An extensive review describes the unique properties of apatite, which, due to the peculiarities of its structure, allows for diverse isomorphic substitutions both in its cationic part (Mn, Sr, Ba, REE, U, etc.) and in the anionic part (CO 2, SO3, SiO 2, OH, F, Cl, etc.). Since these substitutions occur under well-defined conditions in both endogenous thermal and exogenous low-temperature processes, the composition of apatite turns out to be an indicator of these processes. At the same time, the conditions of formation of most igneous and metamorphic rocks can be judged by the composition of accessory apatite, and the genesis of phosphorus ores, both endogenous (Khibiny, Kiruna type, etc.) and exogenous (phosphorites), is judged by the composition of ore-forming apatite. The review is based on the recent "Irish" review 2020, covering 147 literary sources and compiled by 4 co-authors from Dublin and one from Stockholm [130]. Since the compilers of the "Irish" review practically did not use literature in Russian, it became necessary to seriously supplement it with the data given in the domestic literature, as well with a number of foreign works that are not covered by the "Irish" review. The resulting text should make it much easier for the geologist reader to use apatite in practice as a remarkable mineral-an indicator of various geological processes
apatite, carbonate-apatite (francolite), halogens, sulfate, trace elements, REE, manganese, strontium, neodymium, uranium
Bioapatites are commonly called calcium phosphates, which compose the bones and teeth of vertebrates (including humans), as well as vertebrate bones buried in sedimentary rocks, ichthyolites (bone detritus and fish scales) and conodonts – the remains of the dental apparatus of some extinct animals. Modern bioapatites are represented by weakly crystallized hydroxyapatites with a noticeable admixture of carbonate, which increases with diseases of teeth and bones (paradanthosis, coxoarthrosis). As for bioapatites of sedimentary rocks, they have undergone strong changes in diagenesis – and in this respect are similar to fluoro-carbonate apatites (francolites) of phosphorites. As shown by Omsk mineralogists who studied the heads of human femoral bones affected by coxoarthrosis, removed during endoprosthetics, provided to them by doctors, the basis of the bones was poorly crystallized non-stoichiometric apatite. With coxoarthrosis, the content of PO43– decreased in its structure and the content of CO32- increased. [39]. Yekaterinburg geologists [63] accidentally discovered fluorapatite shells of the Eifel-Zhivet foraminifera in thin sections of samples of carbonaceous-siliceous aleuropelites of the ore-containing thickness of the Safyanovsky copper-crusted deposit (Middle Urals). Since phosphate shells were unknown for the Devonian, it was assumed that apatite replaced the original calcite of the shells, but this could not be proved. In 2007, Miass mineralogists [49] studied a mammoth tooth with a size of 9x12x22 cm and a weight of 2.1 kg found in the deposits of the above-floodplain terrace of the Borya river in the Chita region and gave 7 analyses of the tooth material (plates and cement with the same composition of hydroxyapatite, CaO/P2O5 = 1.35) and 2 analyses of the substance of the altered tooth. From the first, we chose analysis No. 8) with an ideal sum of cations equal to 5.01, and from the second, an analysis with such an amount equal to 4.95: Apatite-1 unchanged tooth: (Ca4.7Na0.12Fe0.16 Mn0.03)5.01 [(P2.74S0.07)2.81 O12] (OH, F, Cl) Apatite-2 altered teeth: Ca4.7Na0.20 Mп0.05)4.95 [P2.86 O12] (OH, Cl) The authors concluded [49, p. 142]: "Thus, in the bone tissue of a mammoth tooth <...> there is some phosphorus deficiency compensated by sulfur." In the Lower Kellovian clays on the left bank of the Sola near the village of Kargort (Komi Republic), a bone layer with scattered fragments of highly pyritized skeletons of marine lizards – ichthyosaurs and plesiasaurs was found. According to the study of Syktyvkar geologists and chemists [42], the K = CaO/P2O5 modulus for 7 bone samples was 1.16–1.35, which differs from the value of 1.31 pure francolite [42, p. 12]: "Reduced values of the K modulus in the range 1.16–1.30 indicate a CAO deficiency in the structure of apatite and isomorphic substitutions of it with other elements: Si, Fe and TR." Judging by not very reliable analyses, the SiO2 and Fe2O3 contents in bones are 0.00–12.40 and 1.43–13.53%, and according to semi-quantitative spectral analyses by T.I. Ivanova, the contents (ppm) of Y, La, Yb are 40–200, 40–90 and 4–30, respectively. According to the evidence of St. Petersburg crystallographers [67], the fossil remains of conodonts (conodont elements) were first discovered in 1856 in the Lower Ordovician deposits of St. Peteburg province and described by Ch. Pander, one of the founders of embryology and paleontology in Russia. He suggested that microscopic fossilized remains, which he called "cone-shaped teeth" – conodonts (Lat. conus – cone; Greek. Odus – genus, ontos – tooth), represent teeth and/or jaws of one of the unknown species of ancient fish. Since then, the systematic position of conodonts has been the subject of discussion for more than 150 years. Their study of the Middle Frasnian conodonts by single-crystal X-ray analysis and energy-dispersive X-ray spectral microanalysis showed that they are an organo-mineral composite in which phosphate is fluoro-hydroxypatite. The content of carbonate ions replacing PO43- anions is very insignificant (~1 wt. %). The channels of the structure also contain F– and OH– ions of ions (in a ratio of 3:1), partially replaced by water molecules. As a result , the following phosphate formula with a molecular weight of 1001.35 was proposed: Ca4(Ca5.45Sr0.19Na0.10Sn0.03Pb0.03K0.02 Mg0.01 0.15)[(PO4)5.83(SiO4)0.05(CO3)0.12](F1.54Cl0.04(ОН)0.06)(H2O)0.36 This formula reflects isomorphic substitutions of cations in the Ca2 position, as well as the presence of a cationic vacancy in the structure with f.e. = 0.15. In 2015, the Chinese team [93] performed a fundamental study of the distribution of REE in the bioapatite of conodonts from the Lower Triassic sediments of the Southern. China. It turned out that, firstly, conodonts are more than 100 times enriched in REE compared to bioapatites of modern living organisms, and secondly, that the distribution ("spectra") The REE in conodonts are not at all similar to the spectra of seawater - although the sediments studied were undoubtedly normal marine. It became obvious that, in accordance with a number of previous studies, the processes of diagenesis played a decisive influence on the enrichment of REE conodonts (up to 1000 ppm), which led to adsorption (introduction) and desorption (removal) REE in different phases of sediment, and to strong interelement fractionation of REE, depending strongly on the former redox conditions of the sediment pore waters. Remobilization of REE in sediment usually leads to interelement fractionation, which in different ways leads to enrichment or depletion of LREE, MREE and TREE. In addition, the remobilization of REE can be facilitated by changes in redox conditions, for example, by reducing the dissolution of hydroxides in suboxide and anoxide pore waters. It was found that conodonts contain two diagenetic components of REE, one of which is characterized by a low value of ΣREE (100–300 ppm), high ratios of ΣREE/Th (>1000), strong enrichment with average REE and ratios of Eu/Eu* ~1.5–2.0, and the second – a high value of ΣREE (300–2000 ppm), low ratios of ΣREE /Th (~20-30), small or zero enrichment with average REE and ratios of Ei/Ei* ~1.0. The first component demonstrates the pronounced average convexity of the REE spectrum, which is an early diagenetic signature associated with suboxic conditions, possibly associated with the adsorption of REE on Fe and Mn oxyhydroxides in the shallow subsurface zone of the former sediment. The second component shows a flat distribution of REE, which is similar to solid rock, which indicates the receipt of REE from a terrigenous source (for example, from clay minerals), probably in the range of burial depths from small to large. Thus, this study showed that the bioapatite of conodonts in no case can serve as a "paleomarine" indicator at the turn of the Permian and Triassic, since the distribution of REE in it was entirely determined by the processes of diagenesis. Using essentially the same technique, i.e. relying on cerium anomalies and the Th/U ratio in conodont bioapatite from the South. China, another Chinese collective went much further in the paleo-oceanic interpretation [127]. They claim that compared to other sources of bioapatite, such as ichthyolites, the albid conodont corona provides registration of cerium anomalies in the water column and the Th/U ratio, which are little affected by diagenetic changes. As a result, they built a detailed history of redox reactions. in the Paleocean Pantalassa and Paleothetis in a wider interval of geological time (20 million years): from the Late Permian to the Late Triassic. A well-known oceanic oxygen-free event (OAE) has been identified, coinciding with the extinction of species at the end of Perm. In addition, it was possible to find two more notable OAE – in the Early Triassic (the earliest smitium is the earliest spatium, and the middle spatium) and one weak OAE in the Middle Triassic (anisium).
