ANIONIC MINERAL-FORMING COMPONENTS OF APATITE
Аннотация и ключевые слова
Аннотация (русский):
An extensive review describes the unique properties of apatite, which, due to the peculiarities of its structure, allows for diverse isomorphic substitutions both in its cationic part (Mn, Sr, Ba, REE, U, etc.) and in the anionic part (CO 2, SO3, SiO 2, OH, F, Cl, etc.). Since these substitutions occur under well-defined conditions in both endogenous thermal and exogenous low-temperature processes, the composition of apatite turns out to be an indicator of these processes. At the same time, the conditions of formation of most igneous and metamorphic rocks can be judged by the composition of accessory apatite, and the genesis of phosphorus ores, both endogenous (Khibiny, Kiruna type, etc.) and exogenous (phosphorites), is judged by the composition of ore-forming apatite. The review is based on the recent "Irish" review 2020, covering 147 literary sources and compiled by 4 co-authors from Dublin and one from Stockholm [130]. Since the compilers of the "Irish" review practically did not use literature in Russian, it became necessary to seriously supplement it with the data given in the domestic literature, as well with a number of foreign works that are not covered by the "Irish" review. The resulting text should make it much easier for the geologist reader to use apatite in practice as a remarkable mineral-an indicator of various geological processes

Ключевые слова:
apatite, carbonate-apatite (francolite), halogens, sulfate, trace elements, REE, manganese, strontium, neodymium, uranium
Текст

