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List of symbols

ρид – ideal gas density, kg/m3;
ρ – density of nonideal gas, kg/m3;
Rм – specific gas constant, J/(kg·K);
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P – pressure, Pa;
Tс – critical temperature, K;
Pс – critical pressure, Pa;
Tг – reduced temperature, dimen-

sionless value;
В – second virial coefficient, m3/kg;
Z – gas compressibility factor, di-

mensionless value;
∆hT

∂ – isothermal deviation of en-
thalpy from the ideal gas state, J/kg;

h(T; P) – specific enthalpy, J/kg;
H(T; P) – enthalpy, J;
S(T; P) – entropy, J/(kg·K);
CV – isochoric heat capacity, 

J/(kg·K);
CP – isobaric heat capacity,

J/(kg·K);
Cn – heat capacity of the polytropic 

process, J/(kg·K);
G(T; P) – Gibbs energy, J;
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Introduction

The book "Dissipative function in engineering calculations" brought to the 
attention of the audience is devoted to the analytical apparatus and quantitative 
assessment of the effectiveness of processes occurring in real thermodynamic 
systems. It is obvious that a reliable qualitative characterization and a quantita-
tive description of phenomena occurring at finite speeds in apparatuses of specific 
dimensions require consideration of thermodynamic limitations, the essence of 
which is expressed by the second law of thermodynamics of irreversible processes 
of energy and matter conversion. The main idea of the presented material is to de-
termine the produced entropy flow generated within the process as a quantitative 
measure of energy dissipation. The calculation method based on the concept of 
a local dissipative function is considered in sufficient detail. For clarity and the 
ability to reveal the internal logic of the interpretation of the material, examples of 
the flow of viscous media, processes of heat conduction and diffusion membrane 
transfer of matter are demonstrated. When considering the integral method of ana-
lyzing the perfection of irreversible processes and the phenomena that accompany 
them, the structure of the text adheres to an engineering orientation. When quan-
tifying the degree of perfection of a thermodynamic system and determining the 
magnitude of the final losses of convertible energy, the author seeks to outline the 
main patterns by which an engineering apparatus for calculating and determining 
specific values of physical characteristics and process parameters is created. In the 
final chapters, the reader is offered an analysis of individual tasks, the logical se-
quence of presentation of which allows deepening the understanding of the prob-
lem raised. Since engineering analysis becomes useful and gives practical skills in 
the event that not only the course of the solution is considered and the numerical 
answer of the desired value is determined, but also ways are revealed to search 
for a more perfect organization of the technology and energy of the system under 
study. The author expresses the hope that the publication will serve as a source of 
useful information for students and graduate students of technological universities 
and colleges, as well as attract the attention of young scientists in solving global 
problems of energy and resource conservation in the modern world, the search for 
alternative energy sources.
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1. Analytical apparatus of non-equilibrium processes of transformation of 
energy and matter

1.1 Method of dissipative functions

Any natural process that manifests itself in nature or proceeds in technical de-
vices at a finite rate is non-equilibrium and irreversible. A non-equilibrium change 
in the state of a macrobody cannot be described using classical thermodynamics. 
The application of the equation of state is possible only for the equilibrium flow of 
the process, when the system can be characterized by certain intensive parameters. 
The imbalance leads to inhomogeneous distribution of temperature, pressure, con-
centration of ingredients of a multiphase and multicomponent system, as well as 
the existence of relaxation material and energy flows. Relaxation processes tend 
to equalize the uneven distribution of parameters, compensating for the external 
influence that causes the system's inhomogeneity. The non-equilibrium flow of 
phenomena associated with the transformation of energy and matter leads to states 
when the system no longer has a single temperature or density, the same on its 
mass. To describe the state of a thermodynamic system participating in a nonequi-
librium process, more detailed characteristics of the state change are required. 
Therefore, non-equilibrium processes cannot be represented on a thermodynamic 
diagram in the coordinates PV, NS, TS, as it is traditionally accepted for equilib-
rium changes in the object under study. Quantitative judgments about a real pro-
cess are possible only if the system at the beginning and at the end of the process 
is in certain equilibrium states.

It has been established that all real processes are irreversible and can spontan-
eously proceed in only one direction. This principle of irreversibility applies to all 
real processes without exception, both natural and technological. The irreversib-
ility of a real process is manifested in the fact that its course is always accompan-
ied by residual effects. The consequences of a real process cannot be completely 
eliminated, which is confirmed by numerous experiments. Not a single fact has 
yet been verified that refutes this distinctive feature of the real process, which, ap-
parently, is associated with the peculiarities of energy transformations. The course 
of the real process consists in a special transformation of energy in the macro-
body. The total energy of an isolated thermodynamic system is conserved only 
quantitatively, while in a qualitative sense, energy is constantly depreciating, i.e. 
dissipates. Dissipation does not mean the complete dissipation of energy in space, 
but the loss of its valuable, convertible part, called exergy. All types of energy, 
including internal, are limited by convertibility and consist of two parts: a convert-
ible, called exergy, and a ballast part, which is associated with entropy:
  (1.1) 

The total energy of the system H (enthalpy) is the sum of its two terms: the Gibbs energy G 

(convertible part) and the ballast part TS associated with entropy. 

Any real process is accompanied by the loss of some part of the convertible energy, i.e. exergy. 

Only an ideal process allows you to fully preserve the entire supply of energy in a quantitative 

and qualitative sense, therefore it is characterized by energy perfection, i.e. no losses during 

energy conversions. Indicators of an ideal process can serve as initial information for assessing 

the quality and efficiency of technical devices, which is one of the main tasks of energy 

technology. 

The quantitative assessment of the principle of irreversibility is expressed by the second law of 

thermodynamics, by introducing an increase in entropy as a measure of dissipation. The entropy 

of an isolated or closed thermodynamic system, when any real process takes place in it, will 

certainly increase, thus any real process generates an increase in entropy. 

The change in entropy in a thermodynamic system during a real process in it is the sum of two 

terms: 

 , (1.2) 

where  – the first term that characterizes the change in entropy due to the equilibrium 

transfer of entropy along with the fluxes of heat and matter through the boundary of the 

thermodynamic system. 

 , (1.3) 

where – the flow of entropy carried with the flow of matter; 

 – the flow of entropy carried with the flow of heat. 

The second term in equation (1.2) is the rate of entropy production within the process itself 

due to its irreversibility. This flow of entropy cannot be transferred through the boundaries of the 

thermodynamic system. The entropy generated within a real process can act as a quantitative 

measure of its irreversibility. For this, the concept of a local dissipative function is introduced, 

TSGH +=

( ) ( )
ttt d
dSin

d
dSe

d
dS

+=

( ) Se
d
dSe !=
t
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d
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The total energy of the system H (enthalpy) is the sum of its two terms: the 
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Gibbs energy G (convertible part) and the ballast part TS associated with entropy.
Any real process is accompanied by the loss of some part of the convertible 

energy, i.e. exergy. Only an ideal process allows you to fully preserve the entire 
supply of energy in a quantitative and qualitative sense, therefore it is character-
ized by energy perfection, i.e. no losses during energy conversions. Indicators of 
an ideal process can serve as initial information for assessing the quality and effi-
ciency of technical devices, which is one of the main tasks of energy technology.

The quantitative assessment of the principle of irreversibility is expressed by 
the second law of thermodynamics, by introducing an increase in entropy as a 
measure of dissipation. The entropy of an isolated or closed thermodynamic sys-
tem, when any real process takes place in it, will certainly increase, thus any real 
process generates an increase in entropy.

The change in entropy in a thermodynamic system during a real process in it 
is the sum of two terms:

  (1.1) 

The total energy of the system H (enthalpy) is the sum of its two terms: the Gibbs energy G 

(convertible part) and the ballast part TS associated with entropy. 

Any real process is accompanied by the loss of some part of the convertible energy, i.e. exergy. 
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the quality and efficiency of technical devices, which is one of the main tasks of energy 

technology. 

The quantitative assessment of the principle of irreversibility is expressed by the second law of 

thermodynamics, by introducing an increase in entropy as a measure of dissipation. The entropy 
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certainly increase, thus any real process generates an increase in entropy. 
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transfer of entropy along with the fluxes of heat and matter through the boundary of the 

thermodynamic system. 
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where – the flow of entropy carried with the flow of matter; 

 – the flow of entropy carried with the flow of heat. 
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due to its irreversibility. This flow of entropy cannot be transferred through the boundaries of the 

thermodynamic system. The entropy generated within a real process can act as a quantitative 

measure of its irreversibility. For this, the concept of a local dissipative function is introduced, 

TSGH +=

( ) ( )
ttt d
dSin

d
dSe

d
dS

+=

( ) Se
d
dSe !=
t

( ) ( ) ( )
ttt d
dSe

d
dSe

d
dSe диф т/о

+=

( ) диф
диф

Se
d
dSe !=
t

( ) т/о
т/о

Se
d
dSe !=
t

 – the flow of entropy carried with the flow of heat.

The second term in equation (1.2) is the rate of entropy production within the 
process itself due to its irreversibility. This flow of entropy cannot be transferred 
through the boundaries of the thermodynamic system. The entropy generated 
within a real process can act as a quantitative measure of its irreversibility. For 
this, the concept of a local dissipative function is introduced, which is related to 
the rate of entropy production in a unit volume by the following relation:which is related to the rate of entropy production in a unit volume by the following relation:

 , (1.4) 

where – local flow of entropy generated within the process. 

 , (1.5) 

where – entropy production rate within the process; 

– local dissipative function, i.e. the value of the dissipative function in a unit volume contracted 

to a point: 

. (1.6) 

According to the second law of thermodynamics of irreversible processes, the rate of entropy 

production within the process itself is strictly positive: 

 . (1.7) 

The entropy generated within a real process is a quantitative measure of its irreversibility. 

To calculate the dissipative function, two calculation methods are used. 

The first method is based on the integration of the local dissipative function over the entire 

volume of the thermodynamic system. The second method is to use the integral equations of energy 

and matter balance for a fixed control volume of a nonequilibrium thermodynamic system. 

 

1.2 Quantification of irreversible processes based on the concept of local dissipation. 

 Engineering applications of irreversible processes are very diverse. The most complex are 

the transformations of the system, accompanied by changes in the chemical composition. A 

comprehensive description of the phenomena accompanying irreversible changes in the state of a 

macroobject begins with the combination of the laws of conservation of mass and energy with the 

corresponding kinetic laws that describe the mechanisms of these phenomena. Local changes in 

the rates of heat transfer, a component of matter and momentum, near equilibrium are 

characterized by linear relationships between the rate and the driving force of the process: 

                                  /⃗ = −3 ∙ ∇66⃗ 7 – Fourier's law      (1.8) 

where: /⃗ – heat flux density, 3 – coefficient of thermal conductivity of the medium. 
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where 

which is related to the rate of entropy production in a unit volume by the following relation:
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 – local flow of entropy generated within the process.

which is related to the rate of entropy production in a unit volume by the following relation:
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where 

which is related to the rate of entropy production in a unit volume by the following relation:
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 – entropy production rate within the process;
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which is related to the rate of entropy production in a unit volume by the following relation:
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According to the second law of thermodynamics of irreversible processes, the 
rate of entropy production within the process itself is strictly positive:

which is related to the rate of entropy production in a unit volume by the following relation:

 , (1.4) 

where – local flow of entropy generated within the process. 
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where – entropy production rate within the process; 
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to a point: 
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According to the second law of thermodynamics of irreversible processes, the rate of entropy 

production within the process itself is strictly positive: 
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The entropy generated within a real process is a quantitative measure of its irreversibility. 

To calculate the dissipative function, two calculation methods are used. 

The first method is based on the integration of the local dissipative function over the entire 
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The entropy generated within a real process is a quantitative measure of its 

irreversibility.
To calculate the dissipative function, two calculation methods are used.
The first method is based on the integration of the local dissipative function 

over the entire volume of the thermodynamic system. The second method is to use 
the integral equations of energy and matter balance for a fixed control volume of a 
nonequilibrium thermodynamic system.