1. Avdonina I.S., S.V. Pribavkin. Magmatic anhydrite and apatite in epidote-bearing porphyries in the Middle Urals // Lithosphere, 2013, No. 4. P. 62–72. Avdonina I.S., Pribavkin S.V. Magmaticheskiy angidrit i apatit v epidotsoderzhaschih porfirah Srednego Urala // Litosfera, 2013, № 4. S. 62–72.
2. Arzhannikova A.V., Jolivet M., Arzhannikov S. G., Vassallo, R., Chauvet, A. The age of formation and destruction of the Mesozoic-Cenozoic surface alignment in East Sayan // GEOL. and geofiz., 2013, vol. 54, No. 7. Pp. 894–905. Arzhannikova A.V., Zholive M., Arzhannikov S.G., Vassallo R., Shove A. Vozrast formirovaniya i destrukcii mezozoysko-kaynozoyskoy poverhnosti vyravnivaniya v Vostochnom Sayane // Geol. i geofiz., 2013, t. 54, № 7. S. 894–905.
3. Barkov A.Y. Nikiforov A.A. A new criterion of search areas of platinum mineralization of the type "Kivakka reef" // Vestn. Voronezh. State University. Ser. Geology, 2015, No. 4. pp. 75–83. [electronic resource]. Barkov A.Yu., Nikiforov A.A. Novyy kriteriy poiska zon platinometall'noy mineralizacii tipa «Kivakka rif» // Vestn. Voronezh. gos. un. Ser. Geologiya, 2015, № 4. S. 75–83. [Elektronnyy resurs].
4. Baturin G.N. Phosphate Accumulation in the Ocean. – M.: Nauka, 2004. 464 pp. Baturin G.N. Fosfatonakoplenie v okeane. – M.: Nauka, 2004. 464 s.
5. Baturin G.N. Phosphorites at the Bottom of the Oceans. – M.: Nauka, 1978. 232 pp. Baturin G.N. Fosfority na dne okeanov. – M.: Nauka, 1978. 232 s.
6. Baturin. G.N. Phosphorites of the Sea of Japan // Oceanology, 2012, vol. 52, No. 5. p. 721. Baturin G.N. Fosfority Yaponskogo morya // Okeanologiya, 2012, t. 52, № 5. S. 721.
7. Baturin G.N., Dubinchuk V.T. Genesis of uranium minerals and rare earths in the bone detritus of rare metal deposits // Dokl. RAS, 2011, vol. 438, No. 4. pp. 506–509. Baturin G.N., Dubinchuk V.T. Genezis mineralov urana i redkih zemel' v kostnom detrite redkometall'nyh mestorozhdeniy // Dokl. RAN, 2011, t. 438, № 4. S. 506–509.
8. Baturin, G.N., Dubinchuk V.T., Azarova L.A. Anashkina N.A., Ozhogin D.O. The apatite and associated igneous minerals in ferromanganese crusts from the Magellan Mountains // Oceanology, 2006, vol. 46, No. 6. Pp. 922–928. Baturin G.N., Dubinchuk V.T., Azarnova L.A., Anashkina N.A., Ozhogin D.O. Apatit i associiruyuschie s nim mineraly v zhelezomargancevyh korkah s Magellanovyh gor // Okeanologiya, 2006, t. 46, № 6. S. 922–928.
9. Bliskovsky V.Z. Material Composition and Dressing of Phosphorite Ores. – M.: Nedra, 1983. 200 pp. Bliskovskiy V.Z. Veschestvennyy sostav i obogatimost' fosforitovyh rud. – M.: Nedra, 1983. 200 s.
10. Bocharnikova T.D., Kholodnov V.V., Shagalov V.E. Halogens in apatite – as a reflection of the fluid regime in petro- and ore genesis of the Magnitogorsk ore-magmatic complex (Southern Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, № 9. Pp. 28–33. Bocharnikova T.D., Holodnov V.V., Shagalov V.E. Galogeny v apatite – kak otrazhenie flyuidnogo rezhima v petro- i rudogeneze Magnitogorskogo rudno-magmaticheskogo kompleksa (Yuzhnyy Ural) // Vestn. Ural. otd-niya Ros. mineral. o-va, 2012, № 9. S. 28–33.
11. Gorbachev N.C., Shapovalov Yu.B., Kostyuk V.A. Experimental study of the system apatite–carbonate–H2O at P = 0.5 GPA, T= 1200 oC: efficiency of fluid transport in carbonatites // Dokl. Rus. Acad. Sci., 2017, vol. 473, No. 3. Pp. 331–335. Gorbachev N.S., Shapovalov Yu.B., Kostyuk A.V. Eksperimental'nye issledovaniya sistemy apatit–karbonat–N2O pri R = 0.5 GPA, T= 1200 oC: effektivnost' flyuidnogo transporta v karbonatitah // Dokl. RAN, 2017, t. 473, № 3. S. 331–335.
12. Gordienko V.V. Typomorphism of the chemical composition of garnet and apatite granitic pegmatites // Vopr. geokhim. and typomorphism of minerals, 2008, No. 6. Pp. 114–128. Gordienko V.V. Tipomorfizm himicheskogo sostava granata i apatita granitnyh pegmatitov // Vopr. geohim. i tipomorfizm mineralov, 2008, №6. S. 114–128.
13. Grabezhev A.I., Voronina L.K. Sulfur in apatites from copper-porphyry systems of the Urals // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 68–70 (Tr. IGG URO RAN, vol. 159). Grabezhev A.I., Voronina L.K. Sera v apatitah iz medno-porfirovyh sistem Urala // Ezhegodnik-2011: Sbornik. – Ekaterinburg: IGG UrO RAN, 2012. S. 68–70 (Tr. IGG UrO RAN, vyp. 159).
14. Gusev A.I., Gusev N.I. Magnetite-apatite mineralization in the Western part of the Central Asian fold belt // Modern high technologies, 2013, no 2. Pp. 74–78. Gusev A.I., Gusev N.I. Apatit-magnetitovoe orudenenie zapadnoy chasti Central'no-Aziatskogo skladchatogo poyasa // Sovremennye naukoemkie tehnologii, 2013, №2. S. 74–78.
15. Gusev A. I., Gusev N.I. Geochemistry of ores and minerals pegmatite manifestations of Danilovskoe (Gorny Altai) // Intern. Journ. of applied and fundamental research, 2016, №10. Pp. 102–106. Gusev A.I., Gusev N.I. Geohimiya rud i mineralov pegmatitovogo proyavleniya Danilovskoe (Gornyy Altay) // Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy, 2016, №10. S. 102–106.