1.1. Hydroxyl Crystallization of Ca phosphate from very weakly supersaturated solutions occurs by the so-called "classical" mechanism, when ionic monomers are slowly deposited on the active growth surface. If the solution is supersaturated, then the "classical" growth mechanism gives way to the "non-classical" one, when whole ion clusters quickly settle on the active surface. In particular, the height of the steps on the surface of active growth (0.8 nm) exceeds the width of the molecular unit of 0.24 nm for the phosphate ion PO43–, and the kinetic coefficient of attachment of the growth unit to the steps (i.e., the kinetic coefficient of the step) under physiological conditions (pH 7.4) is 100 times less than for similar ionic minerals. This can be seen as the reason that in natural conditions biogenic hydroxyapatite Ca10(PO4)6(OH)2 is not formed immediately, but is preceded by biophosphate-1 – or octacalcium phosphate Ca8(HPO4)2(PO4)4.5H2O, or brushite CaHPO4.2H2O, and with particularly strong supersaturation – amorphous Ca-phosphate CaxHy(PO4)znHO (n = 3–4.5). Hydroxyapatite turns out to be biophosphate-2, it is formed only by the substrate of biophosphate-1, most often – octacalcium phosphate. Studying urolites, Syktyvkar mineralogist Valentina Katkova proved that phosphate spherulites and spherocrystals of monomineral composition in urolites are pseudomorphoses of carbonate hydroxyapatite by octacalcium phosphate. In agreement with foreign predecessors [88; 133], she admits that the transformation process was the result of hydrolysis with loss of three water molecules by octocalcium phosphate at elevated pH: 5Са8Н2(РО4)6 5Н2О  4 Са10Н2(РО4)6 (ОН)2 + 6 Н3РО4 At the same time, it is noted [29, p. 12]: "in phosphate urolites, as a rule, the main mineral components are struvite, carbonate-containing hydroxylapatite and newberyite." It has recently been shown that based on the study of the morphology of crystals of the so-called nanohydroxyapatite (NGAP), it is possible to judge which polysaccharides were present in the environment at the origin of NGAP crystals. The fact is that natural polysaccharides play an important role in the formation of NGAP crystals in biological systems. Chinese researchers [101] synthesized NGAP crystals in the presence of four polysaccharides: pectin, carrageenan, chitosan and amylose, designated as PeHa, CaHa, CsHa and AmHa, respectively. The shape of the obtained crystals is needle-shaped/rod-shaped in all cases, and their size increases in the order of PeHa  CaHa  CsHa  AmHa. The presence of polysaccharides induces heterogeneous nucleation of NGAP and further modulates crystal growth. However, a high concentration of polysaccharides and a short reaction time are unfavorable for the growth of NGAP crystals, especially for polysaccharides with carboxyl groups. As a result, the results obtained can give an idea of the effect of polysaccharides with various chemical functional groups (–COOH, –OSO3H, –NH2, –OH) on the formation of NGAP crystals. One of the natural ways of bioapatite formation (which allows for the "repair" of damaged bones) is to obtain it by metasomatic phosphatization of porous calcium carbonate structurally compatible with phosphate. It has long been known that hydroxyapatite can be obtained by treating corals with a phosphate solution, and recently a successful experiment was conducted on phosphatization of the lamellar region of the cuttlefish bone (Sepia officinalis). The main thing in this experiment is to first obtain an intermediate compound - amorphous carbonate. As a result, an amorphous calcium hydrophosphate dihydrate, CaHPO4 2H2O, was obtained in a short time (up to several hours) [96]. Not so long ago, it was experimentally shown that in urolithiasis (nephrolithiasis), the formation of calcium oxalate monohydrate of whewellite CaC2O4 H2O is closely related to the earlier formation of hydroxyapatite. Model experiments were carried out that showed the full reality of the substitution of carbonate hydroxyapatite with wevellite [125]. The fact is that the so-called Randall plaques, known to urologists for a long time, forming lighter organo-mineral spots directly in the renal tissue, in their mineral part consist just of carbonate hydroxyapatite Ca5(PO4)3OH. Under the influence of a pathogenic decrease in the pH of urine up to pH = 4.5, Randall plaques partially dissolve, releasing Ca2+ into the liquid phase, and thereby induce the deposition of whewellite on them. Indeed, doctors have long known that many oxalate stones "sit" directly on Randall's plaques. Sometimes nitrogen admixture is found in samples of obviously biogenic hydroxyapatite according to EPR spectra, which, generally speaking, should not be here. As N. O. Dudchenko experimentally showed [22], nitrogen-containing radicals (NO42-) are formed in samples during heat treatment of biogenic hydroxyapatite under conditions of lack of oxygen. During the heat treatment of the mineral in conditions of excess oxygen, such radicals are not formed. At the same time, the maximum intensity of the EPR spectrum of nitrogen-containing radicals or their maximum amount is observed during annealing in the temperature range of 800-850 ° C. The Ukrainian author came to the conclusion that this nitrogen-containing center is included in the structure of biogenic hydroxyapatite due to the isomorphic substitution of phosphorus with nitrogen (P←N). Thus, the admixture of nitrogen in natural biogenic apatite indicates that it has undergone thermal effects. Moreover, natural heating of obviously biogenic apatites can form such rare minerals as berlinite Al[PO4] and hydroxyl-ellestadite Ca5[(Si, P, S)O4]3(OH, F, Cl), found in the Romanian Cyclovina cave. Since they were formed from cave guano, and it is impossible to imagine any external heating of guano, the authors of this amazing find suggested that high temperatures somehow arose in the guano itself [116]. Some materials on the topic were given in our 2011 book [80, p. 284]. The references made there to the literature are replaced here with angle brackets – <...>. In particular, it was reported that phosphate nodules in the Kuonam formation of the Cambrian on the Molodo River differ greatly in composition from the host (practically carbonless) black siliceous-clay mudstones. According to Siberian geologists, this indicates the biochemical (bacterial) nature of phosphate <...>. The source of phosphorus in phosphorites among cyanobacterial mats on Polynesian atolls is clearly biogenic <...>. Among the fused cluster-like clusters of juvenile pelicypods in Naragansett Bay (Merceparia merceparia) and Boca Kiega Bay in Florida (Agropecten irradians), microconcretions, up to 250 microns in size, of amorphous Ca-phosphate (sometimes with an admixture of Al-phosphates) with a concentric-zonal structure are described. Most likely, these formations are biogenic – coprolites <...>. 1.2. Halogens As it was shown during the study of the Magnitogorsk ore-magmatic complex of the Southern Urals, the ratio of halogens in apatite is an excellent indicator of the fluid regime in petro- and ore genesis [10]. The fact is that there are two trends of magmatic differentiation: (1) tholeiitic – the evolution of the melt towards the accumulation of iron and the formation of ferruginous gabbroids, with which the titanium-magnetite ores of the Kuibass massif are associated, and (2) calcareous-alkaline – the evolution of the melt towards an increase in its silicicity and alkalinity, which reflects the change in the ferruginous magmatites of the subvolcanic and hypabyssal facies of the gabbro-granite Magnitogorsk intrusion, which is associated with skarn-magnetite mineralization. According to experimental data, the occurrence of tholeiitic and calcareous-alkaline trends in the differentiation of melts is due to the liquation orthopyroxene barrier, the overcoming of which depends on the degree of saturation of the melt with water. These trends are well documented by the content of chlorine and fluorine in apatites. As can be seen on the "chlorine - fluorine" graph compiled by the authors [10, Fig. 2, p. 31], clear fields are distinguished here by the magnitude of the Cl/F ratio: a) in rocks of gabbro-granite intrusion Cl/F = 0.0-0.35; (b) in oreless gabbro Cl/F = 0.35-0.90; (c) in ore-bearing (titanium-magnetite) gabbro Cl/F = 0.90-3.40. As it moves upward from "dry" reduced magmas to more aqueous and oxidized ones, the fluid becomes more chlorinated. Thus, the quantitative content of chlorine and fluorine in apatites of rocks and ores is a qualitative characteristic of the fluid regime during their formation. Researchers of three North Chilean iron-phosphorus deposits (Kiruna type) of Cretaceous age in the Andes also indicate that the ratio of halogens in apatites is an important indicator of the fluid regime during their formation [118]. Despite the inconsistency of the proposed models, the authors are inclined to a new flotation model in which microliths of magmatic magnetite crystallize from a silicate melt, and then rise, carried away by bubbles of liquids dissolved in magma. As these suspensions of magmatic magnetite rise, they merge, and the magnetite content increases due to the deposition of hydrothermal magnetite in the form of rims on the primary magnetite and filling the intermediate space up to the level of neutral buoyancy, which reflects a continuous process – from magmatic to hydrothermal. In 8 stratified trap intrusions of the Siberian Platform, the geochemistry of chlorine and fluorine in accessory apatites, as well as in rock-forming micas and amphiboles was studied according to over 1000 analyses [54]. In the overwhelming mass of apatites F > Cl. The maximum halogen contents have chlorapatite (Cl = 6.97 wt.%) and fluorapatite (F = 6.04 wt.%). The total ferruginous content (f = Fe/(Fe + Mg), at.%) of femic minerals varies: in micas from 2 to 98 at.%, in amphiboles from 22 to 95 at.%. The graphs of the dependence of Cl - f and F - f in minerals show an increase in the content of Cl with an increase in f, and an increase in F with a decrease in f. Thus, chlorine exhibits pronounced ferrophilicity, and fluorine exhibits magnesiophilicity. In rock-forming minerals, the richest halogens are: fluorophlogopite (F = 7.06 wt.%, f = 7 at.%), chlorannite (Cl = 6.30 wt.%, f = 89 at.%), chlorferrigastingsite (Cl = 5.22 wt.%, f = 90 at.%). It is assumed that the crystallization of halogen-containing minerals occurred under conditions of increased fluid pressure of halocarbon fluids at the levels of MW-, IW- and QIF buffers. An indicator of the reducing conditions of the magmatic process are the finds in the rocks of graphite and native metals/ Of particular interest is the thorough study of phosphate minerals from the Ural, Ozernoye and Chelyabinsk chondrites carried out in 2014, samples of which are on display at the Ural Geological Museum at the Ural State Mining University (Yekaterinburg) [24]. In all cases, chlorapatite and merrillite were found in the chondrites. Merrilite Ca9Na(Fe, Mg)[PO4]7 is an anhydrous terminal element of a series of 14 solid solutions, and the hydrolyzed terminal element is whitlockite Ca9 (Fe, Mg) [HPO4][PO4]6. However, contrary to earlier (less thorough) studies, vitlokit was not found in the studied chondrite samples, The study of other meteorites has shown that merrillite is the predominant primary Ca-phosphate mineral in Martian meteorites and, consequently, on Mars. The mineral is the main phase in the study of differences in geological processes between Earth and Mars. It is assumed [82] that merrilite even has astrobiological significance – it could serve as a source of phosphorus for life on Mars! As for the Ural meteorites, the content of Cl in 4 grains of chlorapatite from the Ural chondrite was 4.28-4.70%, in the grain of apatite "Lake" Cl = 4.09%, and in 4 grains of chlorapatite from the Chelyabinsk chondrite Cl = 3.04–4.07%. At the same time, two varieties of chlorapatite have been identified in the Chelyabinsk chondrite – extremely chlorinated and with a high content of the hydroxyl group. Unfortunately, as our geologists note [24], the study of samples of the Ozernoye meteorite turned out to be associated with a very unsightly history. This meteorite was found in 1983 by a shepherd N. L. Hismatullin 4 km north of the Ozerny site of the Trans-Ural state farm of the Almenevsky district of the Kurgan region (about 100 km southwest of Kurgan). In 1985, the same person discovered a second piece of identical chondrite near the village of Ozernoye in the same area, so that the total mass of both fragments was about 3.66 kg. Both of them were transferred to the Ural Meteorite Commission for study, and in 2014 a small fragment from the first piece was already stored in the Ural Geological Museum (its authors studied it). However, simultaneously with the second piece of Ozernoye chondrite, a larger fragment of a meteorite weighing 22.4 kg was discovered (in the same place – near the village of Ozernoye), but it was deliberately not handed over to specialists for study. And in 2007, this fragment was already in Kurgan and was soon sold by the owner to the famous meteorite collector S. P. Vasiliev (living in Prague) – and with the permission of the Ministry of Culture of the Russian Federation (!) was taken to the Czech Republic… Our patriotic geologists [24] indignantly remind the reader of the complete illegality of this commerce, because according to Russian laws, "extraterrestrial bodies that have fallen on the territory of the Russian Federation are the cultural heritage and property of Russia." So, within the framework of our topic, chlorapatite, and especially merrilite, may turn out to be indicators of the extraterrestrial (meteoritic) genesis of the rock containing them. 1.3. Sulfate and silica Since one of the components included in the anionic part of apatite may be sulfate, some apatites contain sulfur. Interest in the entry of sulfur into apatite has increased markedly after the recent eruptions of volcanoes El Chicon (in Mexico) and Pinatubo (in the Philippines), whose lavas contained anhydrite, and large masses of sulfur were released into the atmosphere. Previously, anhydrite was not noted in effusions, since it was quickly dissolved by meteoric waters or disappeared even earlier - during post-magmatic hydrothermal processes. Therefore, a more stable early apatite is much more suitable for studying the magmatic geochemistry of sulfur. In 2004, Hannoverian geochemists [119] made special experiments at 200 MPa and 800–1.100 oC with glass imitating the composition of rhyolite (SiO2 = 77.34, Na2O = 4.24, K2O = 4.85%), but without apatite components. 4 weight % apatite was added to the melt of this glass. (CaO = 55.80, P2O5 = 42.10, Cl = 0.04, F = 3.22 %). Subsequent addition of up to 0.5% S to the system under oxidizing conditions increased the solubility of apatite in the melt, since part of the Ca was bound to sulfur. If in the experiment the sulfur content in the melt was reduced, then with a decrease in temperature, the sulfur content in apatite also decreased. The molar coefficient of sulfur distribution between apatite and the melt Kds increased from 4.5 to 14.2 with a decrease in temperature under conditions of anhydrite undersaturation. However, in the supersaturated anhydrite melt, at 800 oC, the Kds was lower – about 8. Thus, the Kds value depends not only on the temperature, but also on the sulfur content in the melt. As a result, these first experiments showed that, according to the sulfur content in apatite, it is possible to judge the evolution of sulfur contents in magmatic systems under oxidizing conditions. In 2011, Italian volcanologists studied 14 samples from the lavas of two historical eruptions of Vesuvius – 1631 and 1872. It was possible to identify 5 varieties of apatite, each of which not only differs in association with other minerals, but also has clear differences in color, structure and composition [123]. For example, apatites of type-1 (yellow) and type-4 (green) are associated with large-crystalline clinopyroxene and phlogopite, and apatites of type 2 (transparent and colorless) – with microcrystalline minerals of the cancrinite group, feldspar and opaque ore. On Si–S–P/100 triangles, these types form almost non-overlapping fields. For example, the poorest in silicon and the most sulfurous are apatites of type 3 (transparent and colorless), and the most siliceous are apatites of type 5 (aquamarine color). So, quite noticeable admixtures of silicon and sulfur, replacing phosphorus, allow us to distinguish well between different types of apatites from volcanic eruptions. In 2013, Yekaterinburg geologists [1] described the Middle Devonian epidote-containing porphyries of trachyandesite-trachydacite composition forming a dike field in the zone of the active continental margin of the Middle Ural segment of the Ural folded belt. A remarkable feature of these rocks is the presence of sulfur-containing apatite and igneous anhydrite. Apatite has an oscillatory type of zoning for sulfur and progressive for fluorine. The SO3 content varies from 0.5 to 1.5 wt. % in cores and from 0.05 to 0.2 wt. % in the borders of apatite phenocrysts. It is believed that the crystallization of sulfur-rich apatite occurred at 850–800 °C and 10–8 kbar. Poor in S apatite in paragenesis with anhydrite was formed at 725–700° and 7.5–6 kbar. The initial magma was very rich in water, sulfate-saturated and oxidized with oxygen fugacity = 0.5–1.5 log units above the NNO buffer. The source of sulfur could be both sulfide-enriched rocks of the lower crust and emanations of mantle fluids separating from mafic magmas. In the work of Ural geologists [73] it was noted that the rocks of the Late Paleozoic Khudolazov complex, specialized for Cu-Ni mineralization, are characterized by apatites with the highest contents of sulphate sulfur (up to 0.65 wt.%), isomorphic with phosphorus in the composition of the anionic complex (PO4)3–. These apatites have a reduced fluorine content (< 2 wt.%) with a noticeable chlorine content (up to 1.50 wt.%). Such a character of the ratio of halogens and sulfur in apatites can be recommended as one of the most effective indicator signs of specialization of Late Paleozoic accretion-collisional gabbrodolerites of the Western Magnitogorsk zone of the Southern Urals for Cu-Ni mineralization. An additional criterion for such specialization is the presence of sulfide minerals rich in Cu, Ni and Co in rocks. According to the review of Novosibirsk chemists [75], the substitution of the phosphate group with the SiO44– silicate group gives the surface of hydroxyapatite (HAP) new properties, therefore, such Si-HAP is widely used in medicine for coating implants, synthesis of biocompatible ceramics, production of medicines and cosmetics, etc. [75, p. 478]: "The high surface activity of Si-HAP <...> is associated with the formation of silanol groups -SiOH <...> on the surface of the material. Due to differences in the sizes of terahedral anions (distances Si–O = 0.166 nm, P–O = 0.155 nm), the substitution of phosphate ion for silicate is accompanied by microstresses in the structure of apatite. As a result, silicate ions are segregated on the surface of the particle". During the mechanochemical synthesis of Si-HAP in a planetary mill, where monetite СаНРО4, CaO and amorphous silica gel of the composition SiO2 nH2O (n = 0.59–0.71) were mixed, followed by annealing at 1000 oC in a chamber electric furnace, a product with the formula was obtained: Ca10(PO4)6–x (SiO4)x OH2–x where x was set equal to 0.1, 0.2, 0.4 and 0.8. For example, GAP-08 was obtained mechanochemically according to the equation: 5.2 СаНРО4 + 4.8 СаО + 0.8 SiO2 0.71 H2O = Ca10 (PO4)5.2(SiO4)0.8 (OH)1.2 + 2.568 H2O 1.4. Carbonate Carbonate radicals CO32– can form already in bioapatite (hydroxyapatite), where they can replace both OH– and PO43– in the lattice. Carbonate reduces the crystallinity of apatite and makes it more amorphous and brittle. Carbonate apatites are particularly characteristic of bone tissue. In tooth tissues, they are formed in the immediate vicinity of the enamel-dentine border due to the production of anions by HCO–3 pulp cells (odontoblasts). The formation of HCO–3 is possible as a result of the metabolism of the aerobic microflora of plaque. The accumulation of carbonatapatite over 3-4% of the total mass of hydroxyapatite contributes to the development of caries. With age, the amount of carbonatapatites in the teeth increases. During the formation of most phosphorites, carbonate-apatite (francolite) is formed in diagenesis, as the sediment is buried and removed from the "bottom water/sediment" boundary. In this process, as shown by V. S. Savenko and his daughter A.V. Savenko [56], there is an increase in the carbonate alkalinity of pore waters, as a result of which the initially formed precipitate of calcium phosphate begins to dissolve and return the phosphate group PO43– to the pore waters (and then to the bottom water – "phosphorus respiration of the sediment"), which is replaced by the carbonate group CO32– . .In turn, if phosphorites formed in diagenesis sink into the catagenesis zone, then as our most prominent experts Yu. N. Zanin [25] and V. Z. Bliskovsky [9] have shown, a strong decrease in carbonate content occurs in the composition of francolites, with a corresponding removal of strontium. So, in the aspect of our topic (apatite as an indicator), the content of the CO32–group in apatite can serve as an indicator: (a) the mineral belongs to bioapatites; (b) mineral formation in diagenesis; (c) mineral changes in catagenesis. In addition to the well-known phosphorite deposits, where the phosphate mineral is represented by diagenetic francolite, it is necessary to emphasize the enormous resources of francolite in the weathering crust of carbonatites of the unique Russian Tomtor deposit – with complex niobium-rare earth-scandium ores. The deposit is located in the north of Yakutia and is associated with one of the world's largest carbonatite complexes (Ş=300 km2) with the most significant carbonatite manifestation (12 km2). The massif has a rounded shape in plan and a concentric zonal structure – carbonatites form its central core, and alkaline and nepheline syenites, occupying most of the area of the massif, make up the marginal zone; carbonated iyolites, significantly inferior in area to syenites, are present in the form of a crescent-shaped body separating the syenite marginal zone from the carbonatite core of the massif. Within the Tomtor massif, an indigenous iron ore deposit with resources of more than 1 billion tons has been preliminarily estimated. Francolite ores with P2O5 resources of about 500 million tons have been identified in the weathering crusts of carbonatites with average phosphorus pentoxide contents of about 17%. However, the main wealth of Tomtor is its unique complex rare-metal ores, which contain more than two and a half dozen components in the ore complex and which significantly exceed in their parameters the ores of the richest developed foreign rare-metal deposits of the weathering crust of Arasha and Mount Weld carbonatites.