1.2 Quantification of irreversible processes based on the concept of local 
dissipation

Engineering applications of irreversible processes are very diverse. The most 
complex are the transformations of the system, accompanied by changes in the 
chemical composition. A comprehensive description of the phenomena accom-
panying irreversible changes in the state of a macroobject begins with the com-
bination of the laws of conservation of mass and energy with the corresponding 
kinetic laws that describe the mechanisms of these phenomena. Local changes in 
the rates of heat transfer, a component of matter and momentum, near equilibrium 
are characterized by linear relationships between the rate and the driving force of 
the process:

which is related to the rate of entropy production in a unit volume by the following relation:
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to a point: 
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 – Fourier's law                                 (1.8)
where: 

which is related to the rate of entropy production in a unit volume by the following relation:

 , (1.4) 

where – local flow of entropy generated within the process. 

 , (1.5) 

where – entropy production rate within the process; 

– local dissipative function, i.e. the value of the dissipative function in a unit volume contracted 

to a point: 
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According to the second law of thermodynamics of irreversible processes, the rate of entropy 

production within the process itself is strictly positive: 
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To calculate the dissipative function, two calculation methods are used. 
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which is related to the rate of entropy production in a unit volume by the following relation:
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where Lii – phenomenological coefficients of proportionality, which are related to 
the thermal conductivity coefficients λ, diffusion coefficient Dj of the j-th com-
ponent, the viscosity of the medium μ, and the rate constants of the forward and 
backward reactions k+ and k–.
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Ṗтр= = −@9 ∙ ∇66⃗ C ∙ ʋ6⃗ = ∑ ∑ 986
FCG
6C@

BCG
8C@ R−

@

D
;
9ʋ!
9;"

+
9ʋ"

9;!
=S,																					(1.14) 

where: J86 = −
@

D
;
9ʋ!
9;"

+
9ʋ"

9;!
=. 
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consideration (1.15): 
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consideration (1.15): 
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The dissipation value Ṗ for the thermodynamic system as a whole can be determined by 

integration, i.e. distribution of the local dissipative function Ṗ=  on the entire volume V under 
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Ṗ = ∫ Ṗ=VF
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original state. However, the amount of work returned to an external source will be 
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consideration (1.15): 
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Ṗтр= = −@9 ∙ ∇66⃗ C ∙ ʋ6⃗ = ∑ ∑ 986
FCG
6C@

BCG
8C@ R−

@

D
;
9ʋ!
9;"

+
9ʋ"

9;!
=S,																					(1.14) 

where: J86 = −
@

D
;
9ʋ!
9;"

+
9ʋ"

9;!
=. 
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In an equilibrium system, 88 = 0 and J8 = 0, that is, there is a uniform distribution of intense 

characteristics in the absence of external fields and, as a consequence, the absence of relaxation 

flows. The irreversibility of real processes in the macrobody means the fundamental impossibility 

of returning all the bodies involved in the process to their original state, even if the return process 

is equilibrium. For example, in a compressor, the temperature and pressure of the gas increase due 

to an external source (electrical network). If the compression is in equilibrium, then the process is 

certainly thermodynamically reversible, that is, it is possible to return all bodies to their original 

state: gas and transfer work to an external source in the same amount. If the process is non-

equilibrium and is accompanied by friction (986 ≠ 0) and heat transfer (/⃗ ≠ 0), then, basically, it 

is possible to return the gas to its original state. However, the amount of work returned to an 

external source will be noticeably less than the original cost. The cause of irreversibility is the 

dissipation (depreciation) of energy, i.e. transformation of its convertible part into a ballast part 

due to entropy. The second law of thermodynamics for equilibrium processes introduces entropy 

as a function of state, which makes it possible to isolate its convertible part from the internal energy 

U: the Gibbs-Helmholtz functions ? = M − 7- and Gibbs N = O − 7-. In non-equilibrium 

processes, an internal flow arises (entropy production) , which acts as a quantitative 

measure of energy dissipation. 
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where: where: 7Wт/д – average thermodynamic temperature, К; -̇8B  – is the rate of entropy increment 

in the entire system under consideration due to internal irreversible processes, W/K. 

Differential equations for the balance of mass, energy, entropy, kinetic ratios of local rates 

of energy and mass transfer processes and the Gibbs equation for fixed parameters make it possible 

to obtain a calculated ratio for the dissipation density: 
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So, the driving force for heat transfer is J = −
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; for mass transfer –    J6 = @−∇66⃗ :C

N,Q
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where :6 – where μ_j is the chemical potential of the j-th component of the system; for chemical 

transformations  J< = ?<, where ?< – where A_r is the chemical affinity characterizing the degree 

of completeness of the chemical reaction. 

To calculate the local and integral values of the dissipative function, information is needed 

on the distribution of intensive parameters: temperature T (x,y,z,τ), presseure P(x,y,z,τ), 

concentration  %6(x,y,z,τ), velocity distributions ʋ(x,y,z,τ) and kinetic relations for calculating the 

thermophysical properties of the system. 

1.2.1 Dissipation of kinetic energy in viscous flow. 

Task 1. To btain the calculated ratio of the local dissipative function for the hydrodynamic 

steady motion of an incompressible fluid (50% aqueous solution of glycerin). To determine the 

value of the dissipative function over the entire volume in a smooth round pipe with an inner 

diameter D and length L under isothermal conditions. The motion mode is stationary, laminar  

Re=1800. Process parameters: P=20 bar, t=40 ºC. Let's compute at 
<

S
= 1. Let us imagine the flow 

profile of a medium in a round pipe of constant diameter under laminar conditions (Fig. 1). 

 

 

 

 

 

 

 

 

   

Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 
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Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 

 

Under these conditions, the velocity distribution is parabolic: 

 

L 

X 

X 

1 

1 

2 

2 

0 

2 

D
 Vx 

 – is the rate of entropy 
increment in the entire system under consideration due to internal irreversible pro-
cesses, W/K.

Differential equations for the balance of mass, energy, entropy, kinetic ratios 
of local rates of energy and mass transfer processes and the Gibbs equation for 
fixed parameters make it possible to obtain a calculated ratio for the dissipation 
density:

where: 7Wт/д – average thermodynamic temperature, К; -̇8B  – is the rate of entropy increment 

in the entire system under consideration due to internal irreversible processes, W/K. 

Differential equations for the balance of mass, energy, entropy, kinetic ratios of local rates 

of energy and mass transfer processes and the Gibbs equation for fixed parameters make it possible 

to obtain a calculated ratio for the dissipation density: 
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Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 
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Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 
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Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 

 

Under these conditions, the velocity distribution is parabolic: 
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, where μj – where μj is the chemical potential of the j-th compon-
ent of the system; for chemical transformations Xr = Ar, where Ar – where Ar is 
the chemical affinity characterizing the degree of completeness of the chemical 
reaction.

To calculate the local and integral values of the dissipative function, informa-
tion is needed on the distribution of intensive parameters: temperature T (x,y,z,τ), 
presseure P(x,y,z,τ), concentration Cj(x,y,z,τ), velocity distributions ʋ(x,y,z,τ) and 
kinetic relations for calculating the thermophysical properties of the system.
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1.2.1 Dissipation of kinetic energy in viscous flow

Task 1. To btain the calculated ratio of the local dissipative function for the 
hydrodynamic steady motion of an incompressible fluid (50% aqueous solution 
of glycerin). To determine the value of the dissipative function over the entire 
volume in a smooth round pipe with an inner diameter D and length L under iso-
thermal conditions. The motion mode is stationary, laminar Re = 1800. Process 
parameters: P = 20 bar, t = 40 ºC. Let's compute at 
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Ṗ= = /⃗ ∙ X−
∇LL⃗ N

N
Y + ∑ 8O

дф66666⃗ ∙ @−∇66⃗ :C
N,Q

F
6C@ + ∑ 86<

= ∙ ?<
R
<C@ + @−9 ∙ ∇66⃗ C ∙ ʋ6⃗        (1.16) 

So, the driving force for heat transfer is J = −
∇LL⃗ N

N
; for mass transfer –    J6 = @−∇66⃗ :C

N,Q
, 

where :6 – where μ_j is the chemical potential of the j-th component of the system; for chemical 

transformations  J< = ?<, where ?< – where A_r is the chemical affinity characterizing the degree 

of completeness of the chemical reaction. 

To calculate the local and integral values of the dissipative function, information is needed 

on the distribution of intensive parameters: temperature T (x,y,z,τ), presseure P(x,y,z,τ), 

concentration  %6(x,y,z,τ), velocity distributions ʋ(x,y,z,τ) and kinetic relations for calculating the 

thermophysical properties of the system. 

1.2.1 Dissipation of kinetic energy in viscous flow. 

Task 1. To btain the calculated ratio of the local dissipative function for the hydrodynamic 

steady motion of an incompressible fluid (50% aqueous solution of glycerin). To determine the 

value of the dissipative function over the entire volume in a smooth round pipe with an inner 

diameter D and length L under isothermal conditions. The motion mode is stationary, laminar  

Re=1800. Process parameters: P=20 bar, t=40 ºC. Let's compute at 
<

S
= 1. Let us imagine the flow 

profile of a medium in a round pipe of constant diameter under laminar conditions (Fig. 1). 

 

 

 

 

 

 

 

 

   

Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 

 

Under these conditions, the velocity distribution is parabolic: 
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profile of a medium in a round pipe of constant diameter under laminar conditions 
(Fig. 1).
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Fig. 1. Medium flow profile in a round pipe of constant diameter under laminar conditions. 

 

Under these conditions, the velocity distribution is parabolic: 
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Figure 1. Medium flow profile in a round pipe of 
constant diameter under laminar conditions.

Under these conditions, the velocity distribution is parabolic: 

ʋT = ʋH R1 − X
<

S
Y
D
S      (1.17) 

where: r - the current value of the flow radius, R - the inner radius of the pipe, ʋH = 2ʋW – the 

speed on the pipe axis equal to the double value of the average speed. 

Relation (1.17) describes the profile of velocities in the cross section of the pipe and is a 

parabola equation. However, it should be borne in mind that, in fact, the velocity distribution is a 

three-dimensional figure and, with laminar motion in a round pipe, is a paraboloid of revolution. 

Equation (1.17) is written for any longitudinal section of this paraboloid for a plane passing 

through the pipe axis. The local dissipative function is determined according to expression (1.14). 

 

          The viscous stress tensor generally has nine components (1.18). 
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where: i,j=1 – corresponds to the x-axis; i,j=2 - corresponds to the y axis; i,j=3 - 

corresponds to the z axis; 986 – component of the viscous stress tensor, N/m2. 

For an incompressible medium, the diagonal terms are equal to zero 9;; = 9UU = 	9VV = 0, 

in addition, taking into account the symmetry 986 = 968. In the example under consideration, only 

one velocity component ʋ; has a non-zero value. Therefore, the local dissipation of kinetic 

energy is equal to: 
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where: the radial velocity component for a stabilized flow is zero ʋ< = 0; viscous stress in 

the radial plane xr 9;< = −:
9ʋ#
9<

, where μ – the dynamic viscosity of the medium. 
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 

                                  Ṗтр= = 16:ʋWD"D        (1.21) 

Integrating Ṗтр=  on the volume bounded by the inner surface of the pipe with diameter D 

and length L, between sections 1-1 and 2 – 2, we obtain an expression for calculating the total 

dissipation Ṗтр under the given conditions (1.22a), (1.22b): 
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 
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Integrating Ṗтр=  on the volume bounded by the inner surface of the pipe with diameter D 

and length L, between sections 1-1 and 2 – 2, we obtain an expression for calculating the total 

dissipation Ṗтр under the given conditions (1.22a), (1.22b): 
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 – the speed on the pipe axis equal to the double value of the average 
speed.

Relation (1.17) describes the profile of velocities in the cross section of the 
pipe and is a parabola equation. However, it should be borne in mind that, in fact, 
the velocity distribution is a three-dimensional figure and, with laminar motion 
in a round pipe, is a paraboloid of revolution. Equation (1.17) is written for any 
longitudinal section of this paraboloid for a plane passing through the pipe axis. 
The local dissipative function is determined according to expression (1.14).