16. Denisova Yu. V. Thermometry apatite from the Nikolaishor granite massif (polar Urals) // 7 readings in the memory of corresponding member. RAS S.N. Ivanov: All-Russian scientific conference dedicated to the 70th anniversary of the founding of the Ural branch of the Russian mineralogical society, Yekaterinburg, 2018, IGG URO RAN. – Yekaterinburg: IGG URO RAN, 2018. Pp. 61–63. Denisova Yu.V. Termometriya apatita iz granitov Nikolayshorskogo massiva (Pripolyarnyy Ural) // 7 Chteniya pamyati chlen-korr. RAN S.N. Ivanova: Vserossiyskaya nauchnaya konferenciya, posvyaschennaya 70-letiyu osnovaniya Ural'skogo otdeleniya Rossiyskogo mineralogicheskogo obschestva, Ekaterinburg, 2018, IGG UrO RAN. – Ekaterinburg: IGG UrO RAN, 2018. S. 61–63.
17. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Isotopic studies of bone remains of Yakut Pleistocene horses // Ice and snow, 2013, № 2. Pp. 93–101. Di Matteo A., Kuznecova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Izotopnye issledovaniya kostnyh ostatkov yakutskih pleystocenovyh loshadey // Led i sneg, 2013, № 2. S. 93–101.
18. Dubyna O.V., Krivak S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Y. A. regularities of REE, Y, and Sr in apatite endogenous deposits of the Ukrainian shield (according to the ICP-MS) // Mineral. W., 2012, vol. 34, No. 2. Pp. 80–99. Dubina O.V., Krivdik S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Yu.A. Zakonomernosti raspredeleniya REE, Y i Sr v apatitah endogennyh mestorozhdeniy Ukrainskogo schita (po dannym ICP-MS) // Mineral. zh., 2012, t. 34, № 2. S. 80–99.
19. Dubyna O.V., Krivak S. G., Sobolev V.B. Isomorphism in TR-apatite of the Chernigov carbonatite massif. Izomorphism in TR-apatites of the Chernigivsky carbonatite massif // Mineral. Zh., 2012. vol. 34, No. 3. Pp. 22–33. Dubina O.V., Krivdik S.G., Sobolev V.B. Izomorfizm v TR-apatitah Chernigivs'kogo karbonatitovogo masivu // Mineral. zh., 2012. t. 34, №3. S. 22–33.
20. Dudkin O.B. Apatite as a possible indicator of the sequence of formation of rocks of the Khibiny deposits // Petrology and mineralogy of the Kola region: 5 All-Russian. Fersman scientific session, dedicated to the 90th anniversary of the birth of E.K. Kozlov, Apatity 14–15 Apr., 2008. – Apatity: Geol. Inst. KSC RAS, 2008. Pp. 94–97. Dudkin O.B. Apatit kak vozmozhnyy indikator posledovatel'nosti formirovaniya porod hibinskih mestorozhdeniy // Petrologiya i minerageniya Kol'skogo regiona: 5 Vseross. Fersmanovskaya nauchnaya sessiya, posvyasch. 90-letiyu so dnya rozhdeniya d. g.-m. n. E. K. Kozlova, Apatity 14-15 apr., 2008. – Apatity: Geol. in-t KNC RAN, 2008. S. 94–97.
21. Dudkin O.B. REE of the Khibiny massif // Geology and Strategic Minerals of the Kola region: Proceedings of 10 Vseros. (with intern. participation) Fersman scientific session dedicated to 150th anniversary of the birth of Academician V.I. Vernadsky, Apatity, 7–10 Apr., 2013. – Apatity: Geol. Inst. KSC RAN, 2013. Pp. 124–127. Dudkin O.B. Redkie zemli Hibinskogo massiva // Geologiya i strategicheskie poleznye iskopaemye Kol'skogo regiona: Trudy 10 Vseros. (s mezhdun. uchastiem) Fersmanovskoy nauchnoy sessii, posvyasch. 150-letiyu so dnya rozhdeniya akad. V. I. Vernadskogo, Apatity, 7–10 apr., 2013. – Apatity: Geol. in-t KNC RAN, 2013. S. 124–127.
22. Dudchenko N.O. The peculiarity of the formation of a nitrogen-based radical in biogenic hydroxylapatite on the EPR data // Mineral. Zh., 2011, vol. 33, No. 3. Pp. 46–49. Dudchenko N.O. Osoblivosti formuvannya azotvmisnogo radikala u zrazkah biogennogo gidroksilapatitu za danimi EPR // Mineral. zh., 2011, t. 33, №3 . S. 46–49
23. Erokhin Yu.V., Ivanov K.S., Ponomarev V.S. Goyazite from metamorphic rocks of the Pre-Jurassic basement of the West Siberian megabasin // Vestn. Ural. branch Ros. mineral. Soc., 2016, No. 13. Pp. 52–61. Erohin Yu.V., Ivanov K.S., Ponomarev V.S. Goyacit iz metamorficheskih porod doyurskogo fundamenta Zapadno-Sibirskogo megabasseyna // Vestn. Ural. otd-niya Ros. mineral. o-va, 2016, № 13. S. 52–61.
24. Erokhin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleimenov D.A., Berzin S.V. Phosphates from meteorites "Ural", "Ozernoye" and "Chelyabinsk" // Vestn. Ural. branch Ros. mineral. Soc., 2014, No. 11. Pp. 39–47. Erohin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleymenov D.A., Berzin S.V. Fosfaty iz meteoritov "Ural", "Ozernoe" i "Chelyabinsk" // Vestn. Ural. otd-niya Ros. mineral. o-va, 2014, № 11. S. 39–47.
25. Zanin Yu.N., Zamiralov A.G., Fomin A.N., Pisarev G.M. Strontium in the structure of sedimentary apatite in the process of catagenesis // Dokl. Russian Academy of Sciences, 1997, vol. 352, No. 2. Pp. 235–237. Zanin Yu.N., Zamiraylova A.G., Fomin A.N., Pisareva G.M. Stronciy v strukture osadochnogo apatita v processah katageneza // Dokl. RAN, 1997, t. 352, № 2. S. 235–237.
26. Ivanovskaya A.V., Zanin Yu. N. Phosphorites of the stalinogorsk formation of the Middle Riphean Turukhansk uplift, Eastern Siberia // Lithosphere, 2008, №1. Pp. 90–99. Ivanovskaya A.V., Zanin Yu.N. Fosfority strel'nogorskoy svity srednego rifeya Turuhanskogo podnyatiya, Vostochnaya Sibir' // Litosfera, 2008, №1. S. 90–99.
27. Ilyin V.A. Ancient (Ediacaran) Phosphorites. – M.: GEOS, 2008. 160 Pp. (Tr. GIN RAS, vol. 587). Il'in A.V. Drevnie (ediakarskie) fosfority. – M.: GEOS, 2008. 160 s. (Tr. GIN RAN, vyp. 587).
28. Kalinichenko E.A., Brik A.B., Kalinichenko A. M., Gatsenko V.A., Frank-Kamenetskaya O.V., Bagmut N.N. The particular properties of apatites from different species of the Chemerpole (Middle Near-Bug) according radiospectroscopy // Mineral. Z., 2014, vol. 36, No. 4. Pp. 50–65. Kalinichenko E.A., Brik A.B., Kalinichenko A.M., Gacenko V.A., Frank-Kameneckaya O.V., Bagmut N.N. Osobennosti svoystv apatitov iz raznyh porod Chemerpolya (Srednee Pobuzh'e) po dannym radiospektroskopii // Mineral. zh., 2014, t. 36, № 4. S. 50–65.
29. Katkova V.I. Pseudomorphs of bioapatite on octocalciumphosphate // Vestn. In-ta geol. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2012, No. 6. Pp. 11–14. Katkova V.I. Psevdomorfozy bioapatita po oktakal'ciyfosfatu // Vestn. In-ta geol. Komi NC UrO RAN, 2012, № 6. S. 11–14.
30. Kiseleva D.V., Zaitseva M.V. Determination of the trace element composition of REE in biogenic apatite of Upper Devonian conodonts (Southern Urals) by the ISP-MS method with laser ablation // Ural Mineralogical School, 2017, No. 23. Pp. 98–101. Kiseleva D.V., Zayceva M.V. Opredelenie mikroelementnogo sostava RZE v biogennom apatite verhnedevonskih konodontov (Yuzhnyy Ural) metodom ISP-MS s lazernoy ablyaciey // Ural'skaya mineralogicheskaya shkola, 2017, № 23. S. 98–101.