Список литературы

1. Avdonina I.S., S.V. Pribavkin. Magmatic anhydrite and apatite in epidote-bearing porphyries in the Middle Urals // Lithosphere, 2013, No. 4. P. 62–72. Авдонина И.С., Прибавкин С.В. Магматический ангидрит и апатит в эпидотсодержащих порфирах Среднего Урала // Литосфера, 2013, № 4. С. 62–72.

2. Arzhannikova A.V., Jolivet M., Arzhannikov S. G., Vassallo, R., Chauvet, A. The age of formation and destruction of the Mesozoic-Cenozoic surface alignment in East Sayan // GEOL. and geofiz., 2013, vol. 54, No. 7. Pp. 894–905. Аржанникова А.В., Жоливе М., Аржанников С.Г., Вассалло Р., Шове А. Возраст формирования и деструкции мезозойско-кайнозойской поверхности выравнивания в Восточном Саяне // Геол. и геофиз., 2013, т. 54, № 7. С. 894–905.

3. Barkov A.Y. Nikiforov A.A. A new criterion of search areas of platinum mineralization of the type "Kivakka reef" // Vestn. Voronezh. State University. Ser. Geology, 2015, No. 4. pp. 75–83. [electronic resource]. Барков А.Ю., Никифоров А.А. Новый критерий поиска зон платинометалльной минерализации типа «Кивакка риф» // Вестн. Воронеж. гос. ун. Сер. Геология, 2015, № 4. С. 75–83. [Электронный ресурс].

4. Baturin G.N. Phosphate Accumulation in the Ocean. – M.: Nauka, 2004. 464 pp. Батурин Г.Н. Фосфатонакопление в океане. – М.: Наука, 2004. 464 с.

5. Baturin G.N. Phosphorites at the Bottom of the Oceans. – M.: Nauka, 1978. 232 pp. Батурин Г.Н. Фосфориты на дне океанов. – М.: Наука, 1978. 232 с.

6. Baturin. G.N. Phosphorites of the Sea of Japan // Oceanology, 2012, vol. 52, No. 5. p. 721. Батурин Г.Н. Фосфориты Японского моря // Океанология, 2012, т. 52, № 5. С. 721.

7. Baturin G.N., Dubinchuk V.T. Genesis of uranium minerals and rare earths in the bone detritus of rare metal deposits // Dokl. RAS, 2011, vol. 438, No. 4. pp. 506–509. Батурин Г.Н., Дубинчук В.Т. Генезис минералов урана и редких земель в костном детрите редкометалльных месторождений // Докл. РАН, 2011, т. 438, № 4. С. 506–509.

8. Baturin, G.N., Dubinchuk V.T., Azarova L.A. Anashkina N.A., Ozhogin D.O. The apatite and associated igneous minerals in ferromanganese crusts from the Magellan Mountains // Oceanology, 2006, vol. 46, No. 6. Pp. 922–928. Батурин Г.Н., Дубинчук В.Т., Азарнова Л.А., Анашкина Н.А., Ожогин Д.О. Апатит и ассоциирующие с ним минералы в железомарганцевых корках с Магеллановых гор // Океанология, 2006, т. 46, № 6. С. 922–928.

9. Bliskovsky V.Z. Material Composition and Dressing of Phosphorite Ores. – M.: Nedra, 1983. 200 pp. Блисковский В.З. Вещественный состав и обогатимость фосфоритовых руд. – М.: Недра, 1983. 200 с.

10. Bocharnikova T.D., Kholodnov V.V., Shagalov V.E. Halogens in apatite – as a reflection of the fluid regime in petro- and ore genesis of the Magnitogorsk ore-magmatic complex (Southern Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, № 9. Pp. 28–33. Бочарникова Т.Д., Холоднов В.В., Шагалов В.Е. Галогены в апатите – как отражение флюидного режима в петро- и рудогенезе Магнитогорского рудно-магматического комплекса (Южный Урал) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, № 9. С. 28–33.

11. Gorbachev N.C., Shapovalov Yu.B., Kostyuk V.A. Experimental study of the system apatite–carbonate–H2O at P = 0.5 GPA, T= 1200 oC: efficiency of fluid transport in carbonatites // Dokl. Rus. Acad. Sci., 2017, vol. 473, No. 3. Pp. 331–335. Горбачев Н.С., Шаповалов Ю.Б., Костюк А.В. Экспериментальные исследования системы апатит–карбонат–Н2О при Р = 0.5 ГПА, Т= 1200 oC: эффективность флюидного транспорта в карбонатитах // Докл. РАН, 2017, т. 473, № 3. С. 331–335.

12. Gordienko V.V. Typomorphism of the chemical composition of garnet and apatite granitic pegmatites // Vopr. geokhim. and typomorphism of minerals, 2008, No. 6. Pp. 114–128. Гордиенко В.В. Типоморфизм химического состава граната и апатита гранитных пегматитов // Вопр. геохим. и типоморфизм минералов, 2008, №6. С. 114–128.