The viscous stress tensor generally has nine components (1.18).
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 
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where: i,j = 1 – corresponds to the x-axis; i,j = 2 - corresponds to the y axis; i,j = 3 -
corresponds to the z axis; σij – component of the viscous stress tensor, N/m2.
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 

                                  Ṗтр= = 16:ʋWD"D        (1.21) 
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 
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Obviously, in the center of the pipe (r = 0) Ṗтр== 0, in turn, directly at the pipe wall (r = R) 

the dissipation of kinetic energy has a maximum value: 
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The integration used the condition of an incompressible medium, which makes it possible to 

assume that the distribution of the flow velocity along the entire length of the pipe is unchanged. 

The numerical values of the parameters and thermophysical characteristics of the outflow of the 

solution in the pipe section included in the formula (1.22b) are calculated according to the laminar 

hydrodynamic regime Re=1800 in a pipe with a diameter D=0.06m and a length L=25m: 
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It should be noted that an analytical calculation of dissipation during the motion of a 

medium under conditions of a turbulent regime is impossible in this case, since there is no 

information on turbulent fluctuations. 

1.2.2 Dissipation of internal energy in heat conduction processes. 

In engineering, the problems of heat transfer at a constant heat flux density of the walls are 

encountered in many cases: in electric heating, radiation heating, heating in nuclear reactors and 

in counterflow heat exchangers, when the mass flow heat capacities (the product of the mass flow 

rate and the heat capacity) of the heat carriers are the same. In our problem, there is also one 

boundary condition is a constant temperature of the outer surface of the pipe along the entire length 

of the reactor. Such a boundary condition is also often encountered in practice, for example, in 

such heat exchangers as evaporators, condensers and in all heat exchangers, when the mass flow 

heat capacity of one heat carrier is much greater than that of another. 

The method used is based on the integration of the local dissipative function on the entire 

volume of the system under consideration. The advantage of this methodological approach lies in 

its clarity and the ability to reveal the internal logic of the derivation of the main patterns of the 

process. Let us analyze this case on a concrete example of the dissipation of internal energy in the 

process of heat conduction. 

Task 2. To obtain an analytical and numerical solution for the magnitude of local and 

integral energy dissipation in the wall of a tubular reactor, if the value of the heat flux density on 

the outer surface of the pipe /\ = −60	
]^

_% , the temperature of this surface is 7ст = 7нар = 873	К, 

external diameter Vн = 0,1	м and internal diameter		Vвн = 0,08	м  of the wall, pipe length L=40 

m, thermal conductivity value of the wall 
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The integration used the condition of an incompressible medium, which makes 
it possible to assume that the distribution of the flow velocity along the entire 
length of the pipe is unchanged. The numerical values of the parameters and 
thermophysical characteristics of the outflow of the solution in the pipe section 
included in the formula (1.22b) are calculated according to the laminar hydro-
dynamic regime Re=1800 in a pipe with a diameter D=0.06m and a length L=25m:
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It should be noted that an analytical calculation of dissipation during the mo-
tion of a medium under conditions of a turbulent regime is impossible in this case, 
since there is no information on turbulent fluctuations.

1.2.2 Dissipation of internal energy in heat conduction processes

In engineering, the problems of heat transfer at a constant heat flux density 
of the walls are encountered in many cases: in electric heating, radiation heating, 
heating in nuclear reactors and in counterflow heat exchangers, when the mass 
flow heat capacities (the product of the mass flow rate and the heat capacity) of the 
heat carriers are the same. In our problem, there is also one boundary condition 
is a constant temperature of the outer surface of the pipe along the entire length 
of the reactor. Such a boundary condition is also often encountered in practice, 
for example, in such heat exchangers as evaporators, condensers and in all heat 
exchangers, when the mass flow heat capacity of one heat carrier is much greater 
than that of another.

The method used is based on the integration of the local dissipative function 
on the entire volume of the system under consideration. The advantage of this 
methodological approach lies in its clarity and the ability to reveal the internal 
logic of the derivation of the main patterns of the process. Let us analyze this case 
on a concrete example of the dissipation of internal energy in the process of heat 
conduction.

Task 2. To obtain an analytical and numerical solution for the magnitude of 
local and integral energy dissipation in the wall of a tubular reactor, if the value 
of the heat flux density on the outer surface of the pipe 
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The integration used the condition of an incompressible medium, which makes it possible to 

assume that the distribution of the flow velocity along the entire length of the pipe is unchanged. 
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ature of this surface is 
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The integration used the condition of an incompressible medium, which makes it possible to 
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 external diameter dн=0,1 м and inter-
nal diameter dвн=0,08 м of the wall, pipe length L = 40 m, thermal conductivity 
value of the wall
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It should be noted that the relation given in the problem for the dissipative 
function (1.16) is the simplest linear combination of the terms of each individual 
gradient (temperature, concentration, velocity), although it is known that various 
forms of energy transfer are interconnected. In the problem under consideration, 
there is only a temperature gradient, therefore, according to the Fourier's law, the 
heat flux density is determined by equation (1.8):

It should be noted that the relation given in the problem for the dissipative function (1.16) is 

the simplest linear combination of the terms of each individual gradient (temperature, 

concentration, velocity), although it is known that various forms of energy transfer are 

interconnected. In the problem under consideration, there is only a temperature gradient, 

therefore, according to the Fourier's law, the heat flux density is determined by equation (1.8): 
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where the temperature gradient in the one-dimensional (radial) problem is defined in a 
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Let us depict the temperature distribution along the pipe radius for the selected boundary 

conditions (Fig. 2). 

 

 

 

 

 

 

 

 

Fig. 2. Temperature distribution along the radius of the pipe under the condition of 

constancy /\, 7нар\ 	и	3 

 

The local dissipative function according to equation (1.8) is equal to: 

                                    Ṗ= = /⃗ ∙ X−
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For a one-dimensional problem with a boundary condition of the second kind, the temperature 
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where the temperature gradient in the one-dimensional (radial) problem is defined 
in a simplified way as:
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Let us depict the temperature distribution along the pipe radius for the selected 
boundary conditions (Fig. 2).
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Figure 2. Temperature distribution along the radius of the 
pipe under the condition of constancy q', 
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The local dissipative function according to equation (1.8) is equal to:

It should be noted that the relation given in the problem for the dissipative function (1.16) is 
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where the square of the unit radiant vector is 1 @o<66⃗ C
D
= 1. The final expression for local 

dissipation has the following form (1.27): 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 
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Ṗ= =
w−/\ ∙ bнар\ x

D

7нар\ ∙ 3 ∙ bнар\
D =

(/\)D

7нар\ ∙ 3
=
(−60 ∙ 10G)D

873 ∙ 23,8
= 173,27	

kW
mG  

b = bвн\ = 0,04	м																7 = 7вн\\  

7вн\\ = 7нар\ −
/\ ∙ bнар\

3
os

bвн\\

bнар\
= 873 −

−60 ∙ 10G ∙ 0,05
23,8
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0,04
0,05

= 844,88	К 

Ṗ= =
(/\)D

7нар\ ∙ 3
∙ |
bнар\

bвн\\
}
D

=
(−60 ∙ 10G)D

844,88 ∙ 23,8
∙ ;
0,05
0,04

=
D

= 279,72	
kW
mG  

To determine the integral value of dissipation in the wall of a pipe with a length of l=1 m, 

under the condition 7нар\ = 873	К, /\ = −60	
кВт

м%
 and 3 = 23,8	

l

м∙К
 we get: 
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w−/\ ∙ bнар\ x

D

3
2ao ~ |−

3
7 ∙ /\ ∙ bнар\
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Ṗm =
w−/\ ∙ bнар\ x

D

3
2ao ~ |−

3
7 ∙ /\ ∙ bнар\

} V7
Твн
''

Тнар
'

 

Dissipation per 1 meter of pipe: 
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Ṗ= =
f

N
\−

g'∙<нар
'

f
∙
@

<
]
D

@o<66⃗ C
D
,                                         (1.26) 

where the square of the unit radiant vector is 1 @o<66⃗ C
D
= 1. The final expression for local 

dissipation has the following form (1.27): 

                                         Ṗ= =
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where the square of the unit radiant vector is 1 @o<66⃗ C
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= 1. The final expression for local 

dissipation has the following form (1.27): 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 
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where the square of the unit radiant vector is 1 @o<66⃗ C
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= 1. The final expression for local 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 
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where the square of the unit radiant vector is 1 @o<66⃗ C
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 
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To determine the integral value of dissipation in the wall of a pipe with a length of l=1 m, 
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Ṗm = ~ Ṗ=VF
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where the square of the unit radiant vector is 1 @o<66⃗ C
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= 1. The final expression for local 

dissipation has the following form (1.27): 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 

b = bнар\ = 0,05	м															7 = 7нар\ = 873	К 

Ṗ= =
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To determine the integral value of dissipation in the wall of a pipe with a length of l=1 m, 

under the condition 7нар\ = 873	К, /\ = −60	
кВт

м%
 and 3 = 23,8	

l
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where the square of the unit radiant vector is 1 @o<66⃗ C
D
= 1. The final expression for local 

dissipation has the following form (1.27): 

                                         Ṗ= =
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 

b = bнар\ = 0,05	м															7 = 7нар\ = 873	К 

Ṗ= =
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To determine the integral value of dissipation in the wall of a pipe with a length of l=1 m, 

under the condition 7нар\ = 873	К, /\ = −60	
кВт
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where the square of the unit radiant vector is 1 @o<66⃗ C
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dissipation has the following form (1.27): 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 

b = bнар\ = 0,05	м															7 = 7нар\ = 873	К 

Ṗ= =
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where the square of the unit radiant vector is 1 @o<66⃗ C
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dissipation has the following form (1.27): 
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We see that the resulting expression for directly determining the numerical value of the local 

dissipative function on the outer and inner walls of the reactor tube is very convenient. Let's do 

these calculations: 

b = bнар\ = 0,05	м															7 = 7нар\ = 873	К 

Ṗ= =
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To determine the integral value of dissipation in the wall of a pipe with a length of l=1 m, 

under the condition 7нар\ = 873	К, /\ = −60	
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=617,84 W/m
The dissipation along the entire length of the reactor tube is:

= 617,84	
W
m

 

The dissipation along the entire length of the reactor tube is: 

Ṗ = > ∙ Ṗm = 617,84 ∙ 40 = 24713,6	Вт ≈ 25	kW 

Internal exergy losses .Ẇ8B , due to the irreversibility of heat transfer, can be determined from 

the following relation (1.28): 

.Ẇ8B = Ṗ
N,...
Npт/д

,                                                                (1.28 ) 

where 7Wт/д =
N.2
' ?N.2

''

mB	
3.2
'

3.2
''

 – average thermodynamic temperature of the process. 

7Wт/д =
873 − 844,88

os
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844,88

= 858,86	A 

.Ẇ8B = 25 ∙
298,15
858,86

= 8,68	kW 

Both functional quantities Ṗ and .Ẇ8B  are quantitative characteristics of the efficiency of an 

irreversible process and have the same dimension. However, an important difference is that it is 

the exergy losses .Ẇ8B , due to the entropy produced inside the process, that are final and, thus, can 

only be compensated by external energy costs. 

In turn, the difference between Ṗ and .Ẇ8B  amounts to that part of the energy that can still 

be usefully used as a secondary (internal) energy resource. With the recovery of heat generated in 

the wall of the cylindrical reactor, the efficiency of the heat conduction process will increase. The 

value of this internal energy resource is as follows: 
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\\ = áyà =

Internal exergy losses 

= 617,84	
W
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Internal exergy losses .Ẇ8B , due to the irreversibility of heat transfer, can be determined from 
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Both functional quantities Ṗ and .Ẇ8B  are quantitative characteristics of the efficiency of an 

irreversible process and have the same dimension. However, an important difference is that it is 
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the exergy losses .Ẇ8B , due to the entropy produced inside the process, that are final and, thus, can 

only be compensated by external energy costs. 
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N,...
Npт/д

,                                                                (1.28 ) 

where 7Wт/д =
N.2
' ?N.2

''

mB	
3.2
'

3.2
''

 – average thermodynamic temperature of the process. 