31. Kogarko L.N. Rare-earth potential of apatite in deposits and waste products of apatite-nepheline ores of the Khibiny massif // Tr. Fersman sci. sessions of the GI KSC RAN, 2019, No. 16. Pp. 271–275. Kogarko L.N. Redkozemel'nyy potencial apatita v mestorozhdeniyah i othodah proizvodstva apatito-nefelinovyh rud Hibinskogo massiva // Tr. Fersmanovskoy nauch. sessii GI KNC RAN, 2019, № 16. S. 271–275.
32. Kolonin R.G., Shironosova G.P., Palessky S.V., Fedorin M.A., Kandinv M.N., Pohova V.I., Repina S.A., Shvetsova I.V. Rare-earth elements of Ural monazites and models of physico-chemical conditions of mineral formation // Mineralogy of the Urals-2007: Mater. 5 Vseros. Meeting, Miass, August 20-25, 2007: Collection of scientific articles. – Miass, Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. Pp. 246–250. Kolonin R.G., Shironosova G.P., Palesskiy S.V. , Fedorin M.A., Kandinov M.N., Popova V.I., Repina S.A., Shvecova I.V. Redkozemel'nye elementy monacitov Urala i modeli fiziko-himicheskih usloviy mineraloobrazovaniya // Mineralogiya Urala-2007: Mater. 5 Vseros. sovesch., Miass, 20–25 avgusta 2007 g.: Sbornik nauchnyh statey. – Miass, Ekaterinburg: UrO RAN, 2007. S. 246–250.
33. Konovalova E.V., Pribilkin S.V., Zamyatin D.A., Kholodnov V.V. Sulfur in apatites of granites of the Shartash massif and the Berezovsky gold deposit // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 134–138 (Tr. IGG URO RAN, vol. 159). Konovalova E.V., Pribavkin S.V., Zamyatin D.A., Holodnov V.V. Sera v apatitah granitov Shartashskogo massiva i Berezovskogo zolotorudnogo mestorozhdeniya // Ezhegodnik-2011: Sbornik. – Ekaterinburg: IGG UrO RAN, 2012. S. 134–138 (Tr. IGG UrO RAN, vyp. 159).
34. Konovalova E. V., Kholodnov V. V., Pribavkin S. V., Zamyatin D. A. Elements-mineralizer (sulfur and Halogens) in Apatity Shartash granite massif and Berezovsky gold deposits // Lithosphere, 2013, No. 6. Pp. 65–72. Konovalova E.V., Holodnov V.V., Pribavkin S.V., Zamyatin D.A. Elementy-mineralizatory (sera i galogeny) v apatitah Shartashskogo granitnogo massiva i Berezovskogo zolotorudnogo mestorozhdeniya // Litosfera, 2013, № 6. S. 65–72.
35. Konopleva N.G., Ivanyuk G.Yu., Pakhomovsky Ya.A., Yakovenchuk V.N., Mikhailova Yu.A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula) // Zap. Rus. Mineral. Soc. 2013, vol. 142, No. 3. Pp. 65–83. Konopleva N.G., Ivanyuk G.Yu., Pahomovskiy Ya.A., Yakovenchuk V.N., Mihaylova Yu.A. Tipomorfizm ftorapatita v Hibinskom schelochnom massive (Kol'skiy poluostrov) // Zap. Ros. mineral. o-va, 2013, t. 142, № 3. S. 65–83.
36. Korinevsky V.G., Filippova K.A., Kotlyarov V.A., korinevsky E.V., Artemyev D.A. Trace elements in minerals of some rare species of the Southern Urals // Lithosphere, 2019, vol. 19, No. 2. Pp. 269–292. Korinevskiy V.G., Filippova K.A., Kotlyarov V.A., Korinevskiy E.V., Artem'ev D.A. Elementy-primesi v mineralah nekotoryh redko vstrechayuschihsya porod Yuzhnogo Urala // Litosfera, 2019, t. 19, №2. S. 269–292.
37. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. Halogens and sulfur in hydroxyl-bearing minerals in East Verkhoturye diorite-granodiorite array of mineralizatsii in the form of native copper (Middle Urals) // Yearbook-2017: the Collection. – Ekaterinburg: IGG URO RAN, 2018. Pp. 189–193 (Tr. IGG URO RAN, vol. 165). Korovko A.V., Holodnov V.V., Pribavkin S.V., Konovalova E.V., Miheeva A.V. Galogeny i sera v gidroksilsoderzhaschih mineralah Vostochno-Verhoturskogo diorit-granodioritovogo massiva s mineralizaciy v vide samorodnoy medi (Sredniy Ural) // Ezhegodnik-2017: Sbornik. – Ekaterinburg: IGG UrO RAN, 2018. S. 189–193 (Tr. IGG UrO RAN vyp. 165).
38. Krestianinov E.A. Apatite as an indicator of the genesis of carbonatite Mayksk manifestations (South Ural) // Metallogeny of ancient and modern oceans, 2011, №1. Pp. 252–255. Krest'yaninov E.A. Apatit kak indikator genezisa Maukskogo karbonatitovogo proyavleniya (Yuzhnyy Ural) // Metallogeniya drevnih i sovremennyh okeanov, 2011, №1. S. 252–255.
39. Lemesheva S.A., Golovanova O.A., Turenkov S. V. Study of the characteristics of the composition of bone tissues // Chemistry for sustainable development, 2009, vol. 17, No. 3. Pp. 327–332. Lemesheva S.A., Golovanova O.A., Turenkov S.V. Issledovanie osobennostey sostava kostnyh tkaney cheloveka // Himiya v interesah ustoychivogo razvitiya, 2009, t. 17, № 3. S. 327–332.
40. Liferovich, R.P., Bayanova T. B., Gogol O.V., Sherstennikov O.G., Delenitsin O.A.. Genesis intersects phosphate mineralization within the Kovdor will phoscorite-carbonatite complex // Vestn. MSTU. Tr. Murmansk. State Technical University. 1998, vol. 1, No. 3. Pp. 61–68. Liferovich R.P., Bayanova T.B., Gogol' O.V., Sherstenikova O.G., Delenicin O.A. Genezis postkarbonatitovoy fosfatnoy mineralizacii v predelah Kovdorskogo foskorit-karbonatitovogo kompleksa // Vestn. MGTU. Tr. Murmansk. gos. tehn. un–ta, 1998, t. 1, №3. S. 61–68.
41. Lobova E.V. Evolution of amphibole and apatite from rocks of the Reftinsky complex (Eastern zone of the Middle Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, No. 9. Pp. 84–87, 152. Lobova E.V. Evolyuciya amfibola i apatita iz porod Reftinskogo kompleksa (Vostochnaya zona Srednego Urala) // Vestn. Ural. otd-niya Ros. mineral. o-va, 2012, №9. S. 84–87, 152.
42. Malkov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral composition and trace elements of fossilized bones of sea lizards located in Kargort (Komi Republic) // Vestn. Inst geol. Komi SC URO RAN, 2004, No. 1. Pp. 12–16. Mal'kov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral'nyy sostav i mikroelementy okamenelyh kostey morskih yascherov mestonahozhdeniya Kargort (Respublika Komi) // Vestn. In-ta geol. Komi NC UrO RAN, 2004, № 1. S. 12–16.
43. Maslov A.V. Pre-Ordovician phosphorites and paleoceanography: a brief geochemical excursion into the systematics of rare earth elements // Lithosphere, 2017, No. 1. Pp. 5–30. [electronic resource]. Maslov A.V. Doordovikskie fosfority i paleookeanografiya: kratkiy geohimicheskiy ekskurs v sistematiku redkozemel'nyh elementov // Litosfera, 2017, № 1. S. 5–30. [Elektronnyy resurs].
