ISOTOPIC RATIOS IN APATITES
Аннотация и ключевые слова
Аннотация (русский):
An extensive review describes the unique properties of apatite, which, due to the peculiarities of its structure, allows for diverse isomorphic substitutions both in its cationic part (Mn, Sr, Ba, REE, U, etc.) and in the anionic part (CO 2, SO3, SiO 2, OH, F, Cl, etc.). Since these substitutions occur under well-defined conditions in both endogenous thermal and exogenous low-temperature processes, the composition of apatite turns out to be an indicator of these processes. At the same time, the conditions of formation of most igneous and metamorphic rocks can be judged by the composition of accessory apatite, and the genesis of phosphorus ores, both endogenous (Khibiny, Kiruna type, etc.) and exogenous (phosphorites), is judged by the composition of ore-forming apatite. The review is based on the recent "Irish" review 2020, covering 147 literary sources and compiled by 4 co-authors from Dublin and one from Stockholm [130]. Since the compilers of the "Irish" review practically did not use literature in Russian, it became necessary to seriously supplement it with the data given in the domestic literature, as well with a number of foreign works that are not covered by the "Irish" review. The resulting text should make it much easier for the geologist reader to use apatite in practice as a remarkable mineral-an indicator of various geological processes

Ключевые слова:
apatite, carbonate-apatite (francolite), halogens, sulfate, trace elements, REE, manganese, strontium, neodymium, uranium
Текст