13. Grabezhev A.I., Voronina L.K. Sulfur in apatites from copper-porphyry systems of the Urals // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 68–70 (Tr. IGG URO RAN, vol. 159). Грабежев А.И., Воронина Л.К. Сера в апатитах из медно-порфировых систем Урала // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 68–70 (Тр. ИГГ УрО РАН, вып. 159).

14. Gusev A.I., Gusev N.I. Magnetite-apatite mineralization in the Western part of the Central Asian fold belt // Modern high technologies, 2013, no 2. Pp. 74–78. Гусев А.И., Гусев Н.И. Апатит-магнетитовое оруденение западной части Центрально-Азиатского складчатого пояса // Современные наукоемкие технологии, 2013, №2. С. 74–78.

15. Gusev A. I., Gusev N.I. Geochemistry of ores and minerals pegmatite manifestations of Danilovskoe (Gorny Altai) // Intern. Journ. of applied and fundamental research, 2016, №10. Pp. 102–106. Гусев А.И., Гусев Н.И. Геохимия руд и минералов пегматитового проявления Даниловское (Горный Алтай) // Международный журнал прикладных и фундаментальных исследований, 2016, №10. С. 102–106.

16. Denisova Yu. V. Thermometry apatite from the Nikolaishor granite massif (polar Urals) // 7 readings in the memory of corresponding member. RAS S.N. Ivanov: All-Russian scientific conference dedicated to the 70th anniversary of the founding of the Ural branch of the Russian mineralogical society, Yekaterinburg, 2018, IGG URO RAN. – Yekaterinburg: IGG URO RAN, 2018. Pp. 61–63. Денисова Ю.В. Термометрия апатита из гранитов Николайшорского массива (Приполярный Урал) // 7 Чтения памяти член-корр. РАН С.Н. Иванова: Всероссийская научная конференция, посвященная 70-летию основания Уральского отделения Российского минералогического общества, Екатеринбург, 2018, ИГГ УрО РАН. – Екатеринбург: ИГГ УрО РАН, 2018. С. 61–63.

17. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Isotopic studies of bone remains of Yakut Pleistocene horses // Ice and snow, 2013, № 2. Pp. 93–101. Ди Маттео А., Кузнецова Т.В., Николаев В.И., Спасская Н.Н., Якумин П. Изотопные исследования костных остатков якутских плейстоценовых лошадей // Лед и снег, 2013, № 2. С. 93–101.

18. Dubyna O.V., Krivak S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Y. A. regularities of REE, Y, and Sr in apatite endogenous deposits of the Ukrainian shield (according to the ICP-MS) // Mineral. W., 2012, vol. 34, No. 2. Pp. 80–99. Дубина О.В., Кривдiк С.Г., Самчук А.I., Красюк О.П., Амашукелi Ю.А. Закономерности распределения REE, Y и Sr в апатитах эндогенных месторождений Украинского щита (по данным ICP-MS) // Мiнерал. ж., 2012, т. 34, № 2. С. 80–99.

19. Dubyna O.V., Krivak S. G., Sobolev V.B. Isomorphism in TR-apatite of the Chernigov carbonatite massif. Izomorphism in TR-apatites of the Chernigivsky carbonatite massif // Mineral. Zh., 2012. vol. 34, No. 3. Pp. 22–33. Дубина О.В., Кривдiк С.Г., Соболев В.Б. Iзоморфiзм в TR-апатитах Чернiгiвського карбонатитового масиву // Мiнерал. ж., 2012. т. 34, №3. С. 22–33.

20. Dudkin O.B. Apatite as a possible indicator of the sequence of formation of rocks of the Khibiny deposits // Petrology and mineralogy of the Kola region: 5 All-Russian. Fersman scientific session, dedicated to the 90th anniversary of the birth of E.K. Kozlov, Apatity 14–15 Apr., 2008. – Apatity: Geol. Inst. KSC RAS, 2008. Pp. 94–97. Дудкин О.Б. Апатит как возможный индикатор последовательности формирования пород хибинских месторождений // Петрология и минерагения Кольского региона: 5 Всеросс. Ферсмановская научная сессия, посвящ. 90-летию со дня рождения д. г.-м. н. Е. К. Козлова, Апатиты 14-15 апр., 2008. – Апатиты: Геол. ин-т КНЦ РАН, 2008. С. 94–97.

21. Dudkin O.B. REE of the Khibiny massif // Geology and Strategic Minerals of the Kola region: Proceedings of 10 Vseros. (with intern. participation) Fersman scientific session dedicated to 150th anniversary of the birth of Academician V.I. Vernadsky, Apatity, 7–10 Apr., 2013. – Apatity: Geol. Inst. KSC RAN, 2013. Pp. 124–127. Дудкин О.Б. Редкие земли Хибинского массива // Геология и стратегические полезные ископаемые Кольского региона: Труды 10 Всерос. (с междун. участием) Ферсмановской научной сессии, посвящ. 150-летию со дня рождения акад. В. И. Вернадского, Апатиты, 7–10 апр., 2013. – Апатиты: Геол. ин-т КНЦ РАН, 2013. С. 124–127.

22. Dudchenko N.O. The peculiarity of the formation of a nitrogen-based radical in biogenic hydroxylapatite on the EPR data // Mineral. Zh., 2011, vol. 33, No. 3. Pp. 46–49. Дудченко Н.О. Особливостi формування азотвмiсного радикала у зразках бiогенного гiдроксилапатиту за даними ЕПР // Мiнерал. ж., 2011, т. 33, №3 . С. 46–49

23. Erokhin Yu.V., Ivanov K.S., Ponomarev V.S. Goyazite from metamorphic rocks of the Pre-Jurassic basement of the West Siberian megabasin // Vestn. Ural. branch Ros. mineral. Soc., 2016, No. 13. Pp. 52–61. Ерохин Ю.В., Иванов К.С., Пономарев В.С. Гояцит из метаморфических пород доюрского фундамента Западно-Сибирского мегабассейна // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2016, № 13. С. 52–61.

24. Erokhin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleimenov D.A., Berzin S.V. Phosphates from meteorites "Ural", "Ozernoye" and "Chelyabinsk" // Vestn. Ural. branch Ros. mineral. Soc., 2014, No. 11. Pp. 39–47. Ерохин Ю.В., Хиллер В.В., Иванов К.С., Бурлаков Е.В., Клейменов Д.А., Берзин С.В. Фосфаты из метеоритов "Урал", "Озерное" и "Челябинск" // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2014, № 11. С. 39–47.

25. Zanin Yu.N., Zamiralov A.G., Fomin A.N., Pisarev G.M. Strontium in the structure of sedimentary apatite in the process of catagenesis // Dokl. Russian Academy of Sciences, 1997, vol. 352, No. 2. Pp. 235–237. Занин Ю.Н., Замирайлова А.Г., Фомин А.Н., Писарева Г.М. Стронций в структуре осадочного апатита в процессах катагенеза // Докл. РАН, 1997, т. 352, № 2. С. 235–237.

26. Ivanovskaya A.V., Zanin Yu. N. Phosphorites of the stalinogorsk formation of the Middle Riphean Turukhansk uplift, Eastern Siberia // Lithosphere, 2008, №1. Pp. 90–99. Ивановская А.В., Занин Ю.Н. Фосфориты стрельногорской свиты среднего рифея Туруханского поднятия, Восточная Сибирь // Литосфера, 2008, №1. С. 90–99.

27. Ilyin V.A. Ancient (Ediacaran) Phosphorites. – M.: GEOS, 2008. 160 Pp. (Tr. GIN RAS, vol. 587). Ильин А.В. Древние (эдиакарские) фосфориты. – М.: ГЕОС, 2008. 160 с. (Тр. ГИН РАН, вып. 587).

28. Kalinichenko E.A., Brik A.B., Kalinichenko A. M., Gatsenko V.A., Frank-Kamenetskaya O.V., Bagmut N.N. The particular properties of apatites from different species of the Chemerpole (Middle Near-Bug) according radiospectroscopy // Mineral. Z., 2014, vol. 36, No. 4. Pp. 50–65. Калиниченко Е.А., Брик А.Б., Калиниченко А.М., Гаценко В.А., Франк-Каменецкая О.В., Багмут Н.Н. Особенности свойств апатитов из разных пород Чемерполя (Среднее Побужье) по данным радиоспектроскопии // Мiнерал. ж., 2014, т. 36, № 4. С. 50–65.

29. Katkova V.I. Pseudomorphs of bioapatite on octocalciumphosphate // Vestn. In-ta geol. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2012, No. 6. Pp. 11–14. Каткова В.И. Псевдоморфозы биоапатита по октакальцийфосфату // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2012, № 6. С. 11–14.

30. Kiseleva D.V., Zaitseva M.V. Determination of the trace element composition of REE in biogenic apatite of Upper Devonian conodonts (Southern Urals) by the ISP-MS method with laser ablation // Ural Mineralogical School, 2017, No. 23. Pp. 98–101. Киселева Д.В., Зайцева М.В. Определение микроэлементного состава РЗЭ в биогенном апатите верхнедевонских конодонтов (Южный Урал) методом ИСП-МС с лазерной абляцией // Уральская минералогическая школа, 2017, № 23. С. 98–101.