44. Maslov A.V. Phosphorites of the Neoproterozoic–Cambrian and paleoceanography: data on the distribution of rare earth elements // Yearbook-2015: Collection. - Yekaterinburg: IGG URO RAN, 2016. pp. 102-107. (Tr. IGG URO RAN, issue 163). Maslov A.V. Fosfority neoproterozoya–kembriya i paleookeanografiya: dannye po raspredeleniyu redkozemel'nyh elementov // Ezhegodnik-2015: Sbornik. – Ekaterinburg: IG i G UrO RAN, 2016. S. 102–107. (Tr. IGG UrO RAN, vyp. 163).
45. Mineev D.A. Lanthanides in Minerals. – M.: Nedra, 1969. 182 pp. Mineev D.A. Lantanoidy v mineralah. — M.: Nedra, 1969. 182 s.
46. Mineev D.A. Lanthanides in Ores of Rare-Earth and Complex Deposits – M.:Nauka, 1974. 237 pp. Mineev D.A. Lantanoidy v rudah redkozemel'nyh i kompleksnyh mestorozhdeniy – M.:Nauka, 1974. 237 s.
47. Oparin N.A., Oleinikov O.B., Baranov L.N. Apatite from kimberlite pipe Manchary (Central Yakutia) // Natural resources of the Arctic and Subarctic, 2020, vol. 25, No. 3. Pp. 15–24. Oparin N.A., Oleynikov O.B., Baranov L.N. Apatit iz kimberlitovoy trubki Manchary (Central'naya Yakutiya) // Prirodnye resursy Arktiki i Subarktiki, 2020, t. 25, № 3. S. 15–24.
48. Pavlenko Y.V. Phosphates Streltsovsky ore field in South-Eastern Transbaikalia (part II) // Vestn. Zabaikalsky State University, 2021, vol. 27. No.3. pp. 42-52. Pavlenko Yu.V. Fosfaty Strel'covskogo rudnogo polya Yugo-Vostochnogo Zabaykal'ya (chast' II) // Vestn. Zabaykal'skogo gos. un-ta, 2021, t. 27. №3. S. 42–52.
49. Potapov S.S. Repina S.A., Potapov D.S. Mineralogical and chemical features of the tooth of a mammoth // Mineralogy of technogenesis, 2007, vol. 8. Pp. 139–145. Potapov S.S., Repina S.A., Potapov D.S. Mineralogo-himicheskie osobennosti zuba mamonta // Mineralogiya tehnogeneza, 2007, t. 8. S. 139–145.
50. Rakhimov I.R., Kholodnov V.V., Salikhov D.N. Accessory apatite from gabbroids late Devonian–early Carboniferous West of the Magnitogorsk zone: morphology and chemical composition, indicator metallogenic role // Geological Bulletin, 2018, no. 3. Pp. 109–123. Rahimov I.R., Holodnov V.V., Salihov D.N. Akcessornye apatity iz gabbroidov pozdnego devona–rannego karbona Zapadno-Magnitogorskoy zony: osobennosti morfologii i himicheskogo sostava, indikatornaya metallogenicheskaya rol' // Geologicheskiy vestnik, 2018, № 3. S. 109–123.
51. Ripp G.S., Khodyreva E.V., Isbroken I.A., Ramelow M.O., Lastochkin E.I., Posokhov V.F. Genetic nature of the apatite-magnetite ores of the North-Gurvunur deposit (Western Transbaikalia) // Geol. rudn. deposits, 2017, vol. 59, No. 5. Pp. 419–33. Ripp G.S., Hodyreva E.V., Izbrodin I.A., Rampilov M.O., Lastochkin E.I., Posohov V.F. Geneticheskaya priroda apatit-magnetitovyh rud Severo-Gurvunurskogo metorozhdeniya (Zapadnoe Zabaykal'e) // Geol. rudn. m-niy, 2017, t. 59, № 5. S. 419–433.
52. Rosen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Calculation of the mineral composition of phosphate to facial reconstructions of the chemical analyses (program MINILITH) // Type of sedimentogenesis and lithogenesis and their evolution in the history of the Earth: materials of the 5th all-Russian lithological conference, Ekaterinburg, 14–16 Oct. 2008. Vol. 2. – Ekaterinburg: URO RAN, 2008. Pp. 200–203. Rozen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Raschet mineral'nogo sostava fosforitov dlya facial'nyh rekonstrukciy po himicheskim analizam (programma MINILITH) // Tipy sedimentogeneza i litogeneza i ih evolyuciya v istorii Zemli: Materialy 5 Vserossiyskogo litologicheskogo soveschaniya, Ekaterinburg, 14–16 okt. 2008. T. 2. – Ekaterinburg: UrO RAN, 2008. S. 200–203.
53. Rosen, O. M., Solov'ev A. V. Fission-track dating of apatite from the core of the deep wells of the Siberian platform – an indicator of the intense heating of the sedimentary cover during the intrusion of platobasalts // Geology, Geophysics and mineral resources of Siberia: materials of the 1st Scientific and practical conference, Novosibirsk, 29-31 Jan., 2014. Vol. 2. – Novosibirsk: SNIIGGIMS, 2014. Pp. 162–163. Rozen O.M., Solov'ev A.V. Trekovoe datirovanie apatitov iz kerna glubokih skvazhin Sibirskoy platformy — pokazatel' intensivnogo progreva osadochnogo chehla vo vremya vnedreniya platobazal'tov // Geologiya, geofizika i mineral'noe syr'e Sibiri: Materialy 1 Nauchno-prakticheskoy konferencii, Novosibirsk, 29-31 yanv., 2014. T. 2. – Novosibirsk: SNIIGGMS, 2014. S. 162–163.
54. Ryabov V.V., Simonov O.N., Snisar S.G. Fluorine and chlorine in apatites, micas and amphiboles of the trap layered intrusions of the Siberian platform // Geol. and geofiz., 2018, vol. 59, No. 4. Pp. 453–466. [Electronic resource]. Ryabov V.V., Simonov O.N., Snisar S.G. Ftor i hlor v apatitah, slyudah i amfibolah rassloennyh trappovyh intruziy Sibirskoy platformy // Geol. i geofiz., 2018, t. 59, № 4. S. 453–466. [Elektronnyy resurs].
55. Savelyeva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatites of the Onguren carbonatite complex (Western Baikal region): geochemistry and composition of accessory minerals//Geol. rudn. deposits, 2017, vol.59. No. 4. Pp. 319–346. Savel'eva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatity Ongurenskogo karbonatitovogo kompleksa (Zapadnoe Pribaykal'e): geohimiya i sostav akcessornyh mineralov // Geol. rudn. m-niy, 2017, t. 59. № 4. S. 319–346.
56. Savenko A.V. On the physico-chemical mechanism of diagenetic formation of modern ocean phosphorites // Geochemistry, 2010, No. 2. Pp. 208–215. Savenko A.V. O fiziko-himicheskom mehanizme diageneticheskogo formirovaniya sovremennyh okeanskih fosforitov // Geohimiya, 2010, №2. S. 208–215.
57. Savenko V.S., Savenko A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle. – M.: GEOS, 2007. 248 Pp. Savenko V.S., Savenko A.V. Geohimiya fosfora v global'nom gidrologicheskom cikle. – M.: GEOS, 2007. 248 s.
58. Savko K.A., Pilyugin S.M., Novikova M.A. Composition of apatite from rocks of different ages of ferruginous-siliceous formations of the Voronezh crystalline massif – as an indicator of the fluid regime of metamorphism / Vestn. Voronezh. state University. Ser. Geology. 2007, No. 2. Pp. 78–93. Savko K.A., Pilyugin S.M., Novikova M.A. Sostav apatita iz porod raznovozrastnyh zhelezisto-kremnistyh formaciy Voronezhskogo kristallicheskogo massiva – kak pokazatel' flyuidnogo rezhima metamorfizma / Vestn. Voronezh. gos. un-ta. Ser. Geologiya. 2007, № 2. S. 78–93.