The components of apatite with the general simplified formula Ca5[PO4]3 (OH, F, Cl) may have isotopic variations carrying important genetic information. In particular, isotopic ratios were studied: – rock-forming Ca; – rock-forming O; – a small element Sr, isomorphically substituting Ca; – rare lanthanide Nd, isomorphically substituting Ca. But if only a few papers have been devoted to the isotopy of Ca in apatites, then dozens of studies have already been devoted to the isotopy of phosphate O and Sr, and recently work on the isotopy of Nd has also increased dramatically. 3.1. Calcium It is known that with the "classical" mechanism of growth from a solution of Ca-containing crystals, the solid phase is enriched with a light isotope of calcium – 43Ca. If crystallization occurs according to a "non-classical mechanism", in particular, when whole clusters are captured on the active growth surface, then it can be expected that no significant fractionation of Ca isotopes will occur. This idea was tested in experiments carried out in 2018 by Catherine Schilling and colleagues [124], using the most modern, extremely fine methods - with mineralogical characterization and nanoscale visualization of growth features to determine the high-speed fractionation of Ca isotopes during the seed growth of hydroxyapatite (HAP) with the participation of a precursor – octacalcium phosphate (OCP). It turned out, in particular, that the growth rates are greatly weakened with an increase in pH, because the binding of OH ions of Ca2+ prevents the precipitation of phosphate. Nanoscale images of the surface topography showed direct deposition of primary particles on the surface of micron HAP crystals after steady growth, visually proving the dominance of the non-classical hydroxyapate growth pathway. At the same time, as expected, the difference in the isotopic composition of Ca between the initial solution and the precipitated phases of phosphates turned out to be insignificant – within the limits of the analysis error. 3.2. Strontium As is known, the method of strontium isotope chemostratigraphy is based on the fact that the 87Sr/86Sr ratio is currently homogeneous in the World Ocean, which has been the case throughout the entire existence of the oceans. The fact is that the residence time of Sr in the ocean exceeds the time of complete mixing of all the sea waters of the Earth, which leads to the homogenization of the isotopic composition of strontium in seawater In the geological history of the Earth, the isotopic composition of strontium in seawater has changed. The 87Sr/86Sr ratio in seawater is controlled by mixing the following sources: 1) continental runoff resulting from the weathering of the earth's crust by surface and river waters; 2) hydrothermal flow arising from the interaction of seawater with volcanic rocks in the area of mid-Oceanic ridges (MOR); 3) the flow resulting from the dissolution and recrystallization of marine carbonate sediments. Strontium chemostratigraphy of pelagic sediments is based on the determination the age of sediment by the ratio of strontium isotopes (87Sr/86Sr) in biogenic foraminifera carbonate or bone detritus apatite. In the pelagial of the ocean, fossilized remains of fish (ichthyolites) preserve the isotopic composition of strontium of ocean waters at the time of fish life, therefore, the isotopic composition of strontium of ichthyolites can be used to determine their age. As an example of the successful application of the strontium method, we can name the precision work of Russian geochemists dedicated to determining the age of only two ichthyolites, 34.7×30.3×6.2 mm and 40.2×26.5×9.5 mm in size, sealed in the Cape Basin in the southern part of the Atlantic Ocean [59]. The age of the tooth enamel of sample 2188/5 was 6.6±0.3 million years, and sample 2188/4 was 5.2±0.2 million years. Thus, the use of a complex (mechanical and chemical) technique for cleaning tooth enamel from the nuclear part of the Fe-Mn nodules of the Cape Basin from Fe and Mn oxyhydroxides made it possible to reliably determine the isotopic composition of Sr in biogenic apatite. Some materials on the isotopy of phosphate strontium were contained in our 2011 book (all references made there are replaced here with angle brackets <...>. In particular, it was reported [80, pp. 99, 439] that a molar of a terrestrial mammal (Gomphotera) was found in the pebbles of Miocene sandstone south of Stockholm. Isotopic analysis of the elements of the phosphate substance of enamel (C, O, Sr, Nd) was compared with that of the host rocks and with analyses of other bone residues of the same age in Sweden and the Center. Europe. The value 87Sr/86Sr (0.71592) is typical for ancient rocks and is significantly higher than in the teeth of phosphate residues from the Center. Europe (from 0.70650 to 0.71063, according to 17 analyses). The value 87Sr/86Sr (0.71592) is typical for ancient rocks and is significantly higher than in the teeth of phosphate residues from the Center. Europe (from 0.70650 to 0.71063, according to 17 analyses). The general conclusion is as follows: in the Miocene in Scandinavia there were terrigenous deposits with mammalian fauna that were eroded during the Pleistocene glaciation). In particular, it was reported [SK-2011, pp. 99, 439] that a molar of a terrestrial mammal (Gomphother) was found in the pebbles of Miocene sandstone south of Stockholm. Isotopic analysis of the elements of the phosphate substance of enamel (C, O, Sr, Nd) was compared with that of the host rocks and with analyses of other bone residues of the same age in Sweden and the Center. Europe. The value 87Sr/86Sr (0.71592) is typical for ancient rocks and is significantly higher than in the teeth of phosphate residues from the Center. Europe (from 0.70650 to 0.71063, according to 17 analyses). Since modern autigenic francolites show exactly the same 87Sr/86Sr ratio as in seawater (0.70916), it is logical to assume that ancient phosphorites also inherit the isotopic ratio of the age-appropriate seawater. At the same time, it turns out that during metasomatic phosphatization of limestones, primary carbonate strontium is completely exchanged for strontium of seawater. This means that the 87Sr/86Sr value in phosphorites, compared with the "standard geochronological curve" constructed from carbonate rocks, can date phosphorites. So, phosphates desert Sechura in Peru showed the age 11.8 ± 0.5 million years, offshore Namibia – 1.15 ± 0.25 million years, at an underwater ridge Chatham – 4.90 ± 0.35 million years, which is consistent with other (independent) age <...>. There are examples of using isotope of strontium and for high-temperature magmatic and hydrothermal apatite. Thus, Murmansk geologists [40] determined the isotopic composition of strontium hydrothermal apatites and francolites formed in the post-carbonatite stage of development of the Kovdorsky foscorite-carbonatite complex. The values of 87Sr/86Sr obtained by them were 0.7036-0.7059, whereas the known average value for carbonatites is 0.7043. Values below the "middle carbonatite" (characteristic of the calcite stage of the Kovdorsky complex) are treated as mantle, and those above (characteristic of the later dolomite stage of the Kovdorsky complex) are treated as typical of the crust. 3.3. Oxygen As you know, the Cenozoic was a period of gradual transition from greenhouse conditions to glacier conditions, and this process was not smooth, but was interrupted by sharp cold spells. Two such breaks occurred at the boundary of the Eocene and Oligocene and in the Middle Miocene. Both were found to be associated with the growth of the East Antarctic ice sheet. Cenozoic climate changes were intensively studied mainly from the archives of deep-sea sediments using the value δ18O. Most of these determinations were made using the δ18O data in benthic foraminifera carbonate. However, these values of δ18O reflect only the temperature of the ocean bottom waters, as well as the salinity and volume of ice. The oscillation amplitudes do not always correctly reflect the change in air temperature on the surface of the continent. Therefore, the method of climatic reconstructions by the value δ18O of bones and teeth of herbivorous mammals was proposed and successfully used, because it reflects the composition of drinking water of these animals, which, in turn, was closely related to the air temperature on the continent. The obvious disadvantage of this method is the comparative rarity of finding the remains of large mammals, moreover, concentrated in a relatively short period of time. In this sense, the technique of paleoclimatic reconstructions according to δ18O of rodent teeth has obvious advantages. An example is the work on Southern. Germany with an abundance of such localities, which made it possible to give a paleoclimatic reconstruction covering the period from the Late Eocene to the Miocene [106]. The authors managed to show that the air temperature in the South. Germany in the period from the late Eocene to the beginning of the Late Miocene ranged from 12 °C to 25 °C, and at the Eocene/Oligocene boundary, the average decrease in air temperature was either ~2 °C (taking into account classical biostratigraphy) or ~6 °C (taking into account the revised biostratigraphy). Changes in the humidity of the climate on the territory of Chad (Central Africa) were tried to clarify with the help of oxygen isotopy in the apatite of tooth enamel of freshwater fish, during the Upper Miocene – in Messinian, covering the period between 7,246 ± 0.005 million and 5,332 ± 0.005 million years ago [117]. It turned out that the most open habitat of fish, with a lower content of δ18O in Hydroconus teeth, existed in four Chadian vertebrate localities – Toros-Menalla, Kossom-Bugudi, Kolle and Koro-Toro, dated respectively 7.04±0.18 Ma, 5.26±0.23 Ma, 3.96±0.48 Ma and 3.58±0.27 Ma. The value of δ18O increases by ∼2 in two locations corresponding to the age of the Messinian; there is also a slight increase by ∼0.6 in three Pliocene locations. These results reflect a change in the precipitation regime in the Center. Africa during the Late Neogene. Oxygen isotopy in the bioapatites of ichthyolites and conodonts in the lower carboniferous layers on the Northern Ireland made it possible to confirm the data on permocarbon glaciation [83]. Compared with normal seawater, the values of δ18O phosphate oxygen were shifted by +2.4%. This was the result of an increase in the volume of ice during a cooling of 4.5°C on the surface of the equatorial sea between the beginning of the Asbian and the middle of the Brigantine time of the late Vise. It is shown that the δ18O apatite of conodonts and ichthyolites reflect the stabilization of the climate of the "ice house" during the Brant-Serpukhov time. The Visean cooling revealed on the basis of δ18O is consistent with global glacioeustatic data. Positive excursions of isotopic characteristics were recorded in the phosphate of conodonts of Mississippian age: 18O to +2 and up to +1.5 - for late Tourne and Serpukhov, and in carbon 13Ccarb, respectively, to +6.5 and up to +5 [89]. This ratio may mean that the Serpukhov cold snap occurred before the accumulation of carbonaceous precipitation (i.e., the latter was not the cause of the cold snap?). In general, these isotopic data indicate that the first big cold snap began already in the tour (even with possible glaciation?), the first known glaciation manifested itself in the Vise, and the second – in Serpukhov Oxygen data are interpreted as direct indications of cooling and an increase in the volume of ice. Carbon data (both Sorg and Scarb) can be associated with the burial of Sorg in black shales, which lowers the CO2 content in the atmosphere and, as a result, causes cooling. As is known, in Pennsylvania–early Permian there was a high-latitude glaciation in Antarctica and the adjacent continents of Gondwana. The beginning of glaciation dates back to the Serpukhov-Bashkir century, and the first maximum glaciation reached in the Moscow century. In the Gzhel century, the area of glaciation decreased, but increased again in the early Permian, reaching a second maximum in the Assel-Sakmar time. The study of the Pennsylvania sediments showed frequent cyclical expansion and contraction of the Gondwanan cover glaciers, which generated corresponding fluctuations in sea level. In 2006, German authors [108] studied the oxygen isotopy in the bioapatite of Midcontinent conodonts to assess glacio-eustatic sea level fluctuations in Pennsylvania (Middle-Late Carboniferous). It is known that in the Pennsylvanian time, the ocean covered most of the Midcontinent. The northern and central part of the Midcontinent basin was relatively shallower, and the basin deepened to the south. This pool was open to the Pantalassa Ocean to the Z and NW. The Pennsylvania deposits of the Midcontinent are represented by a cyclic alternation of thin layers of transgressive limestones, offshore gray to black phosphate shales and thicker layers of regressive limestones. These cycles are underlain and overlapped by coastal or terrestrial shales with paleosols and coals. Glacioeustatic fluctuations in sea level are considered as the main cause that generated cycles. 18Ophosph were obtained in comparison with the Vienna Standard of Mean value for seawater (VSMOW): The following average values of 18Ophosph were obtained: black shales = 20.1 ± 0.5%, gray shales = 20.5 ± 0.5%, regressive limestones = 21.0 ± 0.3%, transgressive limestones = 21.1 ± 0.6‰, The maximum difference of values 18Ophosph for individual data between shales and limestones is 1.7%. This difference compares well with the difference obtained for Pleistocene equatorial intraglacial and interglacial shallow-water foraminifera, which confirms the reliability of the figures obtained from conodont phosphate. However, since the Pennsylvanian glacial maxima are represented by terrestrial facies that are not documented by conodonts, glacio-eustatic sea level fluctuations in Pennsylvania were probably greater than 120 m, reached in the Pleistocene. Some materials on the isotopy of phosphate oxygen were given in our 2011 book (all references made there are replaced here with angle brackets <...>. In particular, there was shown, that with 18Ophosph of fossil bone remains it is possible to judge the climate in which mammals lived 18Ophosph of hydroxylapatite of their bones and teeth, in particular tooth enamel (in which fluorapatite is also present) is very informative. And since the value of 18OH2O depends on the climate, it is indicated there [80, p. 165] that important climatic information can be obtained by the value of 18Ophosph of biogenic phosphates, since the oxygen-isotopic composition of the water that terrestrial mammals drink (and herbivores, in addition, receive as part of the green mass they eat) directly affects the value of <...> 18Ophosph, significantly less than the first [80, p. 166]. The reason for these differences is the determining influence of the mountain barrier on the humidity of the climate. Despite seasonal complications, the Sierra Nevada ridge with an average height of 2800 m clearly divides the humid climate area to the west, at a distance of about 300-350 km to the Pacific coast – from the arid climate area to the east of the ridge. This is because the winds that carry masses of moist air from the Pacific Ocean to the east, reaching the barrier of the Sierra Nevada, lose up to 90% of moisture in the form of precipitation. Direct measurements of the isotopic composition of precipitation showed that to the west of the Sierra Nevada, the values of OH2O (SMOW) are – (3–10), on the ridge itself they drop sharply by 6–7 % and further east at a distance of 400–1100 km from the coast they remain at the level of –(12–16) % <...> OH2O (SMOW)) in precipitation (in the form of rain or snow. This phenomenon has received the beautiful name of the isotopic "rain shadow" The higher the barrier, the stronger its isotopic "rain shadow". On average, for our planet, the gradient of decreasing magnitude is is –0.28 % for every 100 m of increase in the height of the mountain barrier. Analysis of the isotopic composition of phosphate oxygen from the famous location of Neogene mammals in southern Germany [80, p. 221] allowed us to make amazing reconstructions: to determine what water (lake or rain) lake turtles, small and large terrestrial mammals drank – Table 2 Table 2 Isotopic composition of phosphate oxygen of paleontological remains of Lake Steinheim and its probable interpretation Compiled according to T. Tuetken et al., 2006. <...> Objects Number of analyses 18Ophosph = 18OН2О, ‰ SMOW Interpretation The bones of the shell of freshwater turtles 6 +2.0 ± 0.4 Such was the isotopic composition of oxygen in the lake water Tooth enamel of small mammals 7 +2.7 ± 2.3 Such water was drunk by small mammals; therefore, they drank lake water Tooth enamel of large mammals 31 –5.9 ± 1.7 Such water was drunk by large mammals; therefore, they did not drink lake water, but rain water Measurements of the value of In the carbonate substance of phosphate-bearing carbonaceous diatoms on the shelf of Namibia [80, p. 329], the value of 18Ophosph (Holocene-Pleistocene nodules, bones of fish and marine mammals) give temperatures in the range from 10.9 to 14.8 oC, which is also quite plausible for upwelling zones with their cool waters 18Ocars (SMOW) is 30.4 %, which fully corresponds to the temperature of surface waters equal to 18.8 <...>. A comparison of the values of 18Ophosph in two types of Upper Cretaceous and Paleocene/Eocene phosphate fossils of Tunisia – in shark teeth and in coprolites – showed that, on average, the phosphate oxygen of the former is about 0.4 % lighter than the latter: 19.2–20.5 % vs. 20.4–21.2 % [80, pp. 377-378]. This small but significant shift reflects the temperature difference of the bathymetric facies in which the phosphate was located: coprolites were formed mainly in the higher warm layers of the water column, whereas shark teeth were buried mainly in the pelagial, where the phosphate reached isotopic equilibrium with colder waters <...>. Autigenic phosphate mineralization in carbonaceous silts of Peruvian upwelling shows values of 18Ophosph in the range of 20.2-24.8 % [80, p. 453]. At the same time, phosphates formed from an "impersonal" phosphorus resource near the water boundary/sediment, have values of 18Ophosph equilibrium with seawater, whereas phosphates in deeper sediment horizons, genetically related to the Porg that entered the pore waters from the organic matte are more or less disequilibrium in terms of values of <...>. However, in ocean sediments to the north of Africa, disequilibrium is established, on the contrary, in the surface layers. Although there is no unambiguous interpretation of the discovered phenomenon, among the possible factors is the sedimentation rate, when bacterial phosphate consumption does not keep pace with its release from the buried organic matter <...