31. Kogarko L.N. Rare-earth potential of apatite in deposits and waste products of apatite-nepheline ores of the Khibiny massif // Tr. Fersman sci. sessions of the GI KSC RAN, 2019, No. 16. Pp. 271–275. Когарко Л.Н. Редкоземельный потенциал апатита в месторождениях и отходах производства апатито-нефелиновых руд Хибинского массива // Тр. Ферсмановской науч. сессии ГИ КНЦ РАН, 2019, № 16. С. 271–275.

32. Kolonin R.G., Shironosova G.P., Palessky S.V., Fedorin M.A., Kandinv M.N., Pohova V.I., Repina S.A., Shvetsova I.V. Rare-earth elements of Ural monazites and models of physico-chemical conditions of mineral formation // Mineralogy of the Urals-2007: Mater. 5 Vseros. Meeting, Miass, August 20-25, 2007: Collection of scientific articles. – Miass, Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. Pp. 246–250. Колонин Р.Г., Широносова Г.П., Палесский С.В. , Федорин М.А., Кандинов М.Н., Попова В.И., Репина С.А., Швецова И.В. Редкоземельные элементы монацитов Урала и модели физико-химических условий минералообразования // Минералогия Урала-2007: Матер. 5 Всерос. совещ., Миасс, 20–25 августа 2007 г.: Сборник научных статей. – Миасс, Екатеринбург: УрО РАН, 2007. С. 246–250.

33. Konovalova E.V., Pribilkin S.V., Zamyatin D.A., Kholodnov V.V. Sulfur in apatites of granites of the Shartash massif and the Berezovsky gold deposit // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 134–138 (Tr. IGG URO RAN, vol. 159). Коновалова Е.В., Прибавкин С.В., Замятин Д.А., Холоднов В.В. Сера в апатитах гранитов Шарташского массива и Березовского золоторудного месторождения // Ежегодник-2011: Сборник. – Екатеринбург: ИГГ УрО РАН, 2012. С. 134–138 (Тр. ИГГ УрО РАН, вып. 159).

34. Konovalova E. V., Kholodnov V. V., Pribavkin S. V., Zamyatin D. A. Elements-mineralizer (sulfur and Halogens) in Apatity Shartash granite massif and Berezovsky gold deposits // Lithosphere, 2013, No. 6. Pp. 65–72. Коновалова Е.В., Холоднов В.В., Прибавкин С.В., Замятин Д.А. Элементы-минерализаторы (сера и галогены) в апатитах Шарташского гранитного массива и Березовского золоторудного месторождения // Литосфера, 2013, № 6. С. 65–72.

35. Konopleva N.G., Ivanyuk G.Yu., Pakhomovsky Ya.A., Yakovenchuk V.N., Mikhailova Yu.A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula) // Zap. Rus. Mineral. Soc. 2013, vol. 142, No. 3. Pp. 65–83. Коноплева Н.Г., Иванюк Г.Ю., Пахомовский Я.А., Яковенчук В.Н., Михайлова Ю.А. Типоморфизм фторапатита в Хибинском щелочном массиве (Кольский полуостров) // Зап. Рос. минерал. о-ва, 2013, т. 142, № 3. С. 65–83.

36. Korinevsky V.G., Filippova K.A., Kotlyarov V.A., korinevsky E.V., Artemyev D.A. Trace elements in minerals of some rare species of the Southern Urals // Lithosphere, 2019, vol. 19, No. 2. Pp. 269–292. Кориневский В.Г., Филиппова К.А., Котляров В.А., Кориневский Е.В., Артемьев Д.А. Элементы-примеси в минералах некоторых редко встречающихся пород Южного Урала // Литосфера, 2019, т. 19, №2. С. 269–292.

37. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. Halogens and sulfur in hydroxyl-bearing minerals in East Verkhoturye diorite-granodiorite array of mineralizatsii in the form of native copper (Middle Urals) // Yearbook-2017: the Collection. – Ekaterinburg: IGG URO RAN, 2018. Pp. 189–193 (Tr. IGG URO RAN, vol. 165). Коровко А.В., Холоднов В.В., Прибавкин С.В., Коновалова Е.В., Михеева А.В. Галогены и сера в гидроксилсодержащих минералах Восточно-Верхотурского диорит-гранодиоритового массива с минерализаций в виде самородной меди (Средний Урал) // Ежегодник-2017: Сборник. – Екатеринбург: ИГГ УрО РАН, 2018. С. 189–193 (Тр. ИГГ УрО РАН вып. 165).

38. Krestianinov E.A. Apatite as an indicator of the genesis of carbonatite Mayksk manifestations (South Ural) // Metallogeny of ancient and modern oceans, 2011, №1. Pp. 252–255. Крестьянинов Е.А. Апатит как индикатор генезиса Маукского карбонатитового проявления (Южный Урал) // Металлогения древних и современных океанов, 2011, №1. С. 252–255.

39. Lemesheva S.A., Golovanova O.A., Turenkov S. V. Study of the characteristics of the composition of bone tissues // Chemistry for sustainable development, 2009, vol. 17, No. 3. Pp. 327–332. Лемешева С.А., Голованова О.А., Туренков С.В. Исследование особенностей состава костных тканей человека // Химия в интересах устойчивого развития, 2009, т. 17, № 3. С. 327–332.

40. Liferovich, R.P., Bayanova T. B., Gogol O.V., Sherstennikov O.G., Delenitsin O.A.. Genesis intersects phosphate mineralization within the Kovdor will phoscorite-carbonatite complex // Vestn. MSTU. Tr. Murmansk. State Technical University. 1998, vol. 1, No. 3. Pp. 61–68. Лиферович Р.П., Баянова Т.Б., Гоголь О.В., Шерстеникова О.Г., Деленицин О.А. Генезис посткарбонатитовой фосфатной минерализации в пределах Ковдорского фоскорит-карбонатитового комплекса // Вестн. МГТУ. Тр. Мурманск. гос. техн. ун–та, 1998, т. 1, №3. С. 61–68.

41. Lobova E.V. Evolution of amphibole and apatite from rocks of the Reftinsky complex (Eastern zone of the Middle Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, No. 9. Pp. 84–87, 152. Лобова Е.В. Эволюция амфибола и апатита из пород Рефтинского комплекса (Восточная зона Среднего Урала) // Вестн. Урал. отд-ния Рос. минерал. о-ва, 2012, №9. С. 84–87, 152.

42. Malkov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral composition and trace elements of fossilized bones of sea lizards located in Kargort (Komi Republic) // Vestn. Inst geol. Komi SC URO RAN, 2004, No. 1. Pp. 12–16. Мальков Б.А., Лысюк А.Ю., Иванова Т.И. Минеральный состав и микроэлементы окаменелых костей морских ящеров местонахождения Каргорт (Республика Коми) // Вестн. Ин-та геол. Коми НЦ УрО РАН, 2004, № 1. С. 12–16.

43. Maslov A.V. Pre-Ordovician phosphorites and paleoceanography: a brief geochemical excursion into the systematics of rare earth elements // Lithosphere, 2017, No. 1. Pp. 5–30. [electronic resource]. Маслов А.В. Доордовикские фосфориты и палеоокеанография: краткий геохимический экскурс в систематику редкоземельных элементов // Литосфера, 2017, № 1. С. 5–30. [Электронный ресурс].

44. Maslov A.V. Phosphorites of the Neoproterozoic–Cambrian and paleoceanography: data on the distribution of rare earth elements // Yearbook-2015: Collection. - Yekaterinburg: IGG URO RAN, 2016. pp. 102-107. (Tr. IGG URO RAN, issue 163). Маслов А.В. Фосфориты неопротерозоя–кембрия и палеоокеанография: данные по распределению редкоземельных элементов // Ежегодник-2015: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2016. С. 102–107. (Тр. ИГГ УрО РАН, вып. 163).

45. Mineev D.A. Lanthanides in Minerals. – M.: Nedra, 1969. 182 pp. Минеев Д.А. Лантаноиды в минералах. — М.: Недра, 1969. 182 с.

46. Mineev D.A. Lanthanides in Ores of Rare-Earth and Complex Deposits – M.:Nauka, 1974. 237 pp. Минеев Д.А. Лантаноиды в рудах редкоземельных и комплексных месторождений – М.:Наука, 1974. 237 с.

47. Oparin N.A., Oleinikov O.B., Baranov L.N. Apatite from kimberlite pipe Manchary (Central Yakutia) // Natural resources of the Arctic and Subarctic, 2020, vol. 25, No. 3. Pp. 15–24. Опарин Н.А., Олейников О.Б., Баранов Л.Н. Апатит из кимберлитовой трубки Манчары (Центральная Якутия) // Природные ресурсы Арктики и Субарктики, 2020, т. 25, № 3. С. 15–24.

48. Pavlenko Y.V. Phosphates Streltsovsky ore field in South-Eastern Transbaikalia (part II) // Vestn. Zabaikalsky State University, 2021, vol. 27. No.3. pp. 42-52. Павленко Ю.В. Фосфаты Стрельцовского рудного поля Юго-Восточного Забайкалья (часть II) // Вестн. Забайкальского гос. ун-та, 2021, т. 27. №3. С. 42–52.