59. Safin T. H., Dubinin A.V., Kuznetsov, A. B., Rimskaya-Korsakova, M. N. A study of the age of biogenic apatite from nodules of the Cape basin by the strontium isotope chemostratigraphy and establishing growth rates oxyhydroxide phases // Marine studies: 8th conference of young scientists, Vladivostok, June 6–9, 2018: conference proceedings. – Vladivostok: Dalnauka, 2018. Pp. 102–106. Safin T.H., Dubinin A.V., Kuznecov A.B., Rimskaya-Korsakova M.N. Issledovanie vozrasta biogennogo apatita iz konkreciy Kapskoy kotloviny metodom stroncievoy izotopnoy hemostratigrafii i ustanovlenie skorostey rosta oksigidroksidnyh faz // Okeanologicheskie issledovaniya: 8 konferenciya molodyh uchenyh, Vladivostok, 6-9 iyunya, 2018: Materialy konferencii. – Vladivostok: Dal'nauka, 2018. S. 102–106.
60. Serova A.A., Spiridonov E.M. Three types of apatite in Norilsk sulfide ores // Geochemistry, 2018, No. 5. Pp. 474–484 [Electronic resource]. Serova A.A., Spiridonov E.M. Tri tipa apatita v noril'skih sul'fidnyh rudah // Geohimiya, 2018, № 5. S. 474–484 [Elektronnyy resurs].
61. Soloviev A.V. Study of Tectonic Processes in the Areas of Convergence of Lithospheric Plates by Methods of Isotope Dating and Structural Analysis: Abstract. dis. for the application of a scientist. degree of Doctor of Geological Sciences – M.: GIN RAS, 2005. 49 pp. Solov'ev A.V. Izuchenie tektonicheskih processov v oblastyah konvergencii litosfernyh plit metodami izotopnogo datirovaniya i struktrunogo analiza: Avtoref. dis. na soiskanie uchen. stepeni doktora geol.-min. nauk. – M.: GIN RAN, 2005. 49 s.
62. Soloviev V.A., Garver J.I. Post-collisional exhumation of the complexes in Northern Kamchatka (Lesnovsk lifting) // Dokl. Russian Academy of Sciences, 2012, vol. 443, No. 1. Pp. 92–96. Solov'ev A.V., Garver Dzh.I. Postkollizionnaya eksgumaciya kompleksov Severnoy Kamchatki (Lesnovskoe podnyatie) // Dokl. RAN, 2012, t. 443, № 1. S. 92–96.
63. Soroka E.I., Leonova L.V. Anfimov A.L., Apatite shell of the Devonian foraminifera (Safianovsk copper-pyrite deposit, the Middle Urals) // Izv. Uralsk. state. Gorny University, 2018, No. 3(51). Pp. 34–39. Soroka E.I., Leonova L.V., Anfimov A.L. Apatitovye rakoviny devonskih foraminifer (Saf'yanovskoe mednokolchedannoe mestorozhdenie, Sredniy Ural) // Izv. Ural'sk. gos. Gornogo un-ta, 2018, № 3(51). S. 34–39.
64. Taylor S.R., McLennan S.M. Continental Crust: its Composition and Evolution: Russian translation). - M.: Mir, 1988. 384 p. Teylor S.R., Mak-Lennan S.M. Kontinental'naya kora: ee sostav i evolyuciya. – M.: Mir, 1988. 384 s.
65. Felitsyn S.B., Bogomolov E.S. Isotope-geochemical systematics of gold-bearing biogenic apatites from the Lower Paleozoic deposits of Baltoscandia // Dokl. RAS, 2013, vol. 451, No. 6. pp. 680–683. Felicyn S.B., Bogomolov E.S. Izotopno-geohimicheskie sistematiki zolotosoderzhaschih biogennyh apatitov iz nizhnepaleozoyskih otlozheniy Baltoskandii // Dokl. RAN, 2013, t. 451, № 6. S. 680–683.
66. Faore G. Fundamentals of Isotope Geology: Russian translation. – M.: Mir, 1989. 590 pp. For G. Osnovy izotopnoy geologii. – M.: Mir, 1989. 590 s.
67. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Refinement of the atomic structure of apatite of the albinoi tissue of Upper Devonian conodonts // Crystallography, 2014, vol. 59, No. 1. Pp. 46–52. Frank-Kameneckaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Utochnenie atomnoy struktury apatita al'bidnoy tkani pozdnedevonskih konodontov // Kristallografiya, 2014, t. 59, № 1. S. 46–52.
68. Khattak N.U., Asif Khan Mohammad, Ali Nawab, Abbas S. M., Tahirkheli T.K. Evaluation of time and level of implementation of the carbonatite complex Silly Patti, district Malakand, North-Western Pakistan: the limitations of the data dating signs of the fission tracks // Geol. and geofiz., 2012, vol. 53, No. 8. Pp. 964–974. Hattak N.U., Azif Han Muhammad, Ali Navab, Abbas S.M., Tahirkeli T. K. Ocenka vremeni i urovnya vnedreniya karbonatitovogo kompleksa Sillay Patti, rayon Malakand, Severo-Zapadnyy Pakistan: ogranicheniya, nakladyvaemye dannymi datirovaniya po sledam raspada // Geol. i geofiz., 2012, t. 53, № 8. S. 964–974.
69. Kholodnov V.V., Konovalova E.V. Morphology and other typomorphic properties of apatite in granitoids of the Urals with quartz-vein gold mineralization // Ural mineralogical school of 2012. – Ekaterinburg: IGG URO RAN, 2012. Pp. 186–191. Holodnov V.V., Konovalova E.V. Morfologiya i drugie tipomorfnye svoystva apatita v granitoidah Urala s kvarc-zhil'nym zolotym orudeneniem // Ural'skaya mineralogicheskaya shkola-2012. – Ekaterinburg: IG i G UrO RAN, 2012. S. 186–191.
70. Kholodnov V.V., Salikhov D.N., Rakhimov I.R. Halogens and sulfur in apatite – as an indicator of potential ore-bearing late Paleozoic magmatic complexes of the West Magnitogorsk zone on Cr-Ni, Fe-Ti and Au mineralization // Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories, 2016, No. 11. Pp. 168–170. Holodnov V.V., Salihov D.N., Rahimov I.R. Galogeny i sera v apatitah – kak indikator potencial'noy rudonosnosti pozdnepaleozoyskih magmaticheskih kompleksov Zapadno-Magnitogorskoy zony na Sg-Ni, Fe-Ti i Au orudenenie // Geologiya, poleznye iskopaemye i problemy geoekologii Bashkortostana, Urala i sopredel'nyh territoriy, 2016, № 11. S. 168–170.
71. Kholodnov V.V., Salikhov D.N., Rakhimov I.R., Shagalov E.S., Konovalova E.V. Halogens and sulfur in apatites as a sign of specialization and Late Paleozoic accretion-collisional gabbro-dolerites of the West Magnitogorsk zone on Cu-Ni and Au mineralization // Yearbook-2014: Collection. – Ekaterinburg: IGG URO RAN, 2015. Pp. 214–221 (Tr. IGG URO RAN, vol. 162). Holodnov V.V., Salihov D.N., Rahimov I.R., Shagalov E.S., Konovalova E.V. Galogeny i sera v apatitah kak priznak specializacii i pozdnepaleozoyskih akkrecionno-kollizionnyh gabbro-doleritov Zapadno-Magnitogorskoy zony na Su-Ni i Au orudenenie // Ezhegodnik-2014: Sbornik. – Ekaterinburg: IG i G UrO RAN, 2015. S. 214–221 (Tr. IGG UrO RAN, vyp. 162).