>. If this version is true, then the isotopic composition of phosphate oxygen could serve as an indirect characteristic of the subtle features of diagenesis. In the siliceous-phosphate black shales of the Chatkalo-Naryn structural zone of the North the Tien Shan, the oxygen isotopic composition of carbon-siliceous-phosphate nodules was found to be facilitated, in which the average value of 18O is +15.6 %, whereas in the host silicites this value is significantly higher than +(26-27) %. It is believed that the oxygen relief of autigenic phosphate and flint is directly related to the intensity of diagenesis, since the value 18O positively correlates with the phosphate content in the studied nodules/ Finally, the data [80, p. 334] on the development of the so-called phosphate paleothermometer are very interesting. When phosphate is deposited in equilibrium with seawater, isotopic exchange is possible according to the scheme: H218O + 1/4 [P16O4]3- (water)  H216O + 1/4 [P18O4]2– (phosphate). After a series of not entirely successful experiments, A. Longinelli was still able to establish a linear relationship between temperature and the value of the isotopic densification 18O: ТоС = –80.0 – 4.8 (18Ophosph – A). Thus, if syngenetic carbonates and phosphates are present in the rock (or, better, if phosphate forms an impurity in the carbonate), then the use of two independent thermometers seems to allow an absolute estimate of the paleotemperature. At the same time, the isotopic shift in the formation of phosphate is greater than in the formation of carbonate and averages 12%. This situation, apparently, only favors an increase in the accuracy of paleothermometry. Unfortunately, as R. Bowen points out <...>, isotopic measurement of phosphate oxygen is a very difficult task, since natural phosphates contain impurities of non-phosphate oxygen in the form of OH and CO3. Nevertheless, R. Bowen (who was only aware of the preliminary results of A. Longinelli's work) optimistically assessed the possibilities of the phosphate thermometer <...> 3.4. Carbon Using the isotopy of phosphate carbon of conodonts, it was possible to confirm the global nature of the Late Ordovician cooling [98]. The samples of marine phosphates represented the section interval of the late Ordovician corresponding to ~10 million years before the Hirnant glaciation. The authors found out whether the climatic fluctuations of the orbital scale controlled the growth and melting of continental glaciers, which led to glacial-eustatic changes in sea level and the development of widespread marine sedimentary cycles. The values of δ18O of conodont apatite from 14 cycles of the Late Ordovician (Catian) vary from ~17 to 21. Isotopic indices are minimal in deep-sea facies and maximal in shallow-water facies, which confirms the hypothesis that glacioeustasy was the dominant factor in controlling the depth of the sea. The measured intracycle changes in δ18O (0.7–2.5%) were controlled by changes in ice volume (sea level changes <60 m), sea surface temperature (<5 °C) and potentially a local increase in seawater evaporation during drier and/or windier glacial stages. These isotopic interpretations confirm recent interpretations of the dynamic and long transition of the Ordovician greenhouse (greenhouse) to the glacier (ice house). Permafrost conditions in the northeastern regions of Siberia allowed the remains of large mammals that lived in these territories in earlier Cenozoic epochs to be preserved here. Horse mummies are quite rare among them, but bone remains are ubiquitous. In 2013, a predominantly Russian team of authors [17] performed complex isotopic studies of five mummies and several bones of Late Pleistocene horses found in the north of Yakutia. The obtained results suggest that the carbon isotopic composition of carbonate hydroxyapatite of Yakut horse bones can be used as a paleoclimatic indicator. It was established in which climatic conditions the horses lived (warm or cold, wet or dry), the remains of which were investigated. According to preliminary data, the habitat conditions of Late Pleistocene horses of Yakutia and Zap. Europe was close. The authors cite the graph "Evolution of the carbon isotope composition of hydroxyl-apatite carbonate of the bones of large herbivores of Northern Yakutia in the late Pleistocene", where the values of δ13Ccarb in the range from –11 to –16 % are plotted on the abscissa, and three "marine climatic stages" are plotted on the ordinate, up to 12 (?) thousand years ago (1), up to 25 thousand years (2) and up to 50 thousand years (3). Note that no trend is visible on the graph. The authors themselves interpret the graph as follows [17, p. 98]: "A possible conclusion is the instability of the Late Pleistocene climate of Northern Yakutia, which was expressed in sharp short-term (500–2000 years) irregular episodes of relatively mild climate, having the rank of interstadials in intensity". 3.5. Neodymium Recently, the rare-earth element neodymium has become extremely popular, according to the ratio of isotopes of which the value of "epsilon neodymium" – Nd is calculated. The neodymium isotope 143Nd is formed as a result of alpha decay of 147Sm, with parameters = 6.54x10-12, T1/2 = 10.06x1011 years. The isotopic composition of neodymium is usually depicted Nd – the 143Nd/144Nd (R) isotope ratio normalized by chondrite: Nd = (RS/ RCHUR – 1), in ten thousandths. Here RS is the 143Nd/144Nd in the sample, and RCHUR is the value of 143Nd/144Nd in CHUR – "chondritic uniform reservoir”, which is assumed to be 0.512638. Since the continental crust has a smaller Sm/Nd ratio than the mantle, the mantle (and its young magmatic derivatives) has a 143Nd/144Nd ratio higher than the Earth as a whole – and, accordingly, negative values of Nd On the contrary, ancient crustal rocks have 143Nd/144Nd lower than in the Earth as a whole, and positive values of Nd – the more negative the older the rocks As G. Faure writes in his remarkable book [66, p. 223]: "The model assumes that the terrestrial Nd evolved in a homogeneous reservoir, the Sm/Nd ratio in which is equal to this ratio in chondrite meteorites. The current value of 143Nd/144Nd in this reservoir is 0.512638 relative to 146Nd/144Nd =0.7219. The current ratio (147Sm/144Nd) in CHUR is 0.1967. This information allows us to calculate the ratio 146Nd/144Nd in CHUR at any other time t in the past <...>". It should be noted that at present, the literature on the use of the value "epsilon neodymium" for the diagnosis of the petrofund of marine sediments has become so extensive that it can be considered practically unlimited. Without fear of seeming immodest, it can be noted that one of the good reviews can be found in our book-2011 [80, p. 100–102] (we omit references to the literature used here and replace them with angle brackets). In this case, the value Nd is often used in conjunction with the value ISr = 87Sr/86Sr. In the stratigraphic sequence, examples of such use relate to Precambrian sediments <...>; Paleozoic, in particular, Cambro-Ordovician and Upper Ordovician carbonates and phosphates <...>; Mesozoic, including for the Upper Cretaceous anoxic event OAE-2 <...>; Cenozoic, including for young sediments of the Labrador Sea <...>, the Indian Ocean <...>, the flysch strata of Kamchatka and the South of the Koryak Ridge <...>, for alluvial sediments of the Indo-Gangetic plain <...>, young sediments of the Central Basin of the Indian Ocean <...>. In the aspect of this review (apatite as a geological indicator), we note that there are data in this book [80] directly related to our topic – on the use of Nd in the apatite of conodonts. In particular, it is noted that the comparison of two remote sections of Upper Ordovician carbonates – in Saskatchewan and Iowa – showed synchronous fluctuations in the value of Nd: the alternation of two characteristic maxima and minima in seawater <...>. These fluctuations, thus acquiring important stratigraphic significance, are explained by the changing contributions of two provenance with significantly different isotopic characteristics: (a) low-lying Precambrian basement, in the rocks of which value of Nd ranges from –22 to –15, and (b) young the high-altitude Taconian orogen with Nd in the range from –6 to –9. The expansion of the transgression of the epicontinental Ordovician sea (and, accordingly, in carbonates) increased; regression led to the opposite result The Upper Cretaceous and Cenozoic strata of the Kamchatka flysch and the south of the Koryak Ridge had at least two petrofunds. One of them was juvenile – suprasubduction volcanic complexes, to a lesser extent basalts of MOR or back-arc basins. This petrofund is characterized by low 87Sr/86Sr ratios and high values of Nd(T) <...> Another source was apparently represented by complexes of ancient continental crust. This petrofund is characterized by the accumulation of radiogenic 87Sr and negative values of Nd <...>. Good results were obtained when using the value Nd in combination with the value Hf <...>. So, isotope diagram in the coordinates Hf (in the range from –35 to +25) – Nd (in the range from –25 to +15) – good differs some genotypes of marine sediments – Fe-Mn nodules, clayey silts and sands <...>. In addition to its value as a great indicator of petrofond of rocks and sediments, the value of Nd is an excellent tracer of ocean circulation. This property discovered in the study of the modern ocean, has been successfully used for paleogeographic reconstruction of the Iapetus ocean in the territory of the Eastern United States and to the Upper Devonian sediments of Morocco and Poland <...>. Like other REES, neodymium accumulates in phosphates. Therefore, the study of such biogenic phosphates as conodonts or ichthyolites allows us to judge the isotopic composition of seawater of the corresponding epochs, which makes it possible to make completely non-trivial paleogeographic reconstructions. For example, the study of isotopic geochemistry of conodonts and their host limestones in precisely dated (~454 million years) the interval of sections of the Upper Ordovician on the territory of the East. Laurentia (from Iowa to Pennsylvania) showed that the values of Nd and (to a lesser extent) 13Ccarb showed strong variations depending on the reconstructed paleogeography of the epicontinental "Mojave Sea", which represented the northwestern (shelf) part of the ancient Iapetus Ocean. On the territory of the Midcontinent – in the western part of the sea fed by the terrigenous material of the ancient Canadian shield, the value of Sm/Nd in conodonts is low, on average 0.19 ± 0.01; the values of Nd are strongly negative,–15 ± 2.6 (from –12 to –19); the values of 13Сcarb are also negative, on average –0.6 ± 1.3. It is obvious that the composition of seawater in this part of the sea was affected by the ancient acidic petrofund and the flow of isotope-light carbon from the river runoff. In the southeastern facies zone and in the extreme east of the sea – in the Taconian Foreland, isotopic characteristics 13Ccarb are positive, on average +2.2 ± 0.2%. This was clearly affected by the influence of the basite petrofund eroded in the young Taconian orogen at the boundary of the shelf sea with the Iapetus Ocean <...>. These results are important for the correct interpretation of isotopic data. The fact is that, as you know, the vast majority of the stratosphere is composed of shallow-sea strata – the former sediments of epicontinental seas. Consequently, the detected isotopic variations (primarily Nd) sensitively reflecting the individual characteristics of inhomogenized water masses of ancient seas (= facies zones!), should not be uncritically transferred to the global level of the World Ocean. And indeed, in this case, the values of Nd of the water of the Iapetus open ocean ranged from –5 to –0.6 (!), i.e. they were strikingly different from the values for the facies zone of the Midcontinent <...>. Another example of the effective application of the value Nd is the analysis of conodonts from the Upper Devonian sections in Morocco and Poland, representing both the shelf of Gondwana and Euramerica, and deeper sediments of the Variscian Ocean that separated these continents. It turned out that the shelf sediments were characterized by low values of Nd Nd from –7 to –12, while the ocean sediments showed less negative values of Nd, from –7 to –1. This means that the waters of the shelf could not freely mix with the surface waters of the open ocean, which is possible only under conditions of predominance of low sea level. And only in the sediments of the semihovae conodont zone (zone No. 11), the transgression turned out to be powerful enough for the surface waters of the ocean to penetrate the shelf: in this interval of all sections, the values of Nd fall into the "ocean" interval from –6 to –2. At the same time, it turns out that according to the values of Nd the ancient Variscian Ocean is more similar to the modern Pacific Ocean than to the Atlantic and Indies that emerged later in its place In the ichthyolites from the Upper Cretaceous black shales on the Demerara underwater ridge (opposite the coast of Suriname, the extreme west of the equatorial Atlantic), two opposite anomalies of magnitude Nd (T) are recorded: <...> 1) very low background values for ocean sediments from –14 to –16.5; 2) an unusually sharp and powerful positive excursion Nd, up to 8! It corresponds to the very beginning of the Cenomanian-Turonian OAE-2, covers a column interval of about 1.6 m (which corresponds to only 120–160 thousand years) and completely coincides with the positive excursion of 13Corg (shift by +8 %). If the first can be explained (with reservations) by the local influence of a terrigenous source – a close Guianan shield composed of ancient metamorphites and granites with a magnitude of Nd (T) up to –30, then the second is more difficult to explain. The most plausible idea is the powerful influence of mantle basalt volcanism - the "trigger" of OAE-2. Thus, the basalts of the Great Caribbean Volcanic Province have values of Nd (T) equal to +10. It has already been noted above that the values of Nd should be inversely correlated with the values of ISr = 87Sr/86Sr. Indeed, in the works of recent years, both indicators are used together. These are, in particular, examples of a very successful decoding of the petrofund of alluvial sediments of the Indo-Gangetic Plain <...>, the Tibetan Plateau <...> and young pelagic sediments of the Central Basin of the Indian Ocean <...>. Among the more recent works (not included in the review of the book-2011), we will name the study of apatite shells of neogene phosphate brachiopods (Lingulidae and Discinidae) from the South. parts of the North Sea, Center. Parathetis and the Atlantic coast of Europe – as a paofacial indicator [109]. Here the value of εNd is used in conjunction with the value of ε18O of phosphate oxygen. The shells of the genus Glottidia of the North Sea showed a low value of εNd and a high value of ε18OPO4 during the Mio-Pliocene, which indicates the cold temperature of the brachypod habitat, where the local seawater corresponded to the water of the Atlantic Ocean. On the contrary, brachypods of the genera Lingulidae and Discinidae of Parathetis in the Middle Miocene inhabited warm subtropical sea waters with a possible influence of the Indian Ocean (via the Mediterranean), which is confirmed by their average value of εNd –8.3. Combined geochemical data support thermal and marine separation of Parathetis from the North Sea without direct connection or significant exchange or significant water exchange. The temperature in Parathetis was very similar to that derived from the data of the Middle Miocene brachiopods West. France, but the value of the sea water's εNd here is identical to the same age in the Atlantic Ocean. Late Miocene lingulids from the South. Portugal has a high value of ε18OPO4, similar to specimens studied from the North Sea. This reflects either the deep-sea habitat of the lingulids, or the situation after the onset of global cooling, which ended with an increase in the value of ε18OPO4 of seawater. As another example of using the value of epsilon neodymium (not specified in the book-2011), we can name an article where the calcium isotopy in apatites was considered together with the data on the εNd (T) – to clarify the conditions of global phosphogenesis at the turn of the Cretaceous and Eocene [128]. It was shown that the values of εNd (T) and δ44Ca, as well as the accumulation rates of P and Ca, experienced clear changes. In particular, the sharp increase in the εNd (T) after the Cenomanian period is explained by the increased penetration of Pacific waters enriched with radiogenic neodymium, which was caused by global sea level rise at the end of the Cretaceous period, the emergence of a link between the North and South Atlantic, global post-Santonian cooling and the gradual expansion of the Caribbean threshold, all this combined significantly enhanced the Tethys circular current (TCC). This also reflects the weakening of the continental Nd signal due to a decrease in open landmasses caused by increased flooding of continental shelves. High values of δ44Ca at that time also indicate a decrease in Ca2+ fluxes during weathering and the expansion of carbonate deposits on the shelves, which enriches seawater with isotopically heavy Ca2+. The study of bioapatite of Devonian ichthyolites in the Escuminac formation of Quebec (Canada) can serve as an example of using the value of epsilon neodymium in close connection with the 87Sr/86Sr index [115]. The values of 87Sr/86Sr in biopatite range from 0.70804 to 0.70845, which overlaps the values for sea water of the Frasnian time. Although a small part of the values fall within the "Frasnian sea water interval", most of them are shifted towards more radiogenic continental (freshwater) values. This trend seems to be due to the postmortem exchange between fossils and a fluid isotopically different from seawater. All bioapatites are enriched with REE and for values normalized by shale, they show depletion of HREE and some enrichment by MREE. The values of the εNd (T) for rocks in the range from –4.8 to –6.4 are consistent with the post-Taconic Appalachian provenance. By contrast, for bioapatites, the values of εNd (T) are more radiogenic: from –2.6 to –4.6. This difference between rocks and fossils means the presence of of a secondary, diagenetic Nd reservoir. It is assumed that part of this reservoir was seawater. The neodymium similarity between the Escuminacian fossils and the Upper Devonian conodonts of Poland indicates a close connection between the Devonian Rheic Ocean and the Escuminac Formation basin.