7Wт/д =
873 − 844,88

os
873

844,88

= 858,86	A 
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In case of qualified energy technological utilization of this hidden energy re-
source generated in the reactor wall, exergy losses will be minimal. The rational 
choice of exergy optimization of high-temperature processes depends on the char-
acteristics of a particular energy carrier and the technological possibilities of heat 
recovery.
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1.2.3 Energy dissipation in diffusion processes

Let us analyze the mass transfer process using a specific example of the dissi-
pation of convertible energy in a diffusion membrane process.

Task 3. To obtain an analytical and numerical solution for the magnitude of 
local and integral energy dissipation in the diffusion layer of a membrane separ-
ating an ideal mixture of propane (component A) and methane (component B) 
hydrocarbons at a temperature Tf = 279 К and a pressure Pf = 4,6 bar in pressure 
channel of the device. The composition of the gas mixture in the pressure channel 
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Ṗ = > ∙ Ṗm = 617,84 ∙ 40 = 24713,6	Вт ≈ 25	kW 
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Fig. 3. a) Distribution and characteristics of flows in the apparatus: 1 - pressure channel; 

2 - drainage channel; 3 - silicone membrane. b) Concentration profile of the components in the 

membrane layer of the apparatus. 

The process is stationary and isothermal, the gas mixture is ideal. Hydraulic resistance in the 

pressure and drainage channel is negligible. External diffusion resistance in the pressure and 

drainage channel is excluded. The structure of the gas flow in the cavity of the pressure channel 

1 corresponds to the ideal mixing model (IMS). Based on these assumptions, the following 

values follow: 

É\ = ÉR = ÉS = 4,6	bar, where É\ – pressure in cavity 1; 

É\\ = ÉQ = 1	bar, where É\\ pressure in cavity 2; 

áqà
\ = áSà = 0,59	
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, where áqà

\, 	áqà
\\ – are the 
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waste flow åṠ is discharged from the pressure channel with the concentration 	áSà = áqHà
\. 

 

 

 

 

 

 

 

 

 

              

(a)                      (b) 

Fig. 3. a) Distribution and characteristics of flows in the apparatus: 1 - pressure channel; 

2 - drainage channel; 3 - silicone membrane. b) Concentration profile of the components in the 

membrane layer of the apparatus. 

The process is stationary and isothermal, the gas mixture is ideal. Hydraulic resistance in the 

pressure and drainage channel is negligible. External diffusion resistance in the pressure and 

drainage channel is excluded. The structure of the gas flow in the cavity of the pressure channel 

1 corresponds to the ideal mixing model (IMS). Based on these assumptions, the following 

values follow: 

É\ = ÉR = ÉS = 4,6	bar, where É\ – pressure in cavity 1; 

É\\ = ÉQ = 1	bar, where É\\ pressure in cavity 2; 

áqà
\ = áSà = 0,59	

]_rs	А

]_rs	ru	_v/*wx.
; áqà

\\ = áSà = 0,95	
]_rs	А

]_rs	ru	_v/*wx.
, where áqà

\, 	áqà
\\ – are the 

compositions of the gas phase near the membrane surfaces from the side of the pressure and 

drainage channel. The resistance to mass transfer is concentrated exclusively in the diffusion layer 

of the silicone membrane with a thickness of â. At the boundary of the gas and the membrane, it 

is permissible to assume that there is a local equilibrium. 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 
 

3 

1 

2 

Ṅp; ỹp; Pp 

ṄF; ỹF; PF 

ṄR; ỹR; PR 

CA,M 

CB,M 

CA,M 

CB,M 

C 

x 

δ 

  

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 
 

3 

1 

2 

Ṅp; ỹp; Pp 

ṄF; ỹF; PF 

ṄR; ỹR; PR 

CA,M 

CB,M 

CA,M 

CB,M 

C 

x 

δ 

(a)                                                        (b)
Figure 3. a) Distribution and characteristics of flows in the apparatus: 

1 - pressure channel; 2 - drainage channel; 3 - silicone membrane.
b) Concentration profile of the components in the membrane layer of the 

apparatus
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The process is stationary and isothermal, the gas mixture is ideal. Hydraulic 
resistance in the pressure and drainage channel is negligible. External diffusion re-
sistance in the pressure and drainage channel is excluded. The structure of the gas 
flow in the cavity of the pressure channel 1 corresponds to the ideal mixing model 
(IMS). Based on these assumptions, the following values follow:

P' = Pf = PR =4,6 bar, where P' – pressure in cavity 1;
P'' = Pp = 1 bar, where P'' pressure in cavity 2;
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 – are the compositions of the gas phase near the membrane sur-
faces from the side of the pressure and drainage channel. The resistance to mass 
transfer is concentrated exclusively in the diffusion layer of the silicone membrane 
with a thickness of δ. At the boundary of the gas and the membrane, it is permis-
sible to assume that there is a local equilibrium.

The concentrations of components А (CA,m' ) and В (CB,m' ) in the membrane at 
the boundary with the pressure channel are as follows:

      The concentrations of components А (%q,F
\) and В (%|,F

\) in the membrane at the boundary 

with the pressure channel are as follows: 

Сq,}
\ = 9q,} ∙ É\ ∙ áqà

\,
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where 9q,} = 8,825 ∙ 10?~
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_4∙(�
 and 9|,} = 1,683 ∙ 10?Ä

_rs

_4∙(�
 – the values of the solubility 

coefficients of this membrane (material polydimethylsiloxane[(CH3)2SiO]x) on both components 

at a temperature value of 7 = 279	К. 

We obtain the following values of the concentrations of the components at the boundaries with the 

membrane: 
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The values of diffusion fluxes 8q, 8| in the membrane are determined based on the condition 

of constant diffusion coefficients of the components in the membrane layer. For a flat and one-

dimensional problem, the distribution of the substance concentration in the membrane is linear, 

and the concentration gradients are constant (1.9). 
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Ṗ;Câ
= = 8,314 ∙ 279 ∙ [5,558 ∙ 10?@H ∙ (−7,784 ∙ 10Ñ)D ∙

1
8,3837 ∙ 10?G

+ 

The total flow, taking into account the active surface of the membrane, is:

8| = 0,2214 ∙ 10?~
kmol
mD ∙ s

 

The total specific flux (total density of the substance) that has penetrated through the separating 

membrane is: 

8 = 8q + 8| = 4,326 ∙ 10?~ + 0,2214 ∙ 10?~ 

8 = 4,5474 ∙ 10?~
kmol
mD ∙ s

 

The total flow, taking into account the active surface of the membrane, is: 

åQ̇ = ~ 8V?
q

H
= 8 ∙ ? = 4,5474 ∙ 10?~ ∙ 117 = 0,532 ∙ 10?D

kmol
s

 

Waste flow, according to the material balance equation: 
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åż

áSà +
åẏ
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Ṗ= = 8q666⃗ ∙ @−∆:q,}66666666⃗ C + 8|666⃗ ∙ @−∆:|,}66666666⃗ C  

For ideal solutions of the component in the membrane (the value of the activity coefficient 

γ is equal to unity), under the conditions of the flat geometry of the membrane, we have: 
9X5
9;

=

9X5
9Ö5,7

∙
9Ö5,7
9;

, , where, taking into account the assumptions: 
9X5
9Ö5,7

=
9s)	(á∙Ö5,7)

9Ö5,7
=

SN

Ö5,7
 

Let us present the calculated relation for local dissipation and calculate its value for the given 

boundary conditions (c = 0, c = â): 
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åẏ
åż
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Ṗ;Câ
= = 8,314 ∙ 279 ∙ [5,558 ∙ 10?@H ∙ (−7,784 ∙ 10Ñ)D ∙

1
8,3837 ∙ 10?G

+ 

8| = 0,2214 ∙ 10?~
kmol
mD ∙ s

 

The total specific flux (total density of the substance) that has penetrated through the separating 

membrane is: 

8 = 8q + 8| = 4,326 ∙ 10?~ + 0,2214 ∙ 10?~ 

8 = 4,5474 ∙ 10?~
kmol
mD ∙ s

 

The total flow, taking into account the active surface of the membrane, is: 

åQ̇ = ~ 8V?
q

H
= 8 ∙ ? = 4,5474 ∙ 10?~ ∙ 117 = 0,532 ∙ 10?D

kmol
s

 

Waste flow, according to the material balance equation: 
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åż

áSà +
åẏ
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Ṗ= = ~ ṖâC@м%V?
q

H
= 0,1239 ∙ 117 = 14,5	kW 

The local dissipation of the convertible Gibbs energy is proportional to the 
square of the driving force and inversely proportional to the local concentration of 
the components; therefore, the largest value of 

+1,433 ∙ 10?Ç ∙ (−0,1545 ∙ 10Ñ)D ∙
1

0,00841 ∙ 10?G
] = 18,7525 ∙ 10~ 	

kW
mG  

The local dissipation of the convertible Gibbs energy is proportional to the square of the 

driving force and inversely proportional to the local concentration of the components; therefore, 
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ṖâC@м% = "7 ùû¢@−86Cos
t6,}
\\

t6,}
\ £

D

6C@

° 

In the conditions of our task, we assume that § = 1 (component A),  § = 2 (component B): 
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ṖâC@м% = "7 ó8q |−os
tq,}
\\

tq,}
\ } + 8| |−os

t|,}
\\

t|,}
\ }ò 
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Ṗ= = ~ ṖâC@м%V?
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The task is devoted to diffusion in a binary gaseous system obeying Fick's 
law: the intensity of mass transfer of an individual component is proportional to 
its concentration gradient and does not depend on the potentials of other intensive 
properties of the system. Often such restrictions in applied matters are justified, 
despite the fact that engineering applications of diffuse phenomena, in particular 
in gaseous systems, are very diverse, and therefore require consideration of the 
inseparable connection between the mechanisms of heat and mass transfer con-
vection in each individual case.
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2. Thermodynamic perfection evaluation of the energy and matter 
transformation processes on the basis of the concept of exergy

2.1 The method of energy balances in the analysis of an irreversible process

The second method for estimating the dissipative function is based on the use 
of a system of integral equations for a fixed control volume of a thermodynamic 
system (FTS). The configuration of the FTS boundaries is unchanged, but the 
boundaries themselves are permeable for convective and non-convective flows of 
mass and energy. These equations relate the rate of change of extensive quantities 
(total mass, mass of an individual k-th component, total energy, kinetic and poten-
tial energy, entropy, exergy) with the causes causing these changes: flows carried 
across FTS boundaries and internal sources, if any.

Gross mass balance equation:
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of mass transfer of an individual component is proportional to its concentration gradient and does 
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where  – total mass density, kg/m3;  – convective flow of the total mass through 

the permeable sections of the FTS (sections i = 1.2 ... n), kg/s. 

Total energy balance equation: 
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         The task is devoted to diffusion in a binary gaseous system obeying Fick's law: the intensity 

of mass transfer of an individual component is proportional to its concentration gradient and does 

not depend on the potentials of other intensive properties of the system. Often such restrictions in 

applied matters are justified, despite the fact that engineering applications of diffuse phenomena, 

in particular in gaseous systems, are very diverse, and therefore require consideration of the 

inseparable connection between the mechanisms of heat and mass transfer convection in each 

individual case. 

2. Thermodynamic perfection evaluation of the energy and matter transformation 

processes on the basis of the concept of exergy. 

2.1 The method of energy balances in the analysis of an irreversible process. 

      The second method for estimating the dissipative function is based on the use of a system of 

integral equations for a fixed control volume of a thermodynamic system (FTS). The configuration 

of the FTS boundaries is unchanged, but the boundaries themselves are permeable for convective 

and non-convective flows of mass and energy. These equations relate the rate of change of 

extensive quantities (total mass, mass of an individual k-th component, total energy, kinetic and 

potential energy, entropy, exergy) with the causes causing these changes: flows carried across FTS 

boundaries and internal sources, if any. 
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 – convective flow of the total 

mass through the permeable sections of the FTS (sections i = 1.2 ... n), kg/s.
Total energy balance equation:

         The task is devoted to diffusion in a binary gaseous system obeying Fick's law: the intensity 

of mass transfer of an individual component is proportional to its concentration gradient and does 

not depend on the potentials of other intensive properties of the system. Often such restrictions in 

applied matters are justified, despite the fact that engineering applications of diffuse phenomena, 

in particular in gaseous systems, are very diverse, and therefore require consideration of the 

inseparable connection between the mechanisms of heat and mass transfer convection in each 

individual case. 

