // Contrib. Mineral. Petrology, 2004, vol. 147. P. 201–212.

120. Pieczka A. Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland // Can. Miner., 2007, vol. 45, N 4. P. 901–914.

121. Piper D.Z. Rare earth elements in the sedimentary cycle: a summary // Chem. Geol. 1974, vol. 14, № 4. P. 285–304.

122. Roda-R. E. Galliski M.A., Roquet M.B., Hatert F., de Parseval P. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: paragenesis, composition and significance // Can. Miner., 2012, vol. 50, № 4. P. 913–931.

123. Rossi M., Ghiara M.R., Chita G., Capitelli F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex // Amer. Mineral., 2011, vol. 96, № 11-12. P. 1828–1837.

124. Schilling K., Brown S.T., Lammers L.N. Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH // Geochim. Cosmochim. Acta, 2018, vol. 241. P. 255-271. [Electronic resource].

125. Sethmann I., Grohe B., Kleebe H.-J. Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation // Mineral. Mag., 2014, vol. 78, № 1. P. 91–100.

126. Soltys A., Giuliani A., Phillips D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories incoherent kimberlites caused by difering emplacement mechanisms // Contrib. Mineral. Petrology, 2020, vol. 175.

127. Song H., Wignal P.B., Tong J., Bond D.P.G., Song H., Lai X., Zhang K., Wang H., Chen Y. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery // Earth Planet. Sci. Letter, 2012, vol. 353-354. P. 12–21.

128. Soudry D., Glenn C.R., Nathan Y., Segal I., VonderHaar D. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation // Earth-Science Reviews, 2006, vol. 78, N 1–2. P. 27–57.

129. Streule M.J., Carter A., Searle M.P., Cottle J.M. Constraints on brittle field exhumation of the Everest-Makalu section of the Greater Himalayan Sequence: implications for models of crustal flow // Tectonics, 2012, vol. 31, № 3. TC3010.

130. O'Sullivan G., Chew D., Kenny G., Henrichs I., Mulligan D. The trace element composition of apatite and its application to detrital provenance studies // Earth-Science Reviews, 2020, vol. 201. 103044.

131. Tang Y.T., Han C.M., Bao Z.K., Huang Y.Y., Hea W., Hua W. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray flourescence microprobe // Spectrochim. Acta, 2005. Part B 60. P. 439–446.

132. Torab F.M., Lehmann B. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology // Mineral. Mag., 2007, vol. 71, № 3. С. 347–363.

133. Tseng Y.-H., Mou Ch.-Y., Chan J.C.C. Solid-state NMR study of the transformation of octocalciumphosphate to hydroxyapatite: A mechanistic model for Central Dark Line Formation // J. Amer. Chem. Soc., 2006, vol. 128. P. 6909–6918.

134. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Zakharov V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia // Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2015, vol. 665. P. 157–163.

135. Ying Y.C., Chen W., Simonetti A., Jiang S.Y., Zhao K.D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China) // Geochim. Cosmochim. Acta, 2020, vol. 280, P. 340–359.

136. Yu Jinjie, Zhang Qi, Mao Jingwen, Yan Shenghao Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China // Acta Geol. Sinica, 2007, vol. 81, № 4. P. 637–648. [Electronic resource].

137. Yu Jin-Jie, Chen Bao-Yun, Che Lin-Rui, Wang Tie-Zhu, Liu Shuai-Jie Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: constraints from apatite chemistry // Geol. J., 2020, vol. 55, № 2. P. 1450–1467.

138. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng Cheng-Biao A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // J. Geodynamics, 2020, vol. 136. 101723.

139. Zhang R.W., Xue C.D., Xue L.P., Liu X. // Yanshi xuebao = Acta Petrol. Sin., 2019, vol. 35, № 5. P. 1407–1422.

Войти или Создать
* Забыли пароль?