Список литературы

1. Avdonina I.S., S.V. Pribavkin. Magmatic anhydrite and apatite in epidote-bearing porphyries in the Middle Urals // Lithosphere, 2013, No. 4. P. 62–72. Авдонина И.С., Прибавкин С.В. Магматический ангидрит и апатит в эпидотсодержащих порфирах Среднего Урала // Литосфера, 2013, № 4. С. 62–72.

2. Arzhannikova A.V., Jolivet M., Arzhannikov S. G., Vassallo, R., Chauvet, A. The age of formation and destruction of the Mesozoic-Cenozoic surface alignment in East Sayan // GEOL. and geofiz., 2013, vol. 54, No. 7. Pp. 894–905. Аржанникова А.В., Жоливе М., Аржанников С.Г., Вассалло Р., Шове А. Возраст формирования и деструкции мезозойско-кайнозойской поверхности выравнивания в Восточном Саяне // Геол. и геофиз., 2013, т. 54, № 7. С. 894–905.

3. Barkov A.Y. Nikiforov A.A. A new criterion of search areas of platinum mineralization of the type "Kivakka reef" // Vestn. Voronezh. State University. Ser. Geology, 2015, No. 4. pp. 75–83. [electronic resource]. Барков А.Ю., Никифоров А.А. Новый критерий поиска зон платинометалльной минерализации типа «Кивакка риф» // Вестн. Воронеж. гос. ун. Сер. Геология, 2015, № 4. С. 75–83. [Электронный ресурс].

4. Baturin G.N. Phosphate Accumulation in the Ocean. – M.: Nauka, 2004. 464 pp. Батурин Г.Н. Фосфатонакопление в океане. – М.: Наука, 2004. 464 с.

5. Baturin G.N. Phosphorites at the Bottom of the Oceans. – M.: Nauka, 1978. 232 pp. Батурин Г.Н. Фосфориты на дне океанов. – М.: Наука, 1978. 232 с.

6. Baturin. G.N. Phosphorites of the Sea of Japan // Oceanology, 2012, vol. 52, No. 5. p. 721. Батурин Г.Н. Фосфориты Японского моря // Океанология, 2012, т. 52, № 5. С. 721.

7. Baturin G.N., Dubinchuk V.T. Genesis of uranium minerals and rare earths in the bone detritus of rare metal deposits // Dokl. RAS, 2011, vol. 438, No. 4. pp. 506–509. Батурин Г.Н., Дубинчук В.Т. Генезис минералов урана и редких земель в костном детрите редкометалльных месторождений // Докл. РАН, 2011, т. 438, № 4. С. 506–509.

8. Baturin, G.N., Dubinchuk V.T., Azarova L.A. Anashkina N.A., Ozhogin D.O. The apatite and associated igneous minerals in ferromanganese crusts from the Magellan Mountains // Oceanology, 2006, vol. 46, No. 6. Pp. 922–928. Батурин Г.Н., Дубинчук В.Т., Азарнова Л.А., Анашкина Н.А., Ожогин Д.О. Апатит и ассоциирующие с ним минералы в железомарганцевых корках с Магеллановых гор // Океанология, 2006, т. 46, № 6. С. 922–928.

9. Bliskovsky V.Z. Material Composition and Dressing of Phosphorite Ores. – M.: Nedra, 1983. 200 pp. Блисковский В.З. Вещественный состав и обогатимость фосфоритовых руд. – М.: Недра, 1983. 200 с.

10. Bocharnikova T.D., Kholodnov V.V., Shagalov V.E. Halogens in apatite – as a reflection of the fluid regime in petro- and ore genesis of the Magnitogorsk ore-magmatic complex (Southern Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, № 9. Pp. 28–33. Бочарникова Т.Д., Холоднов В.В., Шагалов В.Е. Галогены в апатите – как отражение флюидного режима в петро- и рудогенезе Магнитогорского рудно-магматического комплекса (Южный Урал) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, № 9. С. 28–33.

11. Gorbachev N.C., Shapovalov Yu.B., Kostyuk V.A. Experimental study of the system apatite–carbonate–H2O at P = 0.5 GPA, T= 1200 oC: efficiency of fluid transport in carbonatites // Dokl. Rus. Acad. Sci., 2017, vol. 473, No. 3. Pp. 331–335. Горбачев Н.С., Шаповалов Ю.Б., Костюк А.В. Экспериментальные исследования системы апатит–карбонат–Н2О при Р = 0.5 ГПА, Т= 1200 oC: эффективность флюидного транспорта в карбонатитах // Докл. РАН, 2017, т. 473, № 3. С. 331–335.

12. Gordienko V.V. Typomorphism of the chemical composition of garnet and apatite granitic pegmatites // Vopr. geokhim. and typomorphism of minerals, 2008, No. 6. Pp. 114–128. Гордиенко В.В. Типоморфизм химического состава граната и апатита гранитных пегматитов // Вопр. геохим. и типоморфизм минералов, 2008, №6. С. 114–128.

13. Grabezhev A.I., Voronina L.K. Sulfur in apatites from copper-porphyry systems of the Urals // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 68–70 (Tr. IGG URO RAN, vol. 159). Грабежев А.И., Воронина Л.К. Сера в апатитах из медно-порфировых систем Урала // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 68–70 (Тр. ИГГ УрО РАН, вып. 159).

14. Gusev A.I., Gusev N.I. Magnetite-apatite mineralization in the Western part of the Central Asian fold belt // Modern high technologies, 2013, no 2. Pp. 74–78. Гусев А.И., Гусев Н.И. Апатит-магнетитовое оруденение западной части Центрально-Азиатского складчатого пояса // Современные наукоемкие технологии, 2013, №2. С. 74–78.

15. Gusev A. I., Gusev N.I. Geochemistry of ores and minerals pegmatite manifestations of Danilovskoe (Gorny Altai) // Intern. Journ. of applied and fundamental research, 2016, №10. Pp. 102–106. Гусев А.И., Гусев Н.И. Геохимия руд и минералов пегматитового проявления Даниловское (Горный Алтай) // Международный журнал прикладных и фундаментальных исследований, 2016, №10. С. 102–106.

16. Denisova Yu. V. Thermometry apatite from the Nikolaishor granite massif (polar Urals) // 7 readings in the memory of corresponding member. RAS S.N. Ivanov: All-Russian scientific conference dedicated to the 70th anniversary of the founding of the Ural branch of the Russian mineralogical society, Yekaterinburg, 2018, IGG URO RAN. – Yekaterinburg: IGG URO RAN, 2018. Pp. 61–63. Денисова Ю.В. Термометрия апатита из гранитов Николайшорского массива (Приполярный Урал) // 7 Чтения памяти член-корр. РАН С.Н. Иванова: Всероссийская научная конференция, посвященная 70-летию основания Уральского отделения Российского минералогического общества, Екатеринбург, 2018, ИГГ УрО РАН. – Екатеринбург: ИГГ УрО РАН, 2018. С. 61–63.

17. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Isotopic studies of bone remains of Yakut Pleistocene horses // Ice and snow, 2013, № 2. Pp. 93–101. Ди Маттео А., Кузнецова Т.В., Николаев В.И., Спасская Н.Н., Якумин П. Изотопные исследования костных остатков якутских плейстоценовых лошадей // Лед и снег, 2013, № 2. С. 93–101.

18. Dubyna O.V., Krivak S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Y. A. regularities of REE, Y, and Sr in apatite endogenous deposits of the Ukrainian shield (according to the ICP-MS) // Mineral. W., 2012, vol. 34, No. 2. Pp. 80–99. Дубина О.В., Кривдiк С.Г., Самчук А.I., Красюк О.П., Амашукелi Ю.А. Закономерности распределения REE, Y и Sr в апатитах эндогенных месторождений Украинского щита (по данным ICP-MS) // Мiнерал. ж., 2012, т. 34, № 2. С. 80–99.