2. Thermodynamic perfection evaluation of the energy and matter transformation 

processes on the basis of the concept of exergy. 

2.1 The method of energy balances in the analysis of an irreversible process. 

      The second method for estimating the dissipative function is based on the use of a system of 

integral equations for a fixed control volume of a thermodynamic system (FTS). The configuration 

of the FTS boundaries is unchanged, but the boundaries themselves are permeable for convective 

and non-convective flows of mass and energy. These equations relate the rate of change of 

extensive quantities (total mass, mass of an individual k-th component, total energy, kinetic and 

potential energy, entropy, exergy) with the causes causing these changes: flows carried across FTS 

boundaries and internal sources, if any. 

Gross mass balance equation: 
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where  – total mass density, kg/m3;  – convective flow of the total mass through 

the permeable sections of the FTS (sections i = 1.2 ... n), kg/s. 

Total energy balance equation: 
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where  – kinetic energy density, J/m3; 

 – potential energy density, J/m3; 

 – internal energy density, J/m3; 
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where 

         The task is devoted to diffusion in a binary gaseous system obeying Fick's law: the intensity 

of mass transfer of an individual component is proportional to its concentration gradient and does 

not depend on the potentials of other intensive properties of the system. Often such restrictions in 

applied matters are justified, despite the fact that engineering applications of diffuse phenomena, 

in particular in gaseous systems, are very diverse, and therefore require consideration of the 

inseparable connection between the mechanisms of heat and mass transfer convection in each 

individual case. 

2. Thermodynamic perfection evaluation of the energy and matter transformation 

processes on the basis of the concept of exergy. 

2.1 The method of energy balances in the analysis of an irreversible process. 

      The second method for estimating the dissipative function is based on the use of a system of 

integral equations for a fixed control volume of a thermodynamic system (FTS). The configuration 

of the FTS boundaries is unchanged, but the boundaries themselves are permeable for convective 

and non-convective flows of mass and energy. These equations relate the rate of change of 

extensive quantities (total mass, mass of an individual k-th component, total energy, kinetic and 

potential energy, entropy, exergy) with the causes causing these changes: flows carried across FTS 

boundaries and internal sources, if any. 

Gross mass balance equation: 

     (2.1) 

where  – total mass density, kg/m3;  – convective flow of the total mass through 

the permeable sections of the FTS (sections i = 1.2 ... n), kg/s. 

Total energy balance equation: 

    (2.2) 

where  – kinetic energy density, J/m3; 

 – potential energy density, J/m3; 

 – internal energy density, J/m3; 
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         The task is devoted to diffusion in a binary gaseous system obeying Fick's law: the intensity 

of mass transfer of an individual component is proportional to its concentration gradient and does 

not depend on the potentials of other intensive properties of the system. Often such restrictions in 

applied matters are justified, despite the fact that engineering applications of diffuse phenomena, 

in particular in gaseous systems, are very diverse, and therefore require consideration of the 

inseparable connection between the mechanisms of heat and mass transfer convection in each 

individual case. 

2. Thermodynamic perfection evaluation of the energy and matter transformation 

processes on the basis of the concept of exergy. 

2.1 The method of energy balances in the analysis of an irreversible process. 

      The second method for estimating the dissipative function is based on the use of a system of 

integral equations for a fixed control volume of a thermodynamic system (FTS). The configuration 

of the FTS boundaries is unchanged, but the boundaries themselves are permeable for convective 

and non-convective flows of mass and energy. These equations relate the rate of change of 

extensive quantities (total mass, mass of an individual k-th component, total energy, kinetic and 

potential energy, entropy, exergy) with the causes causing these changes: flows carried across FTS 

boundaries and internal sources, if any. 

Gross mass balance equation: 

     (2.1) 

where  – total mass density, kg/m3;  – convective flow of the total mass through 

the permeable sections of the FTS (sections i = 1.2 ... n), kg/s. 

Total energy balance equation: 

    (2.2) 

where  – kinetic energy density, J/m3; 

 – potential energy density, J/m3; 

 – internal energy density, J/m3; 
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         The task is devoted to diffusion in a binary gaseous system obeying Fick's law: the intensity 

of mass transfer of an individual component is proportional to its concentration gradient and does 

not depend on the potentials of other intensive properties of the system. Often such restrictions in 

applied matters are justified, despite the fact that engineering applications of diffuse phenomena, 

in particular in gaseous systems, are very diverse, and therefore require consideration of the 

inseparable connection between the mechanisms of heat and mass transfer convection in each 

individual case. 

2. Thermodynamic perfection evaluation of the energy and matter transformation 

processes on the basis of the concept of exergy. 

2.1 The method of energy balances in the analysis of an irreversible process. 

      The second method for estimating the dissipative function is based on the use of a system of 

integral equations for a fixed control volume of a thermodynamic system (FTS). The configuration 

of the FTS boundaries is unchanged, but the boundaries themselves are permeable for convective 

and non-convective flows of mass and energy. These equations relate the rate of change of 

extensive quantities (total mass, mass of an individual k-th component, total energy, kinetic and 

potential energy, entropy, exergy) with the causes causing these changes: flows carried across FTS 

boundaries and internal sources, if any. 

Gross mass balance equation: 

     (2.1) 

where  – total mass density, kg/m3;  – convective flow of the total mass through 

the permeable sections of the FTS (sections i = 1.2 ... n), kg/s. 

Total energy balance equation: 

    (2.2) 

where  – kinetic energy density, J/m3; 

 – potential energy density, J/m3; 

 – internal energy density, J/m3; 
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=  – internal energy density, J/m3;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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  – mass average values of enthalpy, velocity, specific gravita-
tional potential, J/kg;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – flow of external work in the form of kinetic or electrical energy, W;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – convective heat flux, W;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 

ih iu ig zg
i
=j

texW!

Q!

дифH!

åò
=

-=
m

k

F
нк
kk

диф dFnIHH
1 0

!!"

kH

F
NI
нк
k

F

нк
k

!
0

lim
®

= нк
kN!

n!

F

тр
V

tex

i
g

n

i
i

V

VV dVPgradWmdVПК Y-×-+-÷÷
ø

ö
çç
è

æ
+=+

¶
¶ ®

=
òåò !"!! )(

2
)(

0

2

10

uju
t

òò -»×-
® 2

1

)(
0

P

P

V dPmdVPgrad
r

u !
"

трY!

SinSeSeSmdVS диф
n

i
ii

V

V
!!!! +++=

¶
¶ åò

=

т/о

10t

V
SS

VV 0
lim
®

=

iS

 – enthalpy flux supplied due to the mass transfer process at the boundary 
of the system and the external environment, W.

The calculation of the enthalpy flow is carried out according to the ratio:

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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                                      (2.3)
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where 

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – partial value of the enthalpy of the k component, determined by local 
values of temperature, pressure, composition at the boundary, J/mol;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – density of the mass flux of k component (k = 1, 2 … m) 

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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through the boundaries of the FTS, determined by the conditions of the mass trans-
fer process at the boundary, (mole of component k)/(m2∙s);

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – normal to the surface;

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – surface area, m2.
Balance equation of kinetic and potential energy:

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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   (2.4)

where 

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – functional that determines the source or 

sink of kinetic energy during one-dimensional motion of a continuous medium 
with a finite velocity in the field of pressure forces 

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – dissipation of 
kinetic energy, W.

Entropy balance equation:

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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                         (2.5)

where 

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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 – entropy density, J/(m3∙K);

, ,  – mass average values of enthalpy, velocity, specific gravitational potential, 

J/kg; 

 – flow of external work in the form of kinetic or electrical energy, W; 

 – convective heat flux, W; 

 – enthalpy flux supplied due to the mass transfer process at the boundary of the system 

and the external environment, W. 

The calculation of the enthalpy flow is carried out according to the ratio: 

 ,      (2.3) 

where – partial value of the enthalpy of the k component, determined by local values of 

temperature, pressure, composition at the boundary, J/mol; 

– density of the mass flux of k component (k = 1, 2 … m)  through the 

boundaries of the FTS, determined by the conditions of the mass transfer process at the boundary, 

(mole of component k)/(m2∙s); 

– normal to the surface; 

– surface area, m2. 

Balance equation of kinetic and potential energy: 

             (2.4) 

where  – functional that determines the source or sink of kinetic 

energy during one-dimensional motion of a continuous medium with a finite velocity in the field 

of pressure forces P, W;  – dissipation of kinetic energy, W. 

Entropy balance equation: 

 ,        (2.5) 

where  – entropy density, J/(m3∙K); 

 – mass-average value of entropy in the i-th section of the FTS apparatus 

 (i = 1, 2 … n), J/(kg∙K); 
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iS  – mass-average value of entropy in the i-th section of the FTS apparatus
 (i = 1, 2 … n), J/(kg∙K);

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – entropy flux introduced together with the heat flux at equilibrium heat 
transfer at the boundary, W/K. It is determined by the ratio (1.4);

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – entropy flux introduced with the convective flow of matter in an equi-
librium mass transfer process at the boundary, W/K. It is determined by relation 
(1.5);

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – rate of entropy production within the FTS due to the irreversibility of 
the process, W/K.

Mass balance equation for each component k:

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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                         (2.6)

where ρk – partial density of component k in the mixture (k = 1, 2 … m), mol/m3;

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – mass fraction of component k in the mixture (k = 1, 2 … m),
(kg of k component)/kg of mixture;

Mk – molecular weight of k component, kg/kmol;
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 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – nonconvective flow of the k component through the FTS boundary, 
mol/s;

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – rate of the reaction resulting in the appearance or disappearance of k com-
ponent, (mol of k component)/(m3∙s).

These relations (2.1 - 2.6) connect the rate of change of extensive quantities 
with the causes that cause them, both external, due to the convective flows of 
the substance through the permeable sections of the fixed control volume of the 
apparatus, and internal sources, if any. The left side of equations (2.1 - 2.6) is 
the rate of accumulation of extensive characteristics, i.e. changes per unit time 
of the values of the mass of the component, total mass, entropy, total energy, 
kinetic and potential energy. The values of these quantities are determined by the 
distribution of the density of the corresponding substance over the entire volume 
of the thermodynamic system. On the right side of equations (2.1 - 2.6), the first 
terms represent the resulting flow of substance due to visible movement due to 
convective transfer through the open sections of the apparatus. To calculate these 
quantities, the mass-average values of enthalpy 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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, entropy 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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, velocity 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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, mass 
fraction of the k component are used 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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. External flows of substance include 
flows of heat 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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, substance 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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, due to reversible heat and mass transfer process-
es at the boundary, the flow of external work, 

 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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 – entropy flux introduced together with the heat flux at equilibrium heat transfer at the 

boundary, W/K. It is determined by the ratio (1.4); 

 – entropy flux introduced with the convective flow of matter in an equilibrium mass 

transfer process at the boundary, W/K. It is determined by relation (1.5); 

 – rate of entropy production within the FTS due to the irreversibility of the process, 

W/K. 

Mass balance equation for each component k: 

 ,       (2.6) 

where  – partial density of component k in the mixture (k = 1, 2 … m), mol/m3; 

 – mass fraction of component k in the mixture (k = 1, 2 … m), 

(kg of k component)/kg of mixture; 

 – molecular weight of k component, kg/kmol; 

 – nonconvective flow of the k component through the FTS boundary, mol/s; 

 – rate of the reaction resulting in the appearance or disappearance of k component, (mol 

of k component)/(m3∙s). 

These relations (2.1 - 2.6) connect the rate of change of extensive quantities with the causes 

that cause them, both external, due to the convective flows of the substance through the permeable 

sections of the fixed control volume of the apparatus, and internal sources, if any. The left side of 

equations (2.1 - 2.6) is the rate of accumulation of extensive characteristics, i.e. changes per unit 

time of the values of the mass of the component, total mass, entropy, total energy, kinetic and 

potential energy. The values of these quantities are determined by the distribution of the density 

of the corresponding substance over the entire volume of the thermodynamic system. On the right 

side of equations (2.1 - 2.6), the first terms represent the resulting flow of substance due to visible 

movement due to convective transfer through the open sections of the apparatus. To calculate these 

quantities, the mass-average values of enthalpy  , entropy , velocity , mass fraction of the 

k component are used. . External flows of substance include flows of heat , substance 

, due to reversible heat and mass transfer processes at the boundary, the flow of external work,

, as well as flows of entropy  and , and introduced together with heat and 

substance flows through the permeable sections of the apparatus under reversible heat and mass 

transfer conditions at the boundary. 
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the permeable sections of the apparatus under reversible heat and mass transfer 
conditions at the boundary.