72. Kholodnov V.V., Salikhov D.N., Shagalov E.S., Konovalova E.V., Rakhimov I.R. The Role of halogens and sulfur in apatites in the assessment of potential ore-bearing gabbros of the Late Paleozoic of West Magnitogorsk zone (S. Ural) on Cu-Ni, Fe-Ti and Au mineralization // Mineralogy, 2015, No. 3. Pp. 45–61. Holodnov V.V., Salihov D.N., Shagalov E.S., Konovalova E.V., Rahimov I.R. Rol' galogenov i sery v apatitah pri ocenke potencial'noy rudonosnosti pozdnepaleozoyskih gabbroidov Zapadno-Magnitogorskoy zony (Yu. Ural) Su-Ni, Fe-Ti i Au orudenenie // Mineralogiya, 2015, № 3. S. 45–61.
73. Kholodnov V.V., Shagalov E.S., Konovalova E.V. Geochemistry of apatite in intrusive rocks of the Urals characterized by various ore specialization // Yearbook-2009: Collection. – Yekaterinburg: IGG UrO RAN, 2010. Pp. 190–195 (Tr. IGG UrO RAN, issue 157). Holodnov V.V., Shagalov E.S., Konovalova E.V. Geohimiya apatita v intruzivnyh porodah Urala, harakterizuyuschihsya razlichnoy rudnoy specializaciey // Ezhegodnik-2009: Sbornik. – Ekaterinburg: IGG UrO RAN, 2010. S. 190–195 (Tr. IGG UrO RAN, vyp. 157).
74. Chaika I.F., Izokh A.E. Phosphate-fluoride-carbonate mineralization in rocks of lamproite series of Rybinov massif (Central Aldan): mineralogical and geochemical characteristics and genesis problem // Mineralogy, 2017, vol. 3, No. 1. Pp. 38–51. Chayka I.F., Izoh A.E. Fosfatno-ftoridno-karbonatnaya mineralizaciya v porodah lamproitovoy serii massiva Ryabinovyy (Central'nyy Aldan): mineralogo-geohimicheskaya harakteristika i problema genezisa // Mineralogiya, 2017, t. 3, №1. S. 38–51.
75. Chaikina M. V. Bulina N. V., Prosanov I.Yu., Ishchenko A.V., Medvedko O.V., Aronov A.M. Mechanochemical synthesis of hydroxyapatite with SIO44– substitutions // Chemistry for sustainable development, 2012, vol. 20, No. 4. P. 477-489. Chaykina M.V., Bulina N.V., Prosanov I.Yu., Ischenko A.V., Medvedko O.V., Aronov A.M. Mehanohimicheskiy sintez gidroksilapatita s SIO44– zamescheniyami // Himiya v interesah ustoychivogo razvitiya, 2012, t. 20, №4. S. 477–489.
76. Chuprov A.A., Badmatsyrenova R.A., Batueva A.A. Apatite mineralization of the Oshurekov gabbro-pegmatite massiv, Transbaikalia: data from LA-ICP-MS analysis // Metallogeny of ancient and modern oceans, 2021, vol. 27. Pp. 144–146. Chuprova A.A., Badmacyrenova R.A., Batueva A.A. Apatitovaya mineralizaciya Oshurekovskogo gabbro-pegmatitovogo massiva, Zabaykal'e: dannye LA-ISP-MS analiza // Metallogeniya drevnih i sovremennyh okeanov, 2021, t. 27. S. 144–146.
77. Shatrov V.A., Voitsekhovsky G.V. Reconstruction of phosphate formation environments // Geol. and geophys., 2009, vol. 50, No. 10. Pp.1104–1118. Shatrov V.A., Voycehovskiy G.V. Rekonstrukciya obstanovok fosfatoobrazovaniya // Geol. i geofiz., 2009, t. 50, №10. S.1104–1118.
78. Shironosova G.P., Kolonin G.R. Thermodynamic modeling of REE distribution between monazite, fluorite and apatite // Dokl. RAN, 2013, vol. 450, No. 4. Pp. 455–459. Shironosova G.P., Kolonin G.R. Termodinamicheskoe modelirovanie raspredeleniya RZE mezhdu monacitom, flyuoritom i apatitom // Dokl. RAN, 2013, t. 450, № 4. S. 455–459.
79. Shnug E., Haneklaus N. Extraction of uranium from phosphate ores: ecological aspects // Atomic engineering abroad, 2013, No. 9. Pp. 20–24. Shnug E., Haneklaus N. Izvlechenie urana iz fosfatnyh rud: ekologicheskie aspekty // Atomnaya tehnika za rubezhom, 2013, №9. S. 20–24.
80. Yudovich Ya.E., Ketris M.P. Geochemical Indicators of Lithogenesis (Lithological Geochemistry). – Syktyvkar: Geoprint, 2011. 740 pp. Yudovich Ya.E., Ketris M.P. Geohimicheskie indikatory litogeneza (litologicheskaya geohimiya). – Syktyvkar: Geoprint, 2011. 740 s.
81. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geochemistry of Rhosphorus. – Syktyvkar: IG Komi SC UrO RAN, 2020. 512 pp. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geohimiya fosfora. – Syktyvkar: IG Komi NC UrO RAN, 2020. 512 s.
82. Adcock C.T., Hausrath E.M., Forster P.M., Tschauner O., Sefein K.J. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation // Amer. Mineral., 2014, vol. 99, № 7. P. 1221–1232.
83. Barham M., Murray J., Joachimski M.M., Williams D.M. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean // J. Geol. Soc., 2012, vol.169, № 2. P. 119–122.
84. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor., 2002, vol. 76, № (1). P. 45–69.
85. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland // Aust. J. Earth Sci., 2001, vol. 48. R. 603–619.
86. Bromiley G.D. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? // Lithos, 2021, vol. 384–385. 105900.
87. Broom-Fendley S., Heaton T., Wall F., Gunn G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi // Chem. Geol., 2016. 440. P. 275–287. [Electronic resource].
88. Brown W.F., Lehr J.R., Smith J.R., William A.F. Crystallography of octocalciumphosphate // J. Amer. Chem. Soc., 1957, vol. 79, № 19. P. 5378–5379.
89. Buggisch W., Joachimsry M.M., Sevastopulo G., Morrow J.R. Mississippian δ13Skarb and conodont apatite δ18O records – Their relation to the Late Palaeozoic Glaciation // Palaeogeogr., Palaeoclim., Palaeoecol., 2008, vol. 69, № 3–4. P. 273–292.
90. Cavazza W., Federici I., Okay A.I., Zattin M. Apatite fission-track thermochronology of the Western Pontides (NW Turkey) // Geol. Mag., 2012., vol. 149, № 1. P. 133–140.
91. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Coueslan C., Xu C., Kynický J., Mumin A.H., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos : An International Journal of Mineralogy, Petrology and Geochemistry, 2017, vol. 274-275. P. 188–213. [Electronic resource].
92. Charlier V., Namurn O., Bolle O., Latypov R., Duchesne J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks // Earth-Science Reviews, 2015, vol. 141. P. 56–81.
93. Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth-Science Reviews, 2015, vol. 149. P. 181–202.
94. Corcoran D.V., Dore A. G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins // Earth-Science Reviews, 2005, vol. 72, № 3–4. P. 129–168.
95. Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites // Contrib. Mineral. Petrology, 2003, vol. 145. P. 568–577.
96. Dutta A., Fermani S., Tekalur S.A., Vanderberg A., Falini G. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions // J. Cryst. Growth., 2011, vol. 336, № 1. P. 50–55.
97. Economou-Eliopoulos M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance // J. Geochem. Explor., 2003, vol. 80, № 1. P. 41–54.
98. Elrick M., Reardon D., Labor W., Martin J., Desrochers A., Pope M. Orbital-scale climate change and glacioeustasy during the earlyate Ordovician (pre-Hirnantian) determined from σ18O values in marine apatite // Geology, 2013, vol. 41, № 7. P. 775–778.