19. Dubyna O.V., Krivak S. G., Sobolev V.B. Isomorphism in TR-apatite of the Chernigov carbonatite massif. Izomorphism in TR-apatites of the Chernigivsky carbonatite massif // Mineral. Zh., 2012. vol. 34, No. 3. Pp. 22–33. Дубина О.В., Кривдiк С.Г., Соболев В.Б. Iзоморфiзм в TR-апатитах Чернiгiвського карбонатитового масиву // Мiнерал. ж., 2012. т. 34, №3. С. 22–33.

20. Dudkin O.B. Apatite as a possible indicator of the sequence of formation of rocks of the Khibiny deposits // Petrology and mineralogy of the Kola region: 5 All-Russian. Fersman scientific session, dedicated to the 90th anniversary of the birth of E.K. Kozlov, Apatity 14–15 Apr., 2008. – Apatity: Geol. Inst. KSC RAS, 2008. Pp. 94–97. Дудкин О.Б. Апатит как возможный индикатор последовательности формирования пород хибинских месторождений // Петрология и минерагения Кольского региона: 5 Всеросс. Ферсмановская научная сессия, посвящ. 90-летию со дня рождения д. г.-м. н. Е. К. Козлова, Апатиты 14-15 апр., 2008. – Апатиты: Геол. ин-т КНЦ РАН, 2008. С. 94–97.

21. Dudkin O.B. REE of the Khibiny massif // Geology and Strategic Minerals of the Kola region: Proceedings of 10 Vseros. (with intern. participation) Fersman scientific session dedicated to 150th anniversary of the birth of Academician V.I. Vernadsky, Apatity, 7–10 Apr., 2013. – Apatity: Geol. Inst. KSC RAN, 2013. Pp. 124–127. Дудкин О.Б. Редкие земли Хибинского массива // Геология и стратегические полезные ископаемые Кольского региона: Труды 10 Всерос. (с междун. участием) Ферсмановской научной сессии, посвящ. 150-летию со дня рождения акад. В. И. Вернадского, Апатиты, 7–10 апр., 2013. – Апатиты: Геол. ин-т КНЦ РАН, 2013. С. 124–127.

22. Dudchenko N.O. The peculiarity of the formation of a nitrogen-based radical in biogenic hydroxylapatite on the EPR data // Mineral. Zh., 2011, vol. 33, No. 3. Pp. 46–49. Дудченко Н.О. Особливостi формування азотвмiсного радикала у зразках бiогенного гiдроксилапатиту за даними ЕПР // Мiнерал. ж., 2011, т. 33, №3 . С. 46–49

23. Erokhin Yu.V., Ivanov K.S., Ponomarev V.S. Goyazite from metamorphic rocks of the Pre-Jurassic basement of the West Siberian megabasin // Vestn. Ural. branch Ros. mineral. Soc., 2016, No. 13. Pp. 52–61. Ерохин Ю.В., Иванов К.С., Пономарев В.С. Гояцит из метаморфических пород доюрского фундамента Западно-Сибирского мегабассейна // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2016, № 13. С. 52–61.

24. Erokhin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleimenov D.A., Berzin S.V. Phosphates from meteorites "Ural", "Ozernoye" and "Chelyabinsk" // Vestn. Ural. branch Ros. mineral. Soc., 2014, No. 11. Pp. 39–47. Ерохин Ю.В., Хиллер В.В., Иванов К.С., Бурлаков Е.В., Клейменов Д.А., Берзин С.В. Фосфаты из метеоритов "Урал", "Озерное" и "Челябинск" // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2014, № 11. С. 39–47.

25. Zanin Yu.N., Zamiralov A.G., Fomin A.N., Pisarev G.M. Strontium in the structure of sedimentary apatite in the process of catagenesis // Dokl. Russian Academy of Sciences, 1997, vol. 352, No. 2. Pp. 235–237. Занин Ю.Н., Замирайлова А.Г., Фомин А.Н., Писарева Г.М. Стронций в структуре осадочного апатита в процессах катагенеза // Докл. РАН, 1997, т. 352, № 2. С. 235–237.

26. Ivanovskaya A.V., Zanin Yu. N. Phosphorites of the stalinogorsk formation of the Middle Riphean Turukhansk uplift, Eastern Siberia // Lithosphere, 2008, №1. Pp. 90–99. Ивановская А.В., Занин Ю.Н. Фосфориты стрельногорской свиты среднего рифея Туруханского поднятия, Восточная Сибирь // Литосфера, 2008, №1. С. 90–99.

27. Ilyin V.A. Ancient (Ediacaran) Phosphorites. – M.: GEOS, 2008. 160 Pp. (Tr. GIN RAS, vol. 587). Ильин А.В. Древние (эдиакарские) фосфориты. – М.: ГЕОС, 2008. 160 с. (Тр. ГИН РАН, вып. 587).

28. Kalinichenko E.A., Brik A.B., Kalinichenko A. M., Gatsenko V.A., Frank-Kamenetskaya O.V., Bagmut N.N. The particular properties of apatites from different species of the Chemerpole (Middle Near-Bug) according radiospectroscopy // Mineral. Z., 2014, vol. 36, No. 4. Pp. 50–65. Калиниченко Е.А., Брик А.Б., Калиниченко А.М., Гаценко В.А., Франк-Каменецкая О.В., Багмут Н.Н. Особенности свойств апатитов из разных пород Чемерполя (Среднее Побужье) по данным радиоспектроскопии // Мiнерал. ж., 2014, т. 36, № 4. С. 50–65.

29. Katkova V.I. Pseudomorphs of bioapatite on octocalciumphosphate // Vestn. In-ta geol. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2012, No. 6. Pp. 11–14. Каткова В.И. Псевдоморфозы биоапатита по октакальцийфосфату // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2012, № 6. С. 11–14.

30. Kiseleva D.V., Zaitseva M.V. Determination of the trace element composition of REE in biogenic apatite of Upper Devonian conodonts (Southern Urals) by the ISP-MS method with laser ablation // Ural Mineralogical School, 2017, No. 23. Pp. 98–101. Киселева Д.В., Зайцева М.В. Определение микроэлементного состава РЗЭ в биогенном апатите верхнедевонских конодонтов (Южный Урал) методом ИСП-МС с лазерной абляцией // Уральская минералогическая школа, 2017, № 23. С. 98–101.

31. Kogarko L.N. Rare-earth potential of apatite in deposits and waste products of apatite-nepheline ores of the Khibiny massif // Tr. Fersman sci. sessions of the GI KSC RAN, 2019, No. 16. Pp. 271–275. Когарко Л.Н. Редкоземельный потенциал апатита в месторождениях и отходах производства апатито-нефелиновых руд Хибинского массива // Тр. Ферсмановской науч. сессии ГИ КНЦ РАН, 2019, № 16. С. 271–275.

32. Kolonin R.G., Shironosova G.P., Palessky S.V., Fedorin M.A., Kandinv M.N., Pohova V.I., Repina S.A., Shvetsova I.V. Rare-earth elements of Ural monazites and models of physico-chemical conditions of mineral formation // Mineralogy of the Urals-2007: Mater. 5 Vseros. Meeting, Miass, August 20-25, 2007: Collection of scientific articles. – Miass, Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. Pp. 246–250. Колонин Р.Г., Широносова Г.П., Палесский С.В. , Федорин М.А., Кандинов М.Н., Попова В.И., Репина С.А., Швецова И.В. Редкоземельные элементы монацитов Урала и модели физико-химических условий минералообразования // Минералогия Урала-2007: Матер. 5 Всерос. совещ., Миасс, 20–25 августа 2007 г.: Сборник научных статей. – Миасс, Екатеринбург: УрО РАН, 2007. С. 246–250.

33. Konovalova E.V., Pribilkin S.V., Zamyatin D.A., Kholodnov V.V. Sulfur in apatites of granites of the Shartash massif and the Berezovsky gold deposit // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 134–138 (Tr. IGG URO RAN, vol. 159). Коновалова Е.В., Прибавкин С.В., Замятин Д.А., Холоднов В.В. Сера в апатитах гранитов Шарташского массива и Березовского золоторудного месторождения // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 134–138 (Тр. ИГГ УрО РАН, вып. 159).

34. Konovalova E. V., Kholodnov V. V., Pribavkin S. V., Zamyatin D. A. Elements-mineralizer (sulfur and Halogens) in Apatity Shartash granite massif and Berezovsky gold deposits // Lithosphere, 2013, No. 6. Pp. 65–72. Коновалова Е.В., Холоднов В.В., Прибавкин С.В., Замятин Д.А. Элементы-минерализаторы (сера и галогены) в апатитах Шарташского гранитного массива и Березовского золоторудного месторождения // Литосфера, 2013, № 6. С. 65–72.

35. Konopleva N.G., Ivanyuk G.Yu., Pakhomovsky Ya.A., Yakovenchuk V.N., Mikhailova Yu.A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula) // Zap. Rus. Mineral. Soc. 2013, vol. 142, No. 3. Pp. 65–83. Коноплева Н.Г., Иванюк Г.Ю., Пахомовский Я.А., Яковенчук В.Н., Михайлова Ю.А. Типоморфизм фторапатита в Хибинском щелочном массиве (Кольский полуостров) // Зап. Рос. минерал. о-ва, 2013, т. 142, № 3. С. 65–83.

36. Korinevsky V.G., Filippova K.A., Kotlyarov V.A., korinevsky E.V., Artemyev D.A. Trace elements in minerals of some rare species of the Southern Urals // Lithosphere, 2019, vol. 19, No. 2. Pp. 269–292. Кориневский В.Г., Филиппова К.А., Котляров В.А., Кориневский Е.В., Артемьев Д.А. Элементы-примеси в минералах некоторых редко встречающихся пород Южного Урала // Литосфера, 2019, т. 19, №2. С. 269–292.

37. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. Halogens and sulfur in hydroxyl-bearing minerals in East Verkhoturye diorite-granodiorite array of mineralizatsii in the form of native copper (Middle Urals) // Yearbook-2017: the Collection. – Ekaterinburg: IGG URO RAN, 2018. Pp. 189–193 (Tr. IGG URO RAN, vol. 165). Коровко А.В., Холоднов В.В., Прибавкин С.В., Коновалова Е.В., Михеева А.В. Галогены и сера в гидроксилсодержащих минералах Восточно-Верхотурского диорит-гранодиоритового массива с минерализаций в виде самородной меди (Средний Урал) // Ежегодник-2017: Сборник. – Екатеринбург: ИГГ УрО РАН, 2018. С. 189–193 (Тр. ИГГ УрО РАН вып. 165).

38. Krestianinov E.A. Apatite as an indicator of the genesis of carbonatite Mayksk manifestations (South Ural) // Metallogeny of ancient and modern oceans, 2011, №1. Pp. 252–255. Крестьянинов Е.А. Апатит как индикатор генезиса Маукского карбонатитового проявления (Южный Урал) // Металлогения древних и современных океанов, 2011, №1. С. 252–255.