To the inner sources of substance, i.e. generated within the process due to its 
irreversibility, include: the reaction rate, as a result of which the k component 
appears or disappears 

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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; the rate of entropy production within the process; 

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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;
dissipation of kinetic energy 

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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, i.e. the rate at which kinetic energy is converted 
into internal energy due to overcoming frictional forces.

We illustrate the application of the method using the example of task 1 on page 
9.

Task 1
Calculate the dissipation of kinetic energy during the movement of a 50% 

aqueous solution of glycerol in a smooth pipe with a radius R = 0.03 m and a 
length L = 25 m under isothermal conditions. Laminar motion mode Re = 1800. 
Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C.

Solution:
We tackle the task using the differential equation for the balance of kinetic and 

potential energy (2.4) for the FST of a thermodynamic system:

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode 
of motion is laminar.

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 

V
kI

Sin ! трY!

rrr
тр21

2

1

тр
12

P
mPPmdPm
D

=
-

=-=Y ò !!!!

11,73
062,0

25103232
3

2тр =
××

==D
-

d
LP µu

01942,011,73094,0
4
06,014,3

4

2

тр

2
тр
12 =××

×
=D=Y PD up!

2тр
12 10942,1 -×=Y!

2

2

тр
rulD

эd
LP =

λ
Re
64

=l

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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Calculation of pressure loss in straight smooth pipes during isothermal flow 
can be carried out according to the following formula:

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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                                        (2.7)

where λ – dimensionless coefficient of friction, in laminar motion 

To the inner sources of substance, i.e. generated within the process due to its irreversibility, 

include: the reaction rate, as a result of which the k component appears or disappears ; the rate 

of entropy production within the process; ; dissipation of kinetic energy , i.e. the rate at 

which kinetic energy is converted into internal energy due to overcoming frictional forces. 

We illustrate the application of the method using the example of task 1 on page 9. 

Task 1 

Calculate the dissipation of kinetic energy during the movement of a 50% aqueous solution 

of glycerol in a smooth pipe with a radius R = 0.03 m and a length L = 25 m under isothermal 

conditions. Laminar motion mode 

Re = 1800. Glycerin parameters: pressure P = 20 bar, temperature t = 40 °C. 

Solution: 

We tackle the task using the differential equation for the balance of kinetic and potential 

energy (2.4) for the FST of a thermodynamic system: 

, 

where ΔРтр can be calculated using the Hagen–Poiseuille equation, since the mode of motion is 

laminar. 

 Pa, 

 W, 

 Вт. 

Calculation of pressure loss in straight smooth pipes during isothermal flow can be carried 

out according to the following formula: 

 , (2.7) 

where – dimensionless coefficient of friction, in laminar motion . 

We substitute the values into the calculation formula (2.7): 
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We substitute the values into the calculation formula (2.7):

 Pa 

 W 

The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 

processes; 

3) search for ways to improve the efficiency of the process, i.e. development of general 

principles for the rational use of material and energy resources; 

4) the applied part of the energy-chemical-engineering system (ECES), i.e. assessment of 

technological aspects of production. 

Evaluation of the effectiveness of the use of matter is based on the law of conservation of 

matter. Below we present the mass balance equation for a real process (2.8).                   

∑ νiMi = ∑ νjMj + ∑ νjMj = 	∑ νjMj_
ãC@

�
ãC@

_
ãC@÷�

)
vC@                                       (2.8) 

где:  

∑ νiMi)
vC@  – total flow of incoming substances, including the main components and auxiliary 

ones. Catalysts can be an example of the additive. 

     

∑ νjMj_
ãC@  – total flow of outgoing substances, including: 

∑ νjMj_
ãC@÷�  – by-products (semi-products, waste); 

∑ νjMj	�
ãC@ – target products. 

In chemical production, there are solid wastes, gas emissions, and liquid effluents. The 

processing of these flows (crushing, filtering, settling) consumes a significant amount of energy, 

but the cost of these costs is justified by the guarantee of the technospheric safety of the regime. 

Waste may be negligible, but their harmfulness, i.e. toxicity is very high. This circumstance is 
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The result shows the equivalence of both approaches to the analysis of dissipa-
tion during the motion of viscous media.

2.2 Exergy method for the analysis of a thermodynamic system

The main tasks that should be solved when analyzing the efficiency of energy 
consumption in chemical production are as follows:

1) a generalized assessment of material and energy resources based on classic-
al thermodynamics;

2) analysis of the efficiency of energy and substance consumption in non-equi-
librium processes;

3) search for ways to improve the efficiency of the process, i.e. development of 
general principles for the rational use of material and energy resources;

4) the applied part of the energy-chemical-engineering system (ECES), i.e. 
assessment of technological aspects of production.

Evaluation of the effectiveness of the use of matter is based on the law of 
conservation of matter. Below we present the mass balance equation for a real 
process (2.8).
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 Pa 

 W 

The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 

processes; 

3) search for ways to improve the efficiency of the process, i.e. development of general 

principles for the rational use of material and energy resources; 

4) the applied part of the energy-chemical-engineering system (ECES), i.e. assessment of 

technological aspects of production. 

Evaluation of the effectiveness of the use of matter is based on the law of conservation of 

matter. Below we present the mass balance equation for a real process (2.8).                   

∑ νiMi = ∑ νjMj + ∑ νjMj = 	∑ νjMj_
ãC@

�
ãC@

_
ãC@÷�

)
vC@                                       (2.8) 

где:  

∑ νiMi)
vC@  – total flow of incoming substances, including the main components and auxiliary 

ones. Catalysts can be an example of the additive. 

     

∑ νjMj_
ãC@  – total flow of outgoing substances, including: 

∑ νjMj_
ãC@÷�  – by-products (semi-products, waste); 

∑ νjMj	�
ãC@ – target products. 

In chemical production, there are solid wastes, gas emissions, and liquid effluents. The 

processing of these flows (crushing, filtering, settling) consumes a significant amount of energy, 

but the cost of these costs is justified by the guarantee of the technospheric safety of the regime. 

Waste may be negligible, but their harmfulness, i.e. toxicity is very high. This circumstance is 

044,73
2
1116094,0

06,0
25

1800
64 2

тр =
×

××=DP

2
2

тр

2
тр 1094,1044,73094,0

4
06,014,3

4
-×=××

×
=D=Y PD up!

                (2.8)
где: 

 Pa 

 W 

The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 

processes; 

3) search for ways to improve the efficiency of the process, i.e. development of general 

principles for the rational use of material and energy resources; 

4) the applied part of the energy-chemical-engineering system (ECES), i.e. assessment of 

technological aspects of production. 

Evaluation of the effectiveness of the use of matter is based on the law of conservation of 

matter. Below we present the mass balance equation for a real process (2.8).                   

∑ νiMi = ∑ νjMj + ∑ νjMj = 	∑ νjMj_
ãC@

�
ãC@

_
ãC@÷�

)
vC@                                       (2.8) 

где:  

∑ νiMi)
vC@  – total flow of incoming substances, including the main components and auxiliary 

ones. Catalysts can be an example of the additive. 

     

∑ νjMj_
ãC@  – total flow of outgoing substances, including: 

∑ νjMj_
ãC@÷�  – by-products (semi-products, waste); 

∑ νjMj	�
ãC@ – target products. 

In chemical production, there are solid wastes, gas emissions, and liquid effluents. The 

processing of these flows (crushing, filtering, settling) consumes a significant amount of energy, 

but the cost of these costs is justified by the guarantee of the technospheric safety of the regime. 

Waste may be negligible, but their harmfulness, i.e. toxicity is very high. This circumstance is 
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 – total flow of incoming substances, including the main components 
and auxiliary ones. Catalysts can be an example of the additive.

 Pa 

 W 

The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 

processes; 

3) search for ways to improve the efficiency of the process, i.e. development of general 

principles for the rational use of material and energy resources; 

4) the applied part of the energy-chemical-engineering system (ECES), i.e. assessment of 

technological aspects of production. 

Evaluation of the effectiveness of the use of matter is based on the law of conservation of 

matter. Below we present the mass balance equation for a real process (2.8).                   

∑ νiMi = ∑ νjMj + ∑ νjMj = 	∑ νjMj_
ãC@

�
ãC@

_
ãC@÷�

)
vC@                                       (2.8) 

где:  

∑ νiMi)
vC@  – total flow of incoming substances, including the main components and auxiliary 

ones. Catalysts can be an example of the additive. 

     

∑ νjMj_
ãC@  – total flow of outgoing substances, including: 

∑ νjMj_
ãC@÷�  – by-products (semi-products, waste); 

∑ νjMj	�
ãC@ – target products. 

In chemical production, there are solid wastes, gas emissions, and liquid effluents. The 

processing of these flows (crushing, filtering, settling) consumes a significant amount of energy, 

but the cost of these costs is justified by the guarantee of the technospheric safety of the regime. 

Waste may be negligible, but their harmfulness, i.e. toxicity is very high. This circumstance is 
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 – total flow of outgoing substances, including:
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The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 

processes; 

3) search for ways to improve the efficiency of the process, i.e. development of general 

principles for the rational use of material and energy resources; 

4) the applied part of the energy-chemical-engineering system (ECES), i.e. assessment of 

technological aspects of production. 

Evaluation of the effectiveness of the use of matter is based on the law of conservation of 

matter. Below we present the mass balance equation for a real process (2.8).                   

∑ νiMi = ∑ νjMj + ∑ νjMj = 	∑ νjMj_
ãC@

�
ãC@

_
ãC@÷�

)
vC@                                       (2.8) 

где:  

∑ νiMi)
vC@  – total flow of incoming substances, including the main components and auxiliary 

ones. Catalysts can be an example of the additive. 

     

∑ νjMj_
ãC@  – total flow of outgoing substances, including: 

∑ νjMj_
ãC@÷�  – by-products (semi-products, waste); 

∑ νjMj	�
ãC@ – target products. 

In chemical production, there are solid wastes, gas emissions, and liquid effluents. The 

processing of these flows (crushing, filtering, settling) consumes a significant amount of energy, 

but the cost of these costs is justified by the guarantee of the technospheric safety of the regime. 

Waste may be negligible, but their harmfulness, i.e. toxicity is very high. This circumstance is 
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 – by-products (semi-products, waste);

 Pa 

 W 

The result shows the equivalence of both approaches to the analysis of dissipation during the 

motion of viscous media. 

 

2.2 Exergy method for the analysis of a thermodynamic system. 

The main tasks that should be solved when analyzing the efficiency of energy consumption in 

chemical production are as follows: 

1) a generalized assessment of material and energy resources based on classical 

thermodynamics; 

2) analysis of the efficiency of energy and substance consumption in non-equilibrium 
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 – target products.
In chemical production, there are solid wastes, gas emissions, and liquid ef-

fluents. The processing of these flows (crushing, filtering, settling) consumes a 
significant amount of energy, but the cost of these costs is justified by the guaran-
tee of the technospheric safety of the regime. Waste may be negligible, but their 
harmfulness, i.e. toxicity is very high. This circumstance is taken into account by 
environmental indicators and sanitary and epidemic standards, i.e. indicators that 
are directly focused on the cost of the final product.

Based on the value of the mass utilization factor ηM, the actual cost of the target 
product (2.8) is estimated:
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that are directly focused on the cost of the final product. 

Based on the value of the mass utilization factor ηM, the actual cost of the target product 

(2.8) is estimated: 
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Equation (2.9) is derived from the total energy balance equation (2.2): 
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∑Q̇](T≤]) – convective heat fluxes that have their own thermal potential; 

−ẇЭ – the total flow of electricity that is supplied (removed) to the ECES. 
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 Ė\ − flows	of	energy	that	are	supplied	to	the	system. 
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E′̇ / – incoming exergy flows; Ėх	целевые\\  - target exergy flows; 

 – convective heat fluxes that have their own thermal potential;

taken into account by environmental indicators and sanitary and epidemic standards, i.e. indicators 

that are directly focused on the cost of the final product. 