99. Emerson N.R., Simo J.A. (Toni), Byers C.W., Fournelle J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation // Palaeogeogr., Palaeoclim., Palaeoecol., 2004, vol. 210. P. 215–233.
100. Enkelmann E., Ehlers T.A., Buck G., Schatz A.-K. Advantages and challenges of automated apatite fission track counting // Chem. Geol., 2012, vol. 322-323. P. 278–289.
101. Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F. Hydroxyapatite crystal formation in the presence o polysaccharide // Cryst. Growth and Des., 2016, vol. 16, № 3. P. 1247–1255.
102. Finger F., Krenn E., Schulz B., Harlov D., Schiller D. "Satellite monazites" in polymetamorphic basement rocks of the Alps: Their origin and petrological significance // Amer. Mineral., 2016, vol. 101, № 5-6. P. 1094–1103.
103. Galliski M.Á., Černý P., Márquez-Zavala M.F., Chapman R. An association of secondary Al—Li—Be—Ca—Sr phosphates in the San Elas pegmatite, San Luis, Argentina // Can. Miner., 2012, vol. 50, № 4. P. 9339–9342.
104. Garcia A.K. Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability // Precambrian. Res., 2020, vol. 349. 105389.
105. Georgieva S., Velinova N. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria // Dokl. B'lg. AN, 2014, vol. 67, № 12. P. 1669–1678.
106. Héran M.-A., Lécuyer C., Legendre S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate // Palaeogeogr., Palaeoclim., Palaeoecol., 2010, vol. 285, № 3-4. P. 331–342.
107. Horie K., Hidaka H., Gauthier-Lafaye F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral // Phys. Chem. Earth, 2008, vol. 33. P. 962–968.
108. Joachimski M.M., von Bitter P.H., Buggisch W. Constraints on Pennsylvanian glacioeustatis sea-level changes using oxygen isotopes of conodont apatite // Geology, 2006, vol. 34, № 4. R. 277–280.
109. Kocsis L., Dulai A., Bitner M.A., Vennemann T. Cooper Matthew Geochemical compositions of Neogene phosphatic brachiopods: Implications for ancient environmental and marine conditions // Palaeogeogr., Palaeoclim., Palaeoecol., 2012, vol. 326-328. P. 66–77.
110. Krneta S., Ciobanu C.L., Cook N.J., Ehrig K., Kontonikas-Charos A. A petrogenetic tool // Lithos: An International Journal of Mineralogy, Petrology and Geochemistry, 2016, vol. 262. P. 470–485. [Electronic resource].
111. Lieberovich R.F., Mitchell R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa // Mineral. Mag., 2006, vol. 70, № 5. P. 463–484.
112. Liu Wen-hao, Zhang J., Li Wan-ting, Sun T., Jiang Man-rong, Wang J., Wu Jian-yang, Chen Cao-jun // Diqiu kexue = Earth Sci. : Zhongguo dizhi daxue xuebao Zhongguo dizhi daxue xuebao, 2012, vol. 37, № 5. P. 966–980.
113. Llorens T., Moro M.C. Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfras Sn-W District, Salamanca, Spain // Mineral. Mag., 2012, vol. 76, № 1. P. 1–24.
114. Lu J., Chen W., Ying Y., Jiang S., Zhao K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis // Lithos, 2020, vol. 398. 106276.
115. Matton O., Cloutier R., Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec) // Palaeogeogr., Palaeoclim.., Palaeoecol., 2012, vol. 361-362. P. 73–83.
116. Onac B.P., Effenberger H.S., Breban R.C. High-temperature and “exotic” minerals from the Cioclovina Save, Romania: A review // Stud. Univer. Babes-Bolyai. Geol., 2007, vol. 52, № 2. P. 3–10.
117. Otero O., Lécuyer C., Fourel F., Martineau F., Mackaye H.T., Vignaud P., Brunet M.l. Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa // Geology, 2011, vol. 39, № 5. P. 435–438.
118. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta, 2019, vol. 246. P. 515–540. [Electronic resource].
119. Parat F., Holtz F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions // Contrib. Mineral. Petrology, 2004, vol. 147. P. 201–212.
120. Pieczka A. Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland // Can. Miner., 2007, vol. 45, N 4. P. 901–914.
121. Piper D.Z. Rare earth elements in the sedimentary cycle: a summary // Chem. Geol. 1974, vol. 14, № 4. P. 285–304.
122. Roda-R. E. Galliski M.A., Roquet M.B., Hatert F., de Parseval P. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: paragenesis, composition and significance // Can. Miner., 2012, vol. 50, № 4. P. 913–931.
123. Rossi M., Ghiara M.R., Chita G., Capitelli F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex // Amer. Mineral., 2011, vol. 96, № 11-12. P. 1828–1837.
124. Schilling K., Brown S.T., Lammers L.N. Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH // Geochim. Cosmochim. Acta, 2018, vol. 241. P. 255-271. [Electronic resource].
125. Sethmann I., Grohe B., Kleebe H.-J. Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation // Mineral. Mag., 2014, vol. 78, № 1. P. 91–100.
126. Soltys A., Giuliani A., Phillips D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories incoherent kimberlites caused by difering emplacement mechanisms // Contrib. Mineral. Petrology, 2020, vol. 175.
127. Song H., Wignal P.B., Tong J., Bond D.P.G., Song H., Lai X., Zhang K., Wang H., Chen Y. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery // Earth Planet. Sci. Letter, 2012, vol. 353-354. P. 12–21.
128. Soudry D., Glenn C.R., Nathan Y., Segal I., VonderHaar D. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation // Earth-Science Reviews, 2006, vol. 78, N 1–2. P. 27–57.
129. Streule M.J., Carter A., Searle M.P., Cottle J.M. Constraints on brittle field exhumation of the Everest-Makalu section of the Greater Himalayan Sequence: implications for models of crustal flow // Tectonics, 2012, vol. 31, № 3. TC3010.
130. O'Sullivan G., Chew D., Kenny G., Henrichs I., Mulligan D. The trace element composition of apatite and its application to detrital provenance studies // Earth-Science Reviews, 2020, vol. 201. 103044.
131. Tang Y.T., Han C.M., Bao Z.K., Huang Y.Y., Hea W., Hua W. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray flourescence microprobe // Spectrochim. Acta, 2005. Part B 60. P. 439–446.
132. Torab F.M., Lehmann B. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology // Mineral. Mag., 2007, vol. 71, № 3. S. 347–363.
133. Tseng Y.-H., Mou Ch.-Y., Chan J.C.C. Solid-state NMR study of the transformation of octocalciumphosphate to hydroxyapatite: A mechanistic model for Central Dark Line Formation // J. Amer. Chem. Soc., 2006, vol. 128. P. 6909–6918.
134. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Zakharov V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia // Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2015, vol. 665. P. 157–163.
135. Ying Y.C., Chen W., Simonetti A., Jiang S.Y., Zhao K.D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China) // Geochim. Cosmochim. Acta, 2020, vol. 280, P. 340–359.
136. Yu Jinjie, Zhang Qi, Mao Jingwen, Yan Shenghao Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China // Acta Geol. Sinica, 2007, vol. 81, № 4. P. 637–648. [Electronic resource].
137. Yu Jin-Jie, Chen Bao-Yun, Che Lin-Rui, Wang Tie-Zhu, Liu Shuai-Jie Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: constraints from apatite chemistry // Geol. J., 2020, vol. 55, № 2. P. 1450–1467.
138. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng Cheng-Biao A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // J. Geodynamics, 2020, vol. 136. 101723.
139. Zhang R.W., Xue C.D., Xue L.P., Liu X. // Yanshi xuebao = Acta Petrol. Sin., 2019, vol. 35, № 5. P. 1407–1422.