39. Lemesheva S.A., Golovanova O.A., Turenkov S. V. Study of the characteristics of the composition of bone tissues // Chemistry for sustainable development, 2009, vol. 17, No. 3. Pp. 327–332. Лемешева С.А., Голованова О.А., Туренков С.В. Исследование особенностей состава костных тканей человека // Химия в интересах устойчивого развития, 2009, т. 17, № 3. С. 327–332.

40. Liferovich, R.P., Bayanova T. B., Gogol O.V., Sherstennikov O.G., Delenitsin O.A.. Genesis intersects phosphate mineralization within the Kovdor will phoscorite-carbonatite complex // Vestn. MSTU. Tr. Murmansk. State Technical University. 1998, vol. 1, No. 3. Pp. 61–68. Лиферович Р.П., Баянова Т.Б., Гоголь О.В., Шерстеникова О.Г., Деленицин О.А. Генезис посткарбонатитовой фосфатной минерализации в пределах Ковдорского фоскорит-карбонатитового комплекса // Вестн. МГТУ. Тр. Мурманск. гос. техн. ун–та, 1998, т. 1, №3. С. 61–68.

41. Lobova E.V. Evolution of amphibole and apatite from rocks of the Reftinsky complex (Eastern zone of the Middle Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, No. 9. Pp. 84–87, 152. Лобова Е.В. Эволюция амфибола и апатита из пород Рефтинского комплекса (Восточная зона Среднего Урала) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, №9. С. 84–87, 152.

42. Malkov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral composition and trace elements of fossilized bones of sea lizards located in Kargort (Komi Republic) // Vestn. Inst geol. Komi SC URO RAN, 2004, No. 1. Pp. 12–16. Мальков Б.А., Лысюк А.Ю., Иванова Т.И. Минеральный состав и микроэлементы окаменелых костей морских ящеров местонахождения Каргорт (Республика Коми) // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2004, № 1. С. 12–16.

43. Maslov A.V. Pre-Ordovician phosphorites and paleoceanography: a brief geochemical excursion into the systematics of rare earth elements // Lithosphere, 2017, No. 1. Pp. 5–30. [electronic resource]. Маслов А.В. Доордовикские фосфориты и палеоокеанография: краткий геохимический экскурс в систематику редкоземельных элементов // Литосфера, 2017, № 1. С. 5–30. [Электронный ресурс].

44. Maslov A.V. Phosphorites of the Neoproterozoic–Cambrian and paleoceanography: data on the distribution of rare earth elements // Yearbook-2015: Collection. - Yekaterinburg: IGG URO RAN, 2016. pp. 102-107. (Tr. IGG URO RAN, issue 163). Маслов А.В. Фосфориты неопротерозоя–кембрия и палеоокеанография: данные по распределению редкоземельных элементов // Ежегодник-2015: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2016. С. 102–107. (Тр. ИГГ УрО РАН, вып. 163).

45. Mineev D.A. Lanthanides in Minerals. – M.: Nedra, 1969. 182 pp. Минеев Д.А. Лантаноиды в минералах. — М.: Недра, 1969. 182 с.

46. Mineev D.A. Lanthanides in Ores of Rare-Earth and Complex Deposits – M.:Nauka, 1974. 237 pp. Минеев Д.А. Лантаноиды в рудах редкоземельных и комплексных месторождений – М.:Наука, 1974. 237 с.

47. Oparin N.A., Oleinikov O.B., Baranov L.N. Apatite from kimberlite pipe Manchary (Central Yakutia) // Natural resources of the Arctic and Subarctic, 2020, vol. 25, No. 3. Pp. 15–24. Опарин Н.А., Олейников О.Б., Баранов Л.Н. Апатит из кимберлитовой трубки Манчары (Центральная Якутия) // Природные ресурсы Арктики и Субарктики, 2020, т. 25, № 3. С. 15–24.

48. Pavlenko Y.V. Phosphates Streltsovsky ore field in South-Eastern Transbaikalia (part II) // Vestn. Zabaikalsky State University, 2021, vol. 27. No.3. pp. 42-52. Павленко Ю.В. Фосфаты Стрельцовского рудного поля Юго-Восточного Забайкалья (часть II) // Вестн. Забайкальского гос. ун-та, 2021, т. 27. №3. С. 42–52.

49. Potapov S.S. Repina S.A., Potapov D.S. Mineralogical and chemical features of the tooth of a mammoth // Mineralogy of technogenesis, 2007, vol. 8. Pp. 139–145. Потапов С.С., Репина С.А., Потапов Д.С. Минералого-химические особенности зуба мамонта // Минералогия техногенеза, 2007, т. 8. С. 139–145.

50. Rakhimov I.R., Kholodnov V.V., Salikhov D.N. Accessory apatite from gabbroids late Devonian–early Carboniferous West of the Magnitogorsk zone: morphology and chemical composition, indicator metallogenic role // Geological Bulletin, 2018, no. 3. Pp. 109–123. Рахимов И.Р., Холоднов В.В., Салихов Д.Н. Акцессорные апатиты из габброидов позднего девона–раннего карбона Западно-Магнитогорской зоны: особенности морфологии и химического состава, индикаторная металлогеническая роль // Геологический вестник, 2018, № 3. С. 109–123.

51. Ripp G.S., Khodyreva E.V., Isbroken I.A., Ramelow M.O., Lastochkin E.I., Posokhov V.F. Genetic nature of the apatite-magnetite ores of the North-Gurvunur deposit (Western Transbaikalia) // Geol. rudn. deposits, 2017, vol. 59, No. 5. Pp. 419–33. Рипп Г.С., Ходырева Е.В., Избродин И.А., Рампилов М.О., Ласточкин Е.И., Посохов В.Ф. Генетическая природа апатит-магнетитовых руд Северо-Гурвунурского меторождения (Западное Забайкалье) // Геол. рудн. м-ний, 2017, т. 59, № 5. С. 419–433.

52. Rosen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Calculation of the mineral composition of phosphate to facial reconstructions of the chemical analyses (program MINILITH) // Type of sedimentogenesis and lithogenesis and their evolution in the history of the Earth: materials of the 5th all-Russian lithological conference, Ekaterinburg, 14–16 Oct. 2008. Vol. 2. – Ekaterinburg: URO RAN, 2008. Pp. 200–203. Розен О.М., Аббясов А.А., Батурин Г.Н., Литвинова Т.В. Расчет минерального состава фосфоритов для фациальных реконструкций по химическим анализам (программа MINILITH) // Типы седиментогенеза и литогенеза и их эволюция в истории Земли: Материалы 5 Всероссийского литологического совещания, Екатеринбург, 14–16 окт. 2008. Т. 2. – Екатеринбург: УрО РАН, 2008. С. 200–203.

53. Rosen, O. M., Solov'ev A. V. Fission-track dating of apatite from the core of the deep wells of the Siberian platform – an indicator of the intense heating of the sedimentary cover during the intrusion of platobasalts // Geology, Geophysics and mineral resources of Siberia: materials of the 1st Scientific and practical conference, Novosibirsk, 29-31 Jan., 2014. Vol. 2. – Novosibirsk: SNIIGGIMS, 2014. Pp. 162–163. Розен О.М., Соловьев А.В. Трековое датирование апатитов из керна глубоких скважин Сибирской платформы — показатель интенсивного прогрева осадочного чехла во время внедрения платобазальтов // Геология, геофизика и минеральное сырье Сибири: Материалы 1 Научно-практической конференции, Новосибирск, 29-31 янв., 2014. Т. 2. – Новосибирск: СНИИГГМС, 2014. С. 162–163.

54. Ryabov V.V., Simonov O.N., Snisar S.G. Fluorine and chlorine in apatites, micas and amphiboles of the trap layered intrusions of the Siberian platform // Geol. and geofiz., 2018, vol. 59, No. 4. Pp. 453–466. [Electronic resource]. Рябов В.В., Симонов О.Н., Снисар С.Г. Фтор и хлор в апатитах, слюдах и амфиболах расслоенных трапповых интрузий Сибирской платформы // Геол. и геофиз., 2018, т. 59, № 4. С. 453–466. [Электронный ресурс].

55. Savelyeva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatites of the Onguren carbonatite complex (Western Baikal region): geochemistry and composition of accessory minerals//Geol. rudn. deposits, 2017, vol.59. No. 4. Pp. 319–346. Савельева В.Б., Базарова Е.П., Шарыгин В.В., Карманов Н.С., Канакин С.В. Метасоматиты Онгуренского карбонатитового комплекса (Западное Прибайкалье): геохимия и состав акцессорных минералов // Геол. рудн. м-ний, 2017, т. 59. № 4. С. 319–346.

56. Savenko A.V. On the physico-chemical mechanism of diagenetic formation of modern ocean phosphorites // Geochemistry, 2010, No. 2. Pp. 208–215. Савенко А.В. О физико-химическом механизме диагенетического формирования современных океанских фосфоритов // Геохимия, 2010, №2. С. 208–215.

57. Savenko V.S., Savenko A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle. – M.: GEOS, 2007. 248 Pp. Савенко В.С., Савенко А.В. Геохимия фосфора в глобальном гидрологическом цикле. – М.: ГЕОС, 2007. 248 с.

58. Savko K.A., Pilyugin S.M., Novikova M.A. Composition of apatite from rocks of different ages of ferruginous-siliceous formations of the Voronezh crystalline massif – as an indicator of the fluid regime of metamorphism / Vestn. Voronezh. state University. Ser. Geology. 2007, No. 2. Pp. 78–93. Савко К.А., Пилюгин С.М., Новикова М.А. Состав апатита из пород разновозрастных железисто-кремнистых формаций Воронежского кристаллического массива – как показатель флюидного режима метаморфизма / Вестн. Воронеж. гос. ун-та. Сер. Геология. 2007, № 2. С. 78–93.

59. Safin T. H., Dubinin A.V., Kuznetsov, A. B., Rimskaya-Korsakova, M. N. A study of the age of biogenic apatite from nodules of the Cape basin by the strontium isotope chemostratigraphy and establishing growth rates oxyhydroxide phases // Marine studies: 8th conference of young scientists, Vladivostok, June 6–9, 2018: conference proceedings. – Vladivostok: Dalnauka, 2018. Pp. 102–106. Сафин Т.Х., Дубинин А.В., Кузнецов А.Б., Римская-Корсакова М.Н. Исследование возраста биогенного апатита из конкреций Капской котловины методом стронциевой изотопной хемостратиграфии и установление скоростей роста оксигидроксидных фаз // Океанологические исследования: 8 конференция молодых ученых, Владивосток, 6-9 июня, 2018: Материалы конференции. – Владивосток: Дальнаука, 2018. С. 102–106.