Based on the value of the mass utilization factor ηM, the actual cost of the target product 

(2.8) is estimated: 

                                         ηM = 1 - 
∑ éãèã8
9:;<=

∑ évèv>
?:=

                                                                    (2.9) 

 

Energy consumption is estimated by the energy utilization factor ηê (2.10): 

                             ηê =
ë í9ìî9

;

9:=
>ï̇@($ó@)>ò̇

ô í?ìAö
>
?:= >ï̇@($@õ$B)?ò̇

                                             (2.10) 

Equation (2.9) is derived from the total energy balance equation (2.2): 

            ™ vvH≠v
)

vC@
−û vãHúÆ

_

ãC@
+ ΣQ̇](T≤]) − ẇЭ = 0  
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Relationship (2.9) does not take into account the mass transfer processes occur-

ring on the control surface with the environment, since they occur, as a rule, within 
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cesses and devices of a given design under certain conditions (for example, a jet 
apparatus).
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−ẇЭ – the total flow of electricity that is supplied (removed) to the ECES. 

Relationship (2.9) does not take into account the mass transfer processes occurring on the 

control surface with the environment, since they occur, as a rule, within the system itself, as 

well as the kinetic and potential (gravitational) components of energy. The contribution of 

these types of energies is evaluated in specific processes and devices of a given design under 

certain conditions (for example, a jet apparatus). 

 

                  ηê ≅ 1 −
ê̇ср
>DE

ê̇'
 = 

sr{{.{	*r	*3.	.)ívxr)_.)*

{wùùsv.û	.).xü†	v)ùw*
              (2.11) 

where: Eср̇
)rт

 – loss of energy (heat, matter) to the environment due to poor tightness 

(thermal insulation), which go away with waste (gas emissions, liquid effluents, solid waste); 
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Attention should be paid to the expediency of adding an exergy balance and determining the 

value of the exergy efficiency of the entire installation, as well as the influence on its value of the 

contribution of its individual links. Such an analytical approach makes it possible to determine not 

only quantitative indicators of the consumption of material and energy resources, but also to 

compare and evaluate the efficiency of converting various types of energy. 

The technological process should be divided into stages, since it is important to obtain the 

values of both the overall efficiency and the efficiency, as well as for each individual stage, so that 

these quantities (2.14) can be analyzed. 
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the process itself due to irreversibility. 

The model of the analytical apparatus with indication of exergy flows is represented by 

in fig. 4. 

 

 

 

 

 

 

Fig. 4. Functional diagram of a real energy converter. 

We introduce the concept of exergy efficiency of η./, i.e. target efficiency in terms of the 

Gibbs energy (2.13): 

                                       η./ =
ür�s

£r{*{
=

ê̇F	HD;I
''

ê̇F
'	BDJKJ = 1 −

./§̇>v)§̇

ê̇F
'BDJKJ                                   (2.13) 

Attention should be paid to the expediency of adding an exergy balance and determining the 

value of the exergy efficiency of the entire installation, as well as the influence on its value of the 

contribution of its individual links. Such an analytical approach makes it possible to determine not 

only quantitative indicators of the consumption of material and energy resources, but also to 

compare and evaluate the efficiency of converting various types of energy. 

The technological process should be divided into stages, since it is important to obtain the 

values of both the overall efficiency and the efficiency, as well as for each individual stage, so that 

these quantities (2.14) can be analyzed. 

 

                                     η./	ò3rs.	v){*�ss�*vr) = 1 −
ô §̇?	LMDIN	?>JK;II;K?D>

O
?:=
êF	LMDIN	?>JK;II;K?D>
'                                         

(2.14) 

  

Estimation of the total loss of exergy of the i-th section is determined by the Gouy-Stodola formula 
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Estimation of the total loss of exergy of the i-th section is determined by the 
Gouy-Stodola formula

 exḊ – external exergy losses that go into the environment. These losses are due to the waste 

with which they take place;  
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 inḊ – internal exergy losses, which are caused by inṠ@D (the flow of entropy produced within 
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where:
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 - losses of the entire installation as a whole equal to the sum of losses in 

all stages (with i=1…до f). 

We have presented a formula for dividing the installation by space, and perhaps division by 

stages, i.e. different processes occurring in the same space. There are also variable parameters (eg 

reflux ratio). If there are many such parameters, then multiparameter optimization is carried out. 

External exergy losses exḊ – due to the loss of matter and energy into the environment 

(imperfection of thermal insulation, waste, effluents, emissions). For the final choice of the 

technology mode, the economic side of the problem, environmental indicators and hardware 

design are taken into account. Technospheric security is a unifying problem for all civilized 

countries and excites the minds of both world-famous scientists and young scientists. 

 

3. Engineering applications of the method of dissipative functions. 

3.1 Analysis of the energy perfection of non-ideal gas compression processes. 

Compressors are machines designed to increase the pressure of a gas flow. The whole variety 

of existing compressors can be divided into two broad classes: positive displacement and blade 

(dynamic) type machines. Volumetric compressors include reciprocating, rotary, membrane 

compressors. In dynamic compressors, due to the supply of mechanical energy, some kinetic 

energy is imparted to the gas, which is largely converted into pressure energy. The main varieties 

of this class are: centrifugal, axial compressors. 

When studying the real process of gas compression, the following tasks should be solved: 

1. Determination of actual energy costs for real, i.e. irreversible process. 

2. Determination of the relative efficiency of the process, i.e. calculation of efficiency 

(efficiency factor). 

3. Evaluation of the energy perfection of the compressor unit for energy and resource saving. 
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External exergy losses exḊ – due to the loss of matter and energy into the environment 

(imperfection of thermal insulation, waste, effluents, emissions). For the final choice of the 

technology mode, the economic side of the problem, environmental indicators and hardware 

design are taken into account. Technospheric security is a unifying problem for all civilized 

countries and excites the minds of both world-famous scientists and young scientists. 

 

3. Engineering applications of the method of dissipative functions. 

3.1 Analysis of the energy perfection of non-ideal gas compression processes. 

Compressors are machines designed to increase the pressure of a gas flow. The whole variety 

of existing compressors can be divided into two broad classes: positive displacement and blade 

(dynamic) type machines. Volumetric compressors include reciprocating, rotary, membrane 

compressors. In dynamic compressors, due to the supply of mechanical energy, some kinetic 

energy is imparted to the gas, which is largely converted into pressure energy. The main varieties 

of this class are: centrifugal, axial compressors. 

When studying the real process of gas compression, the following tasks should be solved: 

1. Determination of actual energy costs for real, i.e. irreversible process. 

2. Determination of the relative efficiency of the process, i.e. calculation of efficiency 

(efficiency factor). 

3. Evaluation of the energy perfection of the compressor unit for energy and resource saving. 

 - losses of the entire installation as a whole equal to the sum 
of losses in all stages (with i=1…до f).

We have presented a formula for dividing the installation by space, and per-
haps division by stages, i.e. different processes occurring in the same space. There 
are also variable parameters (eg reflux ratio). If there are many such parameters, 
then multiparameter optimization is carried out.

External exergy losses 

  av =
ê̇F?
'

êF
' = dv – share of exergy introduced in the i-th stage from the total exergy flow 

introduced into the entire installation as a whole; 

 	
§̇?
ê̇F?
' = @1 − η./?C, where η./?- the exergy efficiency of i-th stage 

 Let's analyze the expression in comparison with the previously obtained formula: 

             η./	уст?ки = 1 −
ô §̇?

O
?:=

ê̇F	устTки
' = 1 −û @1 − η./?Cdv

u

ß̇C@
     (2.16) 

where: 
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3. Engineering applications of the method of dissipative functions
3.1 Analysis of the energy perfection of non-ideal gas compression 

processes

Compressors are machines designed to increase the pressure of a gas flow. The 
whole variety of existing compressors can be divided into two broad classes: posi-
tive displacement and blade (dynamic) type machines. Volumetric compressors 
include reciprocating, rotary, membrane compressors. In dynamic compressors, 
due to the supply of mechanical energy, some kinetic energy is imparted to the 
gas, which is largely converted into pressure energy. The main varieties of this 
class are: centrifugal, axial compressors.

When studying the real process of gas compression, the following tasks should 
be solved:

1. Determination of actual energy costs for real, i.e. irreversible process.
2. Determination of the relative efficiency of the process, i.e. calculation of 

efficiency (efficiency factor).
3. Evaluation of the energy perfection of the compressor unit for energy and 

resource saving.
Equilibrium processes do not take into account the loss of kinetic energy due 

to friction and correspond to the minimum energy costs. To estimate the actual 
power of a non-ideal compressor, the values of the indicator efficiency are used, 
which are the results of bench tests of the compressor. The values of the indicator 
efficiency depend on the degree of pressure increase and are the passport charac-
teristic of the compressor.

The indicator efficiency is the ratio of the reference power corresponding to 
the ideal process to the value of the actual power consumed in the real process:
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where ηi – indicator efficiency; – reference power of an ideal, equilibrium process, W; – 

internal power of the compressor consumed in the real process, W. 

Let us perform a thermodynamic analysis of the non-equilibrium process of compression of 

non-ideal gases in a single-stage compressor using specific examples. 
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Ammonia is compressed in the adiabatic stage of an uncooled compressor. Ammonia 

parameters at the compressor inlet: 

Т1 = 306 K, Р1 = 1 bar, gas pressure at the outlet of the compressor stage 

Р2 = 5 bar. 

Gas consumption = 1 kg/s, non-equilibrium compression process. The calculation of the 

characteristics and functions of the state of the gas is carried out according to the Bogolyubov-

Mayer virial equation in a truncated form [1]. 

Define: 

1. Internal power consumed by the uncooled compressor stage , kW. 

2. Gas temperature at the outlet of the compressor stage T2, K. 

3. Exergy efficiency of the compressor unit, . 

Let us present a schematic diagram of a compressor unit (Fig. 5). 
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Let us perform a thermodynamic analysis of the non-equilibrium process of 

compression of non-ideal gases in a single-stage compressor using specific ex-
amples.

Task 3.1
Ammonia is compressed in the adiabatic stage of an uncooled compressor. 

Ammonia parameters at the compressor inlet:
Т1 = 306 K, Р1 = 1 bar, gas pressure at the outlet of the compressor stage
Р2 = 5 bar.
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Gas consumption 
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1st stage: 

Calculation of the power consumed by an ideal compressor stage compressing ammonia. 

The minimum compression work corresponds to a reversible adiabatic process. The 
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Figure 5. Schematic diagram of the turbocharger:
1 - electric motor, 2 - compressor shaft,
3 - multiplier, 4 - compressor stage.

Thermophysical characteristics of ammonia [1], annex (Tables P-3, P-6)
М = 17,031 kg/kmol, ТС = 405,6 K; РС = 111,3 atm

virial coefficients [b1j], needed to calculate the compressibility factor z of a non-
ideal gas.
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Calculation of the power consumed by an ideal compressor stage compressing 

ammonia.
The minimum compression work corresponds to a reversible adiabatic pro-

cess. The calculation formula has the following form:
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The results of calculations of the density, as well as isothermal deviations of 
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terms of gas parameters at the inlet and outlet of the compressor stage. 
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where 
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, further values 
are found from the calculated relation (2.3) by the method of successive approxi-
mation.

The calculation results are presented in Table. 3.2
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Table 3.2.
Calculation of the temperature of ammonia T2S 

at the outlet of an ideal compressor
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carried out based on the process condition 

X = S = const according to the equation: 
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where ,  – isothermal deviations of the entropy of ammonia from the ideal gas state in 

terms of gas parameters at the inlet and outlet of the compressor stage. 

The zero approximation  is set from the condition , further values are found 
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The calculation results are presented in Table. 3.2 
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carried out based on the process condition 

X = S = const according to the equation: 
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where ,  – isothermal deviations of the entropy of ammonia from the ideal gas state in 
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 (table 3.2). 

 K with precision 

. 