49. Potapov S.S. Repina S.A., Potapov D.S. Mineralogical and chemical features of the tooth of a mammoth // Mineralogy of technogenesis, 2007, vol. 8. Pp. 139–145. Потапов С.С., Репина С.А., Потапов Д.С. Минералого-химические особенности зуба мамонта // Минералогия техногенеза, 2007, т. 8. С. 139–145.

50. Rakhimov I.R., Kholodnov V.V., Salikhov D.N. Accessory apatite from gabbroids late Devonian–early Carboniferous West of the Magnitogorsk zone: morphology and chemical composition, indicator metallogenic role // Geological Bulletin, 2018, no. 3. Pp. 109–123. Рахимов И.Р., Холоднов В.В., Салихов Д.Н. Акцессорные апатиты из габброидов позднего девона–раннего карбона Западно-Магнитогорской зоны: особенности морфологии и химического состава, индикаторная металлогеническая роль // Геологический вестник, 2018, № 3. С. 109–123.

51. Ripp G.S., Khodyreva E.V., Isbroken I.A., Ramelow M.O., Lastochkin E.I., Posokhov V.F. Genetic nature of the apatite-magnetite ores of the North-Gurvunur deposit (Western Transbaikalia) // Geol. rudn. deposits, 2017, vol. 59, No. 5. Pp. 419–33. Рипп Г.С., Ходырева Е.В., Избродин И.А., Рампилов М.О., Ласточкин Е.И., Посохов В.Ф. Генетическая природа апатит-магнетитовых руд Северо-Гурвунурского меторождения (Западное Забайкалье) // Геол. рудн. м-ний, 2017, т. 59, № 5. С. 419–433.

52. Rosen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Calculation of the mineral composition of phosphate to facial reconstructions of the chemical analyses (program MINILITH) // Type of sedimentogenesis and lithogenesis and their evolution in the history of the Earth: materials of the 5th all-Russian lithological conference, Ekaterinburg, 14–16 Oct. 2008. Vol. 2. – Ekaterinburg: URO RAN, 2008. Pp. 200–203. Розен О.М., Аббясов А.А., Батурин Г.Н., Литвинова Т.В. Расчет минерального состава фосфоритов для фациальных реконструкций по химическим анализам (программа MINILITH) // Типы седиментогенеза и литогенеза и их эволюция в истории Земли: Материалы 5 Всероссийского литологического совещания, Екатеринбург, 14–16 окт. 2008. Т. 2. – Екатеринбург: УрО РАН, 2008. С. 200–203.

53. Rosen, O. M., Solov'ev A. V. Fission-track dating of apatite from the core of the deep wells of the Siberian platform – an indicator of the intense heating of the sedimentary cover during the intrusion of platobasalts // Geology, Geophysics and mineral resources of Siberia: materials of the 1st Scientific and practical conference, Novosibirsk, 29-31 Jan., 2014. Vol. 2. – Novosibirsk: SNIIGGIMS, 2014. Pp. 162–163. Розен О.М., Соловьев А.В. Трековое датирование апатитов из керна глубоких скважин Сибирской платформы — показатель интенсивного прогрева осадочного чехла во время внедрения платобазальтов // Геология, геофизика и минеральное сырье Сибири: Материалы 1 Научно-практической конференции, Новосибирск, 29-31 янв., 2014. Т. 2. – Новосибирск: СНИИГГМС, 2014. С. 162–163.

54. Ryabov V.V., Simonov O.N., Snisar S.G. Fluorine and chlorine in apatites, micas and amphiboles of the trap layered intrusions of the Siberian platform // Geol. and geofiz., 2018, vol. 59, No. 4. Pp. 453–466. [Electronic resource]. Рябов В.В., Симонов О.Н., Снисар С.Г. Фтор и хлор в апатитах, слюдах и амфиболах расслоенных трапповых интрузий Сибирской платформы // Геол. и геофиз., 2018, т. 59, № 4. С. 453–466. [Электронный ресурс].

55. Savelyeva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatites of the Onguren carbonatite complex (Western Baikal region): geochemistry and composition of accessory minerals//Geol. rudn. deposits, 2017, vol.59. No. 4. Pp. 319–346. Савельева В.Б., Базарова Е.П., Шарыгин В.В., Карманов Н.С., Канакин С.В. Метасоматиты Онгуренского карбонатитового комплекса (Западное Прибайкалье): геохимия и состав акцессорных минералов // Геол. рудн. м-ний, 2017, т. 59. № 4. С. 319–346.

56. Savenko A.V. On the physico-chemical mechanism of diagenetic formation of modern ocean phosphorites // Geochemistry, 2010, No. 2. Pp. 208–215. Савенко А.В. О физико-химическом механизме диагенетического формирования современных океанских фосфоритов // Геохимия, 2010, №2. С. 208–215.

57. Savenko V.S., Savenko A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle. – M.: GEOS, 2007. 248 Pp. Савенко В.С., Савенко А.В. Геохимия фосфора в глобальном гидрологическом цикле. – М.: ГЕОС, 2007. 248 с.

58. Savko K.A., Pilyugin S.M., Novikova M.A. Composition of apatite from rocks of different ages of ferruginous-siliceous formations of the Voronezh crystalline massif – as an indicator of the fluid regime of metamorphism / Vestn. Voronezh. state University. Ser. Geology. 2007, No. 2. Pp. 78–93. Савко К.А., Пилюгин С.М., Новикова М.А. Состав апатита из пород разновозрастных железисто-кремнистых формаций Воронежского кристаллического массива – как показатель флюидного режима метаморфизма / Вестн. Воронеж. гос. ун-та. Сер. Геология. 2007, № 2. С. 78–93.

59. Safin T. H., Dubinin A.V., Kuznetsov, A. B., Rimskaya-Korsakova, M. N. A study of the age of biogenic apatite from nodules of the Cape basin by the strontium isotope chemostratigraphy and establishing growth rates oxyhydroxide phases // Marine studies: 8th conference of young scientists, Vladivostok, June 6–9, 2018: conference proceedings. – Vladivostok: Dalnauka, 2018. Pp. 102–106. Сафин Т.Х., Дубинин А.В., Кузнецов А.Б., Римская-Корсакова М.Н. Исследование возраста биогенного апатита из конкреций Капской котловины методом стронциевой изотопной хемостратиграфии и установление скоростей роста оксигидроксидных фаз // Океанологические исследования: 8 конференция молодых ученых, Владивосток, 6-9 июня, 2018: Материалы конференции. – Владивосток: Дальнаука, 2018. С. 102–106.

60. Serova A.A., Spiridonov E.M. Three types of apatite in Norilsk sulfide ores // Geochemistry, 2018, No. 5. Pp. 474–484 [Electronic resource]. Серова А.А., Спиридонов Э.М. Три типа апатита в норильских сульфидных рудах // Геохимия, 2018, № 5. С. 474–484 [Электронный ресурс].

61. Soloviev A.V. Study of Tectonic Processes in the Areas of Convergence of Lithospheric Plates by Methods of Isotope Dating and Structural Analysis: Abstract. dis. for the application of a scientist. degree of Doctor of Geological Sciences – M.: GIN RAS, 2005. 49 pp. Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит методами изотопного датирования и структруного анализа: Автореф. дис. на соискание учен. степени доктора геол.-мин. наук. – М.: ГИН РАН, 2005. 49 с.

62. Soloviev V.A., Garver J.I. Post-collisional exhumation of the complexes in Northern Kamchatka (Lesnovsk lifting) // Dokl. Russian Academy of Sciences, 2012, vol. 443, No. 1. Pp. 92–96. Соловьев А.В., Гарвер Дж.И. Постколлизионная эксгумация комплексов Северной Камчатки (Лесновское поднятие) // Докл. РАН, 2012, т. 443, № 1. С. 92–96.

63. Soroka E.I., Leonova L.V. Anfimov A.L., Apatite shell of the Devonian foraminifera (Safianovsk copper-pyrite deposit, the Middle Urals) // Izv. Uralsk. state. Gorny University, 2018, No. 3(51). Pp. 34–39. Сорока Е.И., Леонова Л.В., Анфимов А.Л. Апатитовые раковины девонских фораминифер (Сафьяновское медноколчеданное месторождение, Средний Урал) // Изв. Уральск. гос. Горного ун-та, 2018, № 3(51). С. 34–39.

64. Taylor S.R., McLennan S.M. Continental Crust: its Composition and Evolution: Russian translation). - M.: Mir, 1988. 384 p. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. – М.: Мир, 1988. 384 с.

65. Felitsyn S.B., Bogomolov E.S. Isotope-geochemical systematics of gold-bearing biogenic apatites from the Lower Paleozoic deposits of Baltoscandia // Dokl. RAS, 2013, vol. 451, No. 6. pp. 680–683. Фелицын С.Б., Богомолов Е.С. Изотопно-геохимические систематики золотосодержащих биогенных апатитов из нижнепалеозойских отложений Балтоскандии // Докл. РАН, 2013, т. 451, № 6. С. 680–683.

66. Faore G. Fundamentals of Isotope Geology: Russian translation. – M.: Mir, 1989. 590 pp. Фор Г. Основы изотопной геологии. – М.: Мир, 1989. 590 с.

67. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Refinement of the atomic structure of apatite of the albinoi tissue of Upper Devonian conodonts // Crystallography, 2014, vol. 59, No. 1. Pp. 46–52. Франк-Каменецкая О.В., Рождественская И.В., Россеева Е.В., Журавлев А.В. Уточнение атомной структуры апатита альбидной ткани позднедевонских конодонтов // Кристаллография, 2014, т. 59, № 1. С. 46–52.

68. Khattak N.U., Asif Khan Mohammad, Ali Nawab, Abbas S. M., Tahirkheli T.K. Evaluation of time and level of implementation of the carbonatite complex Silly Patti, district Malakand, North-Western Pakistan: the limitations of the data dating signs of the fission tracks // Geol. and geofiz., 2012, vol. 53, No. 8. Pp. 964–974. Хаттак Н.У., Азиф Хан Мухаммад, Али Наваб, Аббас С.М., Тахиркели Т. К. Оценка времени и уровня внедрения карбонатитового комплекса Силлай Патти, район Малаканд, Северо-Западный Пакистан: ограничения, накладываемые данными датирования по следам распада // Геол. и геофиз., 2012, т. 53, № 8. С. 964–974.

69. Kholodnov V.V., Konovalova E.V. Morphology and other typomorphic properties of apatite in granitoids of the Urals with quartz-vein gold mineralization // Ural mineralogical school of 2012. – Ekaterinburg: IGG URO RAN, 2012. Pp. 186–191. Холоднов В.В., Коновалова Е.В. Морфология и другие типоморфные свойства апатита в гранитоидах Урала с кварц-жильным золотым оруденением // Уральская минералогическая школа-2012. – Екатеринбург: ИГ и Г УрО РАН, 2012. С. 186–191.

70. Kholodnov V.V., Salikhov D.N., Rakhimov I.R. Halogens and sulfur in apatite – as an indicator of potential ore-bearing late Paleozoic magmatic complexes of the West Magnitogorsk zone on Cr-Ni, Fe-Ti and Au mineralization // Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories, 2016, No. 11. Pp. 168–170. Холоднов В.В., Салихов Д.Н., Рахимов И.Р. Галогены и сера в апатитах – как индикатор потенциальной рудоносности позднепалеозойских магматических комплексов Западно-Магнитогорской зоны на Сг-Ni, Fe-Ti и Au оруденение // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий, 2016, № 11. С. 168–170.

71. Kholodnov V.V., Salikhov D.N., Rakhimov I.R., Shagalov E.S., Konovalova E.V. Halogens and sulfur in apatites as a sign of specialization and Late Paleozoic accretion-collisional gabbro-dolerites of the West Magnitogorsk zone on Cu-Ni and Au mineralization // Yearbook-2014: Collection. – Ekaterinburg: IGG URO RAN, 2015. Pp. 214–221 (Tr. IGG URO RAN, vol. 162). Холоднов В.В., Салихов Д.Н., Рахимов И.Р., Шагалов Е.С., Коновалова Е.В. Галогены и сера в апатитах как признак специализации и позднепалеозойских аккреционно-коллизионных габбро-долеритов Западно-Магнитогорской зоны на Сu-Ni и Au оруденение // Ежегодник-2014: Сборник. – Екатеринбург: ИГ и Г УрО РАН, 2015. С. 214–221 (Тр. ИГГ УрО РАН, вып. 162).

72. Kholodnov V.V., Salikhov D.N., Shagalov E.S., Konovalova E.V., Rakhimov I.R. The Role of halogens and sulfur in apatites in the assessment of potential ore-bearing gabbros of the Late Paleozoic of West Magnitogorsk zone (S. Ural) on Cu-Ni, Fe-Ti and Au mineralization // Mineralogy, 2015, No. 3. Pp. 45–61. Холоднов В.В., Салихов Д.Н., Шагалов Е.С., Коновалова Е.В., Рахимов И.Р. Роль галогенов и серы в апатитах при оценке потенциальной рудоносности позднепалеозойских габброидов Западно-Магнитогорской зоны (Ю. Урал) Сu-Ni, Fe-Ti и Au оруденение // Минералогия, 2015, № 3. С. 45–61.

73. Kholodnov V.V., Shagalov E.S., Konovalova E.V. Geochemistry of apatite in intrusive rocks of the Urals characterized by various ore specialization // Yearbook-2009: Collection. – Yekaterinburg: IGG UrO RAN, 2010. Pp. 190–195 (Tr. IGG UrO RAN, issue 157). Холоднов В.В., Шагалов Е.С., Коновалова Е.В. Геохимия апатита в интрузивных породах Урала, характеризующихся различной рудной специализацией // Ежегодник-2009: Сборник. – Екатеринбург: ИГГ УрО РАН, 2010. С. 190–195 (Тр. ИГГ УрО РАН, вып. 157).

74. Chaika I.F., Izokh A.E. Phosphate-fluoride-carbonate mineralization in rocks of lamproite series of Rybinov massif (Central Aldan): mineralogical and geochemical characteristics and genesis problem // Mineralogy, 2017, vol. 3, No. 1. Pp. 38–51. Чайка И.Ф., Изох А.Э. Фосфатно-фторидно-карбонатная минерализация в породах лампроитовой серии массива Рябиновый (Центральный Алдан): минералого-геохимическая характеристика и проблема генезиса // Минералогия, 2017, т. 3, №1. С. 38–51.

75. Chaikina M. V. Bulina N. V., Prosanov I.Yu., Ishchenko A.V., Medvedko O.V., Aronov A.M. Mechanochemical synthesis of hydroxyapatite with SIO44– substitutions // Chemistry for sustainable development, 2012, vol. 20, No. 4. P. 477-489. Чайкина М.В., Булина Н.В., Просанов И.Ю., Ищенко А.В., Медведко О.В., Аронов А.М. Механохимический синтез гидроксилапатита с SIO44– замещениями // Химия в интересах устойчивого развития, 2012, т. 20, №4. С. 477–489.

76. Chuprov A.A., Badmatsyrenova R.A., Batueva A.A. Apatite mineralization of the Oshurekov gabbro-pegmatite massiv, Transbaikalia: data from LA-ICP-MS analysis // Metallogeny of ancient and modern oceans, 2021, vol. 27. Pp. 144–146. Чупрова А.А., Бадмацыренова Р.А., Батуева А.А. Апатитовая минерализация Ошурековского габбро-пегматитового массива, Забайкалье: данные ЛА-ИСП-МС анализа // Металлогения древних и современных океанов, 2021, т. 27. С. 144–146.

77. Shatrov V.A., Voitsekhovsky G.V. Reconstruction of phosphate formation environments // Geol. and geophys., 2009, vol. 50, No. 10. Pp.1104–1118. Шатров В.А., Войцеховский Г.В. Реконструкция обстановок фосфатообразования // Геол. и геофиз., 2009, т. 50, №10. С.1104–1118.

78. Shironosova G.P., Kolonin G.R. Thermodynamic modeling of REE distribution between monazite, fluorite and apatite // Dokl. RAN, 2013, vol. 450, No. 4. Pp. 455–459. Широносова Г.П., Колонин Г.Р. Термодинамическое моделирование распределения РЗЭ между монацитом, флюоритом и апатитом // Докл. РАН, 2013, т. 450, № 4. С. 455–459.

79. Shnug E., Haneklaus N. Extraction of uranium from phosphate ores: ecological aspects // Atomic engineering abroad, 2013, No. 9. Pp. 20–24. Шнуг Э., Ханеклаус Н. Извлечение урана из фосфатных руд: экологические аспекты // Атомная техника за рубежом, 2013, №9. С. 20–24.

80. Yudovich Ya.E., Ketris M.P. Geochemical Indicators of Lithogenesis (Lithological Geochemistry). – Syktyvkar: Geoprint, 2011. 740 pp. Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). – Сыктывкар: Геопринт, 2011. 740 с.

81. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geochemistry of Рhosphorus. – Syktyvkar: IG Komi SC UrO RAN, 2020. 512 pp. Юдович Я.Э., Кетрис М.П., Рыбина Н.В. Геохимия фосфора. – Сыктывкар: ИГ Коми НЦ УрО РАН, 2020. 512 с.

82. Adcock C.T., Hausrath E.M., Forster P.M., Tschauner O., Sefein K.J. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation // Amer. Mineral., 2014, vol. 99, № 7. P. 1221–1232.

83. Barham M., Murray J., Joachimski M.M., Williams D.M. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean // J. Geol. Soc., 2012, vol.169, № 2. P. 119–122.

84. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor., 2002, vol. 76, № (1). P. 45–69.

85. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland // Aust. J. Earth Sci., 2001, vol. 48. Р. 603–619.

86. Bromiley G.D. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? // Lithos, 2021, vol. 384–385. 105900.

87. Broom-Fendley S., Heaton T., Wall F., Gunn G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi // Chem. Geol., 2016. 440. P. 275–287. [Electronic resource].

88. Brown W.F., Lehr J.R., Smith J.R., William A.F. Crystallography of octocalciumphosphate // J. Amer. Chem. Soc., 1957, vol. 79, № 19. P. 5378–5379.

89. Buggisch W., Joachimsry M.M., Sevastopulo G., Morrow J.R. Mississippian δ13Сkarb and conodont apatite δ18O records – Their relation to the Late Palaeozoic Glaciation // Palaeogeogr., Palaeoclim., Palaeoecol., 2008, vol. 69, № 3–4. P. 273–292.