60. Serova A.A., Spiridonov E.M. Three types of apatite in Norilsk sulfide ores // Geochemistry, 2018, No. 5. Pp. 474–484 [Electronic resource]. Серова А.А., Спиридонов Э.М. Три типа апатита в норильских сульфидных рудах // Геохимия, 2018, № 5. С. 474–484 [Электронный ресурс].

61. Soloviev A.V. Study of Tectonic Processes in the Areas of Convergence of Lithospheric Plates by Methods of Isotope Dating and Structural Analysis: Abstract. dis. for the application of a scientist. degree of Doctor of Geological Sciences – M.: GIN RAS, 2005. 49 pp. Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит методами изотопного датирования и структруного анализа: Автореф. дис. на соискание учен. степени доктора геол.-мин. наук. – М.: ГИН РАН, 2005. 49 с.

62. Soloviev V.A., Garver J.I. Post-collisional exhumation of the complexes in Northern Kamchatka (Lesnovsk lifting) // Dokl. Russian Academy of Sciences, 2012, vol. 443, No. 1. Pp. 92–96. Соловьев А.В., Гарвер Дж.И. Постколлизионная эксгумация комплексов Северной Камчатки (Лесновское поднятие) // Докл. РАН, 2012, т. 443, № 1. С. 92–96.

63. Soroka E.I., Leonova L.V. Anfimov A.L., Apatite shell of the Devonian foraminifera (Safianovsk copper-pyrite deposit, the Middle Urals) // Izv. Uralsk. state. Gorny University, 2018, No. 3(51). Pp. 34–39. Сорока Е.И., Леонова Л.В., Анфимов А.Л. Апатитовые раковины девонских фораминифер (Сафьяновское медноколчеданное месторождение, Средний Урал) // Изв. Уральск. гос. Горного ун-та, 2018, № 3(51). С. 34–39.

64. Taylor S.R., McLennan S.M. Continental Crust: its Composition and Evolution: Russian translation). - M.: Mir, 1988. 384 p. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. – М.: Мир, 1988. 384 с.

65. Felitsyn S.B., Bogomolov E.S. Isotope-geochemical systematics of gold-bearing biogenic apatites from the Lower Paleozoic deposits of Baltoscandia // Dokl. RAS, 2013, vol. 451, No. 6. pp. 680–683. Фелицын С.Б., Богомолов Е.С. Изотопно-геохимические систематики золотосодержащих биогенных апатитов из нижнепалеозойских отложений Балтоскандии // Докл. РАН, 2013, т. 451, № 6. С. 680–683.

66. Faore G. Fundamentals of Isotope Geology: Russian translation. – M.: Mir, 1989. 590 pp. Фор Г. Основы изотопной геологии. – М.: Мир, 1989. 590 с.

67. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Refinement of the atomic structure of apatite of the albinoi tissue of Upper Devonian conodonts // Crystallography, 2014, vol. 59, No. 1. Pp. 46–52. Франк-Каменецкая О.В., Рождественская И.В., Россеева Е.В., Журавлев А.В. Уточнение атомной структуры апатита альбидной ткани позднедевонских конодонтов // Кристаллография, 2014, т. 59, № 1. С. 46–52.

68. Khattak N.U., Asif Khan Mohammad, Ali Nawab, Abbas S. M., Tahirkheli T.K. Evaluation of time and level of implementation of the carbonatite complex Silly Patti, district Malakand, North-Western Pakistan: the limitations of the data dating signs of the fission tracks // Geol. and geofiz., 2012, vol. 53, No. 8. Pp. 964–974. Хаттак Н.У., Азиф Хан Мухаммад, Али Наваб, Аббас С.М., Тахиркели Т. К. Оценка времени и уровня внедрения карбонатитового комплекса Силлай Патти, район Малаканд, Северо-Западный Пакистан: ограничения, накладываемые данными датирования по следам распада // Геол. и геофиз., 2012, т. 53, № 8. С. 964–974.

69. Kholodnov V.V., Konovalova E.V. Morphology and other typomorphic properties of apatite in granitoids of the Urals with quartz-vein gold mineralization // Ural mineralogical school of 2012. – Ekaterinburg: IGG URO RAN, 2012. Pp. 186–191. Холоднов В.В., Коновалова Е.В. Морфология и другие типоморфные свойства апатита в гранитоидах Урала с кварц-жильным золотым оруденением // Уральская минералогическая школа-2012. – Екатеринбург: ИГ и Г УрО РАН, 2012. С. 186–191.

70. Kholodnov V.V., Salikhov D.N., Rakhimov I.R. Halogens and sulfur in apatite – as an indicator of potential ore-bearing late Paleozoic magmatic complexes of the West Magnitogorsk zone on Cr-Ni, Fe-Ti and Au mineralization // Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories, 2016, No. 11. Pp. 168–170. Холоднов В.В., Салихов Д.Н., Рахимов И.Р. Галогены и сера в апатитах – как индикатор потенциальной рудоносности позднепалеозойских магматических комплексов Западно-Магнитогорской зоны на Сг-Ni, Fe-Ti и Au оруденение // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий, 2016, № 11. С. 168–170.

71. Kholodnov V.V., Salikhov D.N., Rakhimov I.R., Shagalov E.S., Konovalova E.V. Halogens and sulfur in apatites as a sign of specialization and Late Paleozoic accretion-collisional gabbro-dolerites of the West Magnitogorsk zone on Cu-Ni and Au mineralization // Yearbook-2014: Collection. – Ekaterinburg: IGG URO RAN, 2015. Pp. 214–221 (Tr. IGG URO RAN, vol. 162). Холоднов В.В., Салихов Д.Н., Рахимов И.Р., Шагалов Е.С., Коновалова Е.В. Галогены и сера в апатитах как признак специализации и позднепалеозойских аккреционно-коллизионных габбро-долеритов Западно-Магнитогорской зоны на Сu-Ni и Au оруденение // Ежегодник-2014: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2015. С. 214–221 (Тр. ИГГ УрО РАН, вып. 162).

72. Kholodnov V.V., Salikhov D.N., Shagalov E.S., Konovalova E.V., Rakhimov I.R. The Role of halogens and sulfur in apatites in the assessment of potential ore-bearing gabbros of the Late Paleozoic of West Magnitogorsk zone (S. Ural) on Cu-Ni, Fe-Ti and Au mineralization // Mineralogy, 2015, No. 3. Pp. 45–61. Холоднов В.В., Салихов Д.Н., Шагалов Е.С., Коновалова Е.В., Рахимов И.Р. Роль галогенов и серы в апатитах при оценке потенциальной рудоносности позднепалеозойских габброидов Западно-Магнитогорской зоны (Ю. Урал) Сu-Ni, Fe-Ti и Au оруденение // Минералогия, 2015, № 3. С. 45–61.

73. Kholodnov V.V., Shagalov E.S., Konovalova E.V. Geochemistry of apatite in intrusive rocks of the Urals characterized by various ore specialization // Yearbook-2009: Collection. – Yekaterinburg: IGG UrO RAN, 2010. Pp. 190–195 (Tr. IGG UrO RAN, issue 157). Холоднов В.В., Шагалов Е.С., Коновалова Е.В. Геохимия апатита в интрузивных породах Урала, характеризующихся различной рудной специализацией // Ежегодник-2009: Сборник. – Екатеринбург: ИГГ УрО РАН, 2010. С. 190–195 (Тр. ИГГ УрО РАН, вып. 157).

74. Chaika I.F., Izokh A.E. Phosphate-fluoride-carbonate mineralization in rocks of lamproite series of Rybinov massif (Central Aldan): mineralogical and geochemical characteristics and genesis problem // Mineralogy, 2017, vol. 3, No. 1. Pp. 38–51. Чайка И.Ф., Изох А.Э. Фосфатно-фторидно-карбонатная минерализация в породах лампроитовой серии массива Рябиновый (Центральный Алдан): минералого-геохимическая характеристика и проблема генезиса // Минералогия, 2017, т. 3, №1. С. 38–51.

75. Chaikina M. V. Bulina N. V., Prosanov I.Yu., Ishchenko A.V., Medvedko O.V., Aronov A.M. Mechanochemical synthesis of hydroxyapatite with SIO44– substitutions // Chemistry for sustainable development, 2012, vol. 20, No. 4. P. 477-489. Чайкина М.В., Булина Н.В., Просанов И.Ю., Ищенко А.В., Медведко О.В., Аронов А.М. Механохимический синтез гидроксилапатита с SIO44– замещениями // Химия в интересах устойчивого развития, 2012, т. 20, №4. С. 477–489.

76. Chuprov A.A., Badmatsyrenova R.A., Batueva A.A. Apatite mineralization of the Oshurekov gabbro-pegmatite massiv, Transbaikalia: data from LA-ICP-MS analysis // Metallogeny of ancient and modern oceans, 2021, vol. 27. Pp. 144–146. Чупрова А.А., Бадмацыренова Р.А., Батуева А.А. Апатитовая минерализация Ошурековского габбро-пегматитового массива, Забайкалье: данные ЛА-ИСП-МС анализа // Металлогения древних и современных океанов, 2021, т. 27. С. 144–146.

77. Shatrov V.A., Voitsekhovsky G.V. Reconstruction of phosphate formation environments // Geol. and geophys., 2009, vol. 50, No. 10. Pp.1104–1118. Шатров В.А., Войцеховский Г.В. Реконструкция обстановок фосфатообразования // Геол. и геофиз., 2009, т. 50, №10. С.1104–1118.

78. Shironosova G.P., Kolonin G.R. Thermodynamic modeling of REE distribution between monazite, fluorite and apatite // Dokl. RAN, 2013, vol. 450, No. 4. Pp. 455–459. Широносова Г.П., Колонин Г.Р. Термодинамическое моделирование распределения РЗЭ между монацитом, флюоритом и апатитом // Докл. РАН, 2013, т. 450, № 4. С. 455–459.

79. Shnug E., Haneklaus N. Extraction of uranium from phosphate ores: ecological aspects // Atomic engineering abroad, 2013, No. 9. Pp. 20–24. Шнуг Э., Ханеклаус Н. Извлечение урана из фосфатных руд: экологические аспекты // Атомная техника за рубежом, 2013, №9. С. 20–24.

80. Yudovich Ya.E., Ketris M.P. Geochemical Indicators of Lithogenesis (Lithological Geochemistry). – Syktyvkar: Geoprint, 2011. 740 pp. Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). – Сыктывкар: Геопринт, 2011. 740 с.

81. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geochemistry of Рhosphorus. – Syktyvkar: IG Komi SC UrO RAN, 2020. 512 pp. Юдович Я.Э., Кетрис М.П., Рыбина Н.В. Геохимия фосфора. – Сыктывкар: ИГ Коми НЦ УрО РАН, 2020. 512 с.

82. Adcock C.T., Hausrath E.M., Forster P.M., Tschauner O., Sefein K.J. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation // Amer. Mineral., 2014, vol. 99, № 7. P. 1221–1232.

83. Barham M., Murray J., Joachimski M.M., Williams D.M. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean // J. Geol. Soc., 2012, vol.169, № 2. P. 119–122.

84. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor., 2002, vol. 76, № (1). P. 45–69.

85. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland // Aust. J. Earth Sci., 2001, vol. 48. Р. 603–619.

86. Bromiley G.D. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? // Lithos, 2021, vol. 384–385. 105900.

87. Broom-Fendley S., Heaton T., Wall F., Gunn G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi // Chem. Geol., 2016. 440. P. 275–287. [Electronic resource].

88. Brown W.F., Lehr J.R., Smith J.R., William A.F. Crystallography of octocalciumphosphate // J. Amer. Chem. Soc., 1957, vol. 79, № 19. P. 5378–5379.

89. Buggisch W., Joachimsry M.M., Sevastopulo G., Morrow J.R. Mississippian δ13Сkarb and conodont apatite δ18O records – Their relation to the Late Palaeozoic Glaciation // Palaeogeogr., Palaeoclim., Palaeoecol., 2008, vol. 69, № 3–4. P. 273–292.

90. Cavazza W., Federici I., Okay A.I., Zattin M. Apatite fission-track thermochronology of the Western Pontides (NW Turkey) // Geol. Mag., 2012., vol. 149, № 1. P. 133–140.

91. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couёslan C., Xu C., Kynický J., Mumin A.H., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos : An International Journal of Mineralogy, Petrology and Geochemistry, 2017, vol. 274-275. P. 188–213. [Electronic resource].

92. Charlier В., Namurn O., Bolle O., Latypov R., Duchesne J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks // Earth-Science Reviews, 2015, vol. 141. P. 56–81.

93. Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth-Science Reviews, 2015, vol. 149. P. 181–202.

94. Corcoran D.V., Dore A. G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins // Earth-Science Reviews, 2005, vol. 72, № 3–4. P. 129–168.

95. Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites // Contrib. Mineral. Petrology, 2003, vol. 145. P. 568–577.

96. Dutta A., Fermani S., Tekalur S.A., Vanderberg A., Falini G. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions // J. Cryst. Growth., 2011, vol. 336, № 1. P. 50–55.

97. Economou-Eliopoulos M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance // J. Geochem. Explor., 2003, vol. 80, № 1. P. 41–54.

98. Elrick M., Reardon D., Labor W., Martin J., Desrochers A., Pope M. Orbital-scale climate change and glacioeustasy during the earlyate Ordovician (pre-Hirnantian) determined from σ18O values in marine apatite // Geology, 2013, vol. 41, № 7. P. 775–778.

99. Emerson N.R., Simo J.A. (Toni), Byers C.W., Fournelle J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation // Palaeogeogr., Palaeoclim., Palaeoecol., 2004, vol. 210. P. 215–233.

100. Enkelmann E., Ehlers T.A., Buck G., Schatz A.-K. Advantages and challenges of automated apatite fission track counting // Chem. Geol., 2012, vol. 322-323. P. 278–289.

101. Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F. Hydroxyapatite crystal formation in the presence o polysaccharide // Cryst. Growth and Des., 2016, vol. 16, № 3. P. 1247–1255.

102. Finger F., Krenn E., Schulz B., Harlov D., Schiller D. "Satellite monazites" in polymetamorphic basement rocks of the Alps: Their origin and petrological significance // Amer. Mineral., 2016, vol. 101, № 5-6. P. 1094–1103.

103. Galliski M.Á., Černý P., Márquez-Zavala M.F., Chapman R. An association of secondary Al—Li—Be—Ca—Sr phosphates in the San Elas pegmatite, San Luis, Argentina // Can. Miner., 2012, vol. 50, № 4. P. 9339–9342.

104. Garcia A.K. Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability // Precambrian. Res., 2020, vol. 349. 105389.

105. Georgieva S., Velinova N. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria // Докл. Бълг. АН, 2014, vol. 67, № 12. P. 1669–1678.

106. Héran M.-A., Lécuyer C., Legendre S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate // Palaeogeogr., Palaeoclim., Palaeoecol., 2010, vol. 285, № 3-4. P. 331–342.

107. Horie K., Hidaka H., Gauthier-Lafaye F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral // Phys. Chem. Earth, 2008, vol. 33. P. 962–968.

108. Joachimski M.M., von Bitter P.H., Buggisch W. Constraints on Pennsylvanian glacioeustatiс sea-level changes using oxygen isotopes of conodont apatite // Geology, 2006, vol. 34, № 4. Р. 277–280.

109. Kocsis L., Dulai A., Bitner M.A., Vennemann T. Cooper Matthew Geochemical compositions of Neogene phosphatic brachiopods: Implications for ancient environmental and marine conditions // Palaeogeogr., Palaeoclim., Palaeoecol., 2012, vol. 326-328. P. 66–77.

110. Krneta S., Ciobanu C.L., Cook N.J., Ehrig K., Kontonikas-Charos A. A petrogenetic tool // Lithos: An International Journal of Mineralogy, Petrology and Geochemistry, 2016, vol. 262. P. 470–485. [Electronic resource].

111. Lieberovich R.F., Mitchell R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa // Mineral. Mag., 2006, vol. 70, № 5. P. 463–484.

112. Liu Wen-hao, Zhang J., Li Wan-ting, Sun T., Jiang Man-rong, Wang J., Wu Jian-yang, Chen Cao-jun // Diqiu kexue = Earth Sci. : Zhongguo dizhi daxue xuebao Zhongguo dizhi daxue xuebao, 2012, vol. 37, № 5. P. 966–980.

113. Llorens T., Moro M.C. Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfras Sn-W District, Salamanca, Spain // Mineral. Mag., 2012, vol. 76, № 1. P. 1–24.

114. Lu J., Chen W., Ying Y., Jiang S., Zhao K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis // Lithos, 2020, vol. 398. 106276.

115. Matton O., Cloutier R., Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec) // Palaeogeogr., Palaeoclim.., Palaeoecol., 2012, vol. 361-362. P. 73–83.

116. Onac B.P., Effenberger H.S., Breban R.C. High-temperature and “exotic” minerals from the Cioclovina Сave, Romania: A review // Stud. Univer. Babes-Bolyai. Geol., 2007, vol. 52, № 2. P. 3–10.

117. Otero O., Lécuyer C., Fourel F., Martineau F., Mackaye H.T., Vignaud P., Brunet M.l. Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa // Geology, 2011, vol. 39, № 5. P. 435–438.

118. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta, 2019, vol. 246. P. 515–540. [Electronic resource].

119. Parat F., Holtz F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions // Contrib. Mineral. Petrology, 2004, vol. 147. P. 201–212.

120. Pieczka A. Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland // Can. Miner., 2007, vol. 45, N 4. P. 901–914.

121. Piper D.Z. Rare earth elements in the sedimentary cycle: a summary // Chem. Geol. 1974, vol. 14, № 4. P. 285–304.

122. Roda-R. E. Galliski M.A., Roquet M.B., Hatert F., de Parseval P. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: paragenesis, composition and significance // Can. Miner., 2012, vol. 50, № 4. P. 913–931.

123. Rossi M., Ghiara M.R., Chita G., Capitelli F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex // Amer. Mineral., 2011, vol. 96, № 11-12. P. 1828–1837.

124. Schilling K., Brown S.T., Lammers L.N. Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH // Geochim. Cosmochim. Acta, 2018, vol. 241. P. 255-271. [Electronic resource].

125. Sethmann I., Grohe B., Kleebe H.-J. Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation // Mineral. Mag., 2014, vol. 78, № 1. P. 91–100.

126. Soltys A., Giuliani A., Phillips D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories incoherent kimberlites caused by difering emplacement mechanisms // Contrib. Mineral. Petrology, 2020, vol. 175.

127. Song H., Wignal P.B., Tong J., Bond D.P.G., Song H., Lai X., Zhang K., Wang H., Chen Y. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery // Earth Planet. Sci. Letter, 2012, vol. 353-354. P. 12–21.

128. Soudry D., Glenn C.R., Nathan Y., Segal I., VonderHaar D. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation // Earth-Science Reviews, 2006, vol. 78, N 1–2. P. 27–57.

129. Streule M.J., Carter A., Searle M.P., Cottle J.M. Constraints on brittle field exhumation of the Everest-Makalu section of the Greater Himalayan Sequence: implications for models of crustal flow // Tectonics, 2012, vol. 31, № 3. TC3010.

130. O'Sullivan G., Chew D., Kenny G., Henrichs I., Mulligan D. The trace element composition of apatite and its application to detrital provenance studies // Earth-Science Reviews, 2020, vol. 201. 103044.

131. Tang Y.T., Han C.M., Bao Z.K., Huang Y.Y., Hea W., Hua W. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray flourescence microprobe // Spectrochim. Acta, 2005. Part B 60. P. 439–446.

132. Torab F.M., Lehmann B. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology // Mineral. Mag., 2007, vol. 71, № 3. С. 347–363.

133. Tseng Y.-H., Mou Ch.-Y., Chan J.C.C. Solid-state NMR study of the transformation of octocalciumphosphate to hydroxyapatite: A mechanistic model for Central Dark Line Formation // J. Amer. Chem. Soc., 2006, vol. 128. P. 6909–6918.

134. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Zakharov V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia // Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2015, vol. 665. P. 157–163.

135. Ying Y.C., Chen W., Simonetti A., Jiang S.Y., Zhao K.D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China) // Geochim. Cosmochim. Acta, 2020, vol. 280, P. 340–359.

136. Yu Jinjie, Zhang Qi, Mao Jingwen, Yan Shenghao Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China // Acta Geol. Sinica, 2007, vol. 81, № 4. P. 637–648. [Electronic resource].

137. Yu Jin-Jie, Chen Bao-Yun, Che Lin-Rui, Wang Tie-Zhu, Liu Shuai-Jie Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: constraints from apatite chemistry // Geol. J., 2020, vol. 55, № 2. P. 1450–1467.

138. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng Cheng-Biao A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // J. Geodynamics, 2020, vol. 136. 101723.

139. Zhang R.W., Xue C.D., Xue L.P., Liu X. // Yanshi xuebao = Acta Petrol. Sin., 2019, vol. 35, № 5. P. 1407–1422.

Войти или Создать
* Забыли пароль?