90. Cavazza W., Federici I., Okay A.I., Zattin M. Apatite fission-track thermochronology of the Western Pontides (NW Turkey) // Geol. Mag., 2012., vol. 149, № 1. P. 133–140.

91. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couёslan C., Xu C., Kynický J., Mumin A.H., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos : An International Journal of Mineralogy, Petrology and Geochemistry, 2017, vol. 274-275. P. 188–213. [Electronic resource].

92. Charlier В., Namurn O., Bolle O., Latypov R., Duchesne J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks // Earth-Science Reviews, 2015, vol. 141. P. 56–81.

93. Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth-Science Reviews, 2015, vol. 149. P. 181–202.

94. Corcoran D.V., Dore A. G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins // Earth-Science Reviews, 2005, vol. 72, № 3–4. P. 129–168.

95. Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites // Contrib. Mineral. Petrology, 2003, vol. 145. P. 568–577.

96. Dutta A., Fermani S., Tekalur S.A., Vanderberg A., Falini G. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions // J. Cryst. Growth., 2011, vol. 336, № 1. P. 50–55.

97. Economou-Eliopoulos M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance // J. Geochem. Explor., 2003, vol. 80, № 1. P. 41–54.

98. Elrick M., Reardon D., Labor W., Martin J., Desrochers A., Pope M. Orbital-scale climate change and glacioeustasy during the earlyate Ordovician (pre-Hirnantian) determined from σ18O values in marine apatite // Geology, 2013, vol. 41, № 7. P. 775–778.

99. Emerson N.R., Simo J.A. (Toni), Byers C.W., Fournelle J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation // Palaeogeogr., Palaeoclim., Palaeoecol., 2004, vol. 210. P. 215–233.

100. Enkelmann E., Ehlers T.A., Buck G., Schatz A.-K. Advantages and challenges of automated apatite fission track counting // Chem. Geol., 2012, vol. 322-323. P. 278–289.

101. Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F. Hydroxyapatite crystal formation in the presence o polysaccharide // Cryst. Growth and Des., 2016, vol. 16, № 3. P. 1247–1255.

102. Finger F., Krenn E., Schulz B., Harlov D., Schiller D. "Satellite monazites" in polymetamorphic basement rocks of the Alps: Their origin and petrological significance // Amer. Mineral., 2016, vol. 101, № 5-6. P. 1094–1103.

103. Galliski M.Á., Černý P., Márquez-Zavala M.F., Chapman R. An association of secondary Al—Li—Be—Ca—Sr phosphates in the San Elas pegmatite, San Luis, Argentina // Can. Miner., 2012, vol. 50, № 4. P. 9339–9342.

104. Garcia A.K. Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability // Precambrian. Res., 2020, vol. 349. 105389.

105. Georgieva S., Velinova N. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria // Докл. Бълг. АН, 2014, vol. 67, № 12. P. 1669–1678.

106. Héran M.-A., Lécuyer C., Legendre S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate // Palaeogeogr., Palaeoclim., Palaeoecol., 2010, vol. 285, № 3-4. P. 331–342.

107. Horie K., Hidaka H., Gauthier-Lafaye F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral // Phys. Chem. Earth, 2008, vol. 33. P. 962–968.

108. Joachimski M.M., von Bitter P.H., Buggisch W. Constraints on Pennsylvanian glacioeustatiс sea-level changes using oxygen isotopes of conodont apatite // Geology, 2006, vol. 34, № 4. Р. 277–280.

109. Kocsis L., Dulai A., Bitner M.A., Vennemann T. Cooper Matthew Geochemical compositions of Neogene phosphatic brachiopods: Implications for ancient environmental and marine conditions // Palaeogeogr., Palaeoclim., Palaeoecol., 2012, vol. 326-328. P. 66–77.

110. Krneta S., Ciobanu C.L., Cook N.J., Ehrig K., Kontonikas-Charos A. A petrogenetic tool // Lithos: An International Journal of Mineralogy, Petrology and Geochemistry, 2016, vol. 262. P. 470–485. [Electronic resource].

111. Lieberovich R.F., Mitchell R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa // Mineral. Mag., 2006, vol. 70, № 5. P. 463–484.

112. Liu Wen-hao, Zhang J., Li Wan-ting, Sun T., Jiang Man-rong, Wang J., Wu Jian-yang, Chen Cao-jun // Diqiu kexue = Earth Sci. : Zhongguo dizhi daxue xuebao Zhongguo dizhi daxue xuebao, 2012, vol. 37, № 5. P. 966–980.

113. Llorens T., Moro M.C. Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfras Sn-W District, Salamanca, Spain // Mineral. Mag., 2012, vol. 76, № 1. P. 1–24.

114. Lu J., Chen W., Ying Y., Jiang S., Zhao K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis // Lithos, 2020, vol. 398. 106276.

115. Matton O., Cloutier R., Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec) // Palaeogeogr., Palaeoclim.., Palaeoecol., 2012, vol. 361-362. P. 73–83.

116. Onac B.P., Effenberger H.S., Breban R.C. High-temperature and “exotic” minerals from the Cioclovina Сave, Romania: A review // Stud. Univer. Babes-Bolyai. Geol., 2007, vol. 52, № 2. P. 3–10.

117. Otero O., Lécuyer C., Fourel F., Martineau F., Mackaye H.T., Vignaud P., Brunet M.l. Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa // Geology, 2011, vol. 39, № 5. P. 435–438.

118. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta, 2019, vol. 246. P. 515–540. [Electronic resource].

119. Parat F., Holtz F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions // Contrib. Mineral. Petrology, 2004, vol. 147. P. 201–212.

120. Pieczka A. Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland // Can. Miner., 2007, vol. 45, N 4. P. 901–914.

121. Piper D.Z. Rare earth elements in the sedimentary cycle: a summary // Chem. Geol. 1974, vol. 14, № 4. P. 285–304.

122. Roda-R. E. Galliski M.A., Roquet M.B., Hatert F., de Parseval P. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: paragenesis, composition and significance // Can. Miner., 2012, vol. 50, № 4. P. 913–931.

123. Rossi M., Ghiara M.R., Chita G., Capitelli F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex // Amer. Mineral., 2011, vol. 96, № 11-12. P. 1828–1837.

124. Schilling K., Brown S.T., Lammers L.N. Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH // Geochim. Cosmochim. Acta, 2018, vol. 241. P. 255-271. [Electronic resource].

125. Sethmann I., Grohe B., Kleebe H.-J. Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation // Mineral. Mag., 2014, vol. 78, № 1. P. 91–100.

126. Soltys A., Giuliani A., Phillips D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories incoherent kimberlites caused by difering emplacement mechanisms // Contrib. Mineral. Petrology, 2020, vol. 175.

127. Song H., Wignal P.B., Tong J., Bond D.P.G., Song H., Lai X., Zhang K., Wang H., Chen Y. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery // Earth Planet. Sci. Letter, 2012, vol. 353-354. P. 12–21.

128. Soudry D., Glenn C.R., Nathan Y., Segal I., VonderHaar D. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation // Earth-Science Reviews, 2006, vol. 78, N 1–2. P. 27–57.

129. Streule M.J., Carter A., Searle M.P., Cottle J.M. Constraints on brittle field exhumation of the Everest-Makalu section of the Greater Himalayan Sequence: implications for models of crustal flow // Tectonics, 2012, vol. 31, № 3. TC3010.

130. O'Sullivan G., Chew D., Kenny G., Henrichs I., Mulligan D. The trace element composition of apatite and its application to detrital provenance studies // Earth-Science Reviews, 2020, vol. 201. 103044.

131. Tang Y.T., Han C.M., Bao Z.K., Huang Y.Y., Hea W., Hua W. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray flourescence microprobe // Spectrochim. Acta, 2005. Part B 60. P. 439–446.

132. Torab F.M., Lehmann B. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology // Mineral. Mag., 2007, vol. 71, № 3. С. 347–363.

133. Tseng Y.-H., Mou Ch.-Y., Chan J.C.C. Solid-state NMR study of the transformation of octocalciumphosphate to hydroxyapatite: A mechanistic model for Central Dark Line Formation // J. Amer. Chem. Soc., 2006, vol. 128. P. 6909–6918.

134. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Zakharov V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia // Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2015, vol. 665. P. 157–163.

135. Ying Y.C., Chen W., Simonetti A., Jiang S.Y., Zhao K.D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China) // Geochim. Cosmochim. Acta, 2020, vol. 280, P. 340–359.

136. Yu Jinjie, Zhang Qi, Mao Jingwen, Yan Shenghao Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China // Acta Geol. Sinica, 2007, vol. 81, № 4. P. 637–648. [Electronic resource].

137. Yu Jin-Jie, Chen Bao-Yun, Che Lin-Rui, Wang Tie-Zhu, Liu Shuai-Jie Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: constraints from apatite chemistry // Geol. J., 2020, vol. 55, № 2. P. 1450–1467.

138. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng Cheng-Biao A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // J. Geodynamics, 2020, vol. 136. 101723.

139. Zhang R.W., Xue C.D., Xue L.P., Liu X. // Yanshi xuebao = Acta Petrol. Sin., 2019, vol. 35, № 5. P. 1407–1422.

Войти или Создать
* Забыли пароль?