 The calculation of the disposable work  of the ideal ammonia compression process is 

carried out according to the calculated ratio (3.2). The calculation results are presented in Table. 

3.3. 
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 The power consumed by an uncooled compressor stage in an ideal process, without taking 

into account frictional forces, is: 
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2nd stage: 
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where where 192,2871212  SS WmW   kW – power of an ideal compressor; ηS – adiabatic internal 

efficiency determined from the diagram, fig. 6. 

 
 Fig. 6. Dependence of the adiabatic internal efficiency on the degree of pressure 

increase Р2/Р1. 

Analyzing the data of the presented diagram, we choose the value of the indicator efficiency, 

ηS = 0,8 at the degree of pressure increase Р2/Р1 = 5. 
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3rd stage: 

Calculation of the ammonia temperature at the outlet of the uncooled compressor stage in 

the actual compression process Т2, K. 

The temperature of ammonia at the outlet of the uncooled compressor stage in a real 

compression process is determined from the total energy balance equation for a non-equilibrium 
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where where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 
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according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).

 K.  

Further calculations  are carried out according to relation (3.4) with an accuracy: 
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where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 
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Further calculations 

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 
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where ;  kJ/kg;  kJ/kg (table 3.1).
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 are carried out according to relation (3.4) with an ac-
curacy:

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).
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Further calculations  are carried out according to relation (3.4) with an accuracy: 
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 (table 3.4).

Table 3.4.
Calculation of the temperature of ammonia T2 at 

the outlet of a non-ideal compressor

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).

 K.  

Further calculations  are carried out according to relation (3.4) with an accuracy: 
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ρ2,

kg/m3

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).

 K.  

Further calculations  are carried out according to relation (3.4) with an accuracy: 

 (table 3.4). 
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,

kJ/kg

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).

 K.  

Further calculations  are carried out according to relation (3.4) with an accuracy: 

 (table 3.4). 
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kJ/(kg∙K)

466,88 – 4,464 2,194 0,9903 0,9901 2,216 – 8,186 2,2557

466,32 – 4,477 2,196 0,9902 0,99 2,218 – 8,208 2,256



37

Dissipative function in engineering calculations. Fundamental principles and practical applications

Let's choose T2 = 466.32 K with accuracy:

where  – the average heat capacity of ammonia in the temperature range from Т1 

to , kJ/(kg∙K);   (table 3.1). 

The calculation of the zero approximation of the final temperature  is carried out 

according to relation (3.5) based on the condition that : 

 , (3.5, а) 

where ;  kJ/kg;  kJ/kg (table 3.1).

 K.  

Further calculations  are carried out according to relation (3.4) with an accuracy: 

 (table 3.4). 
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4th stage:
Calculation of kinetic energy losses due to friction in a non-equilibrium pro-

cess, i.e. dissipation estimate 

Calculation of kinetic energy losses due to friction in a non-equilibrium process, i.e. 

dissipation estimate , kW. 

The dissipation is estimated using the following equation, obtained from the balance equation of 

kinetic and potential energy for a nonequilibrium process (2.4): 

 , (3.6) 

where  kW – internal power expended in the actual process of ammonia 

compression, taking into account friction forces; 

 – the power of the polytropic equilibrium process, calculated by the formula 

(3.6 a): 

                                                            (3.6 а) 

where:  – the average value of the polytropic index for the initial and final 

parameters characterizing the state of the gas at the inlet and outlet of the compressor stage. 

In the introduction, we emphasized that the real process cannot be represented on a 

thermodynamic diagram; a real process can be quantified only if the working fluid at the beginning 

and at the end of the process is in certain equilibrium states. The polytropic process acts as such a 

process, as the closest to the real one, since the final and initial states of the working fluid. In our 

case, ammonia, of both processes completely coincide. The calculation of the power of the 

polytropic process is carried out according to the relation (3.6a). The average value of the 

polytropic index is calculated from the initial and final parameters characterizing the state of 

ammonia at the inlet and outlet of the compressor stage. 
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The dissipation is estimated using the following equation, obtained from the 
balance equation of kinetic and potential energy for a nonequilibrium process 
(2.4):

Calculation of kinetic energy losses due to friction in a non-equilibrium process, i.e. 

dissipation estimate , kW. 

The dissipation is estimated using the following equation, obtained from the balance equation of 

kinetic and potential energy for a nonequilibrium process (2.4): 

 , (3.6) 

where  kW – internal power expended in the actual process of ammonia 

compression, taking into account friction forces; 

 – the power of the polytropic equilibrium process, calculated by the formula 

(3.6 a): 

                                                            (3.6 а) 

where:  – the average value of the polytropic index for the initial and final 

parameters characterizing the state of the gas at the inlet and outlet of the compressor stage. 

In the introduction, we emphasized that the real process cannot be represented on a 

thermodynamic diagram; a real process can be quantified only if the working fluid at the beginning 

and at the end of the process is in certain equilibrium states. The polytropic process acts as such a 

process, as the closest to the real one, since the final and initial states of the working fluid. In our 

case, ammonia, of both processes completely coincide. The calculation of the power of the 

polytropic process is carried out according to the relation (3.6a). The average value of the 

polytropic index is calculated from the initial and final parameters characterizing the state of 

ammonia at the inlet and outlet of the compressor stage. 
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                                       (3.6)

where 

Calculation of kinetic energy losses due to friction in a non-equilibrium process, i.e. 

dissipation estimate , kW. 

The dissipation is estimated using the following equation, obtained from the balance equation of 

kinetic and potential energy for a nonequilibrium process (2.4): 

 , (3.6) 

where  kW – internal power expended in the actual process of ammonia 

compression, taking into account friction forces; 

 – the power of the polytropic equilibrium process, calculated by the formula 

(3.6 a): 

                                                            (3.6 а) 

where:  – the average value of the polytropic index for the initial and final 

parameters characterizing the state of the gas at the inlet and outlet of the compressor stage. 

In the introduction, we emphasized that the real process cannot be represented on a 

thermodynamic diagram; a real process can be quantified only if the working fluid at the beginning 

and at the end of the process is in certain equilibrium states. The polytropic process acts as such a 

process, as the closest to the real one, since the final and initial states of the working fluid. In our 

case, ammonia, of both processes completely coincide. The calculation of the power of the 

polytropic process is carried out according to the relation (3.6a). The average value of the 

polytropic index is calculated from the initial and final parameters characterizing the state of 

ammonia at the inlet and outlet of the compressor stage. 
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 = –359,024 kW – internal power expended in the actual process of 
ammonia compression, taking into account friction forces;

Calculation of kinetic energy losses due to friction in a non-equilibrium process, i.e. 

dissipation estimate , kW. 

The dissipation is estimated using the following equation, obtained from the balance equation of 

kinetic and potential energy for a nonequilibrium process (2.4): 

 , (3.6) 

where  kW – internal power expended in the actual process of ammonia 

compression, taking into account friction forces; 

 – the power of the polytropic equilibrium process, calculated by the formula 

(3.6 a): 

                                                            (3.6 а) 

where:  – the average value of the polytropic index for the initial and final 

parameters characterizing the state of the gas at the inlet and outlet of the compressor stage. 

In the introduction, we emphasized that the real process cannot be represented on a 

thermodynamic diagram; a real process can be quantified only if the working fluid at the beginning 

and at the end of the process is in certain equilibrium states. The polytropic process acts as such a 

process, as the closest to the real one, since the final and initial states of the working fluid. In our 

case, ammonia, of both processes completely coincide. The calculation of the power of the 

polytropic process is carried out according to the relation (3.6a). The average value of the 

polytropic index is calculated from the initial and final parameters characterizing the state of 

ammonia at the inlet and outlet of the compressor stage. 
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 – the power of the polytropic equilibrium process, calculated 
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is carried out according to the relation (3.6a). The average value of the polytropic 
index is calculated from the initial and final parameters characterizing the state of 
ammonia at the inlet and outlet of the compressor stage.
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Calculation of kinetic energy losses due to friction in a non-equilibrium process, i.e. 

dissipation estimate , kW. 

The dissipation is estimated using the following equation, obtained from the balance equation of 

kinetic and potential energy for a nonequilibrium process (2.4): 
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The dissipation value The dissipation value тр
12  is determined by relation (2.6) 
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12 вн
 полWW   kW 

The dissipation 084,63тр
12   kW is numerically equal to that part of the kinetic energy 

flow that is converted into internal energy due to overcoming the friction forces that impede the 

process. 

The value of the polytropic efficiency of the process пол  is determined by the relation 

(3.1): 
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The polytropic efficiency of the process ηпол= 0,82 characterizes the degree of energy perfection 

of the ammonia compression process. 

Let us represent the polytropic equilibrium process n21  of ammonia compression in the 

coordinates (PV), (TS) (Fig. 7). 
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Figure 7. Polytropic equilibrium compression process
of ammonia in the coordinates PV(a), TS(b)

5th stage:
Analysis of the exergy perfection of the compression process.
The exergy analysis of the process is carried out on the basis of the exergy 

balance equation:

 , (3.7) 

where – resulting exergy flow due to the visible, convective movement of the medium, 

W; 

          (ċт/о– exergy flux due to heat transfer, W; 

– flow of mechanical work, W; 

– exergy losses due to the irreversibility of the process, are estimated by the Gouy-

Stodola formula: 

 . (3.8) 

The exergy efficiency of the uncooled compressor stage is estimated by the following 

relation: 

 , (3.9) 

where – exergy flow at the outlet of the compressor stage; 

– exergy flow at the inlet to the compressor stage; 

– transit flows of exergy, i.e. those that make up that part of the exergy of the 

incoming flows, which passes invariably through the entire apparatus. 

In this case: 

 

 

 

We obtain the following calculation formula for the exergy efficiency of the compressor 

stage: 
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where – exergy losses due to the irreversibility 

of the process. 

The results of calculations of the exergy efficiency of the compressor stage are presented in 

table. 3.5. 
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where 
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          (ċт/о– exergy flux due to heat transfer, W; 

– flow of mechanical work, W; 

– exergy losses due to the irreversibility of the process, are estimated by the Gouy-
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We obtain the following calculation formula for the exergy efficiency of the 
compressor stage:

 , (3.7) 

where – resulting exergy flow due to the visible, convective movement of the medium, 

W; 

          (ċт/о– exergy flux due to heat transfer, W; 

– flow of mechanical work, W; 

– exergy losses due to the irreversibility of the process, are estimated by the Gouy-
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where – resulting exergy flow due to the visible, convective movement of the medium, 

W; 

          (ċт/о– exergy flux due to heat transfer, W; 

– flow of mechanical work, W; 

– exergy losses due to the irreversibility of the process, are estimated by the Gouy-

Stodola formula: 
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– exergy flow at the inlet to the compressor stage; 
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incoming flows, which passes invariably through the entire apparatus. 

In this case: 
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irreversibility of the process.
The results of calculations of the exergy efficiency of the compressor stage are 

presented in table. 3.5.
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Table 3.5.
Calculation results of the exergy efficiency (ηex ) of the compressor stage

T1, K T2, K

Calculation results of the exergy efficiency ( ) of the compressor stage 

T1, K T2, K 
, 

kJ/kg∙K 

, 

kJ/kg∙K 

, 

kJ/kg∙K 
, kW  

306 466,32 0,9459 –13,581 – 12,812 47,999 0,866 

  

The final loss of exergy, which can only be compensated by external energy carriers (steam, 

fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 

 kW. 

The possibility of utilizing this energy is limited by climatic and temporal conditions and 

depends on the average temperature of the process. Since dissipation is quantitatively equal to the 

heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 

 , (3.11) 

where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 

; 

 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 
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heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 
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temperature , K: 
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The difference between the dissipation of kinetic energy for friction and the loss of exergy 
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The final loss of exergy, which can only be compensated by external energy 

carriers (steam, fuel, electricity) 
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The final loss of exergy, which can only be compensated by external energy carriers (steam, 

fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 

 kW. 

The possibility of utilizing this energy is limited by climatic and temporal conditions and 

depends on the average temperature of the process. Since dissipation is quantitatively equal to the 

heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 

 , (3.11) 

where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 

; 

 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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The final loss of exergy, which can only be compensated by external energy carriers (steam, 

fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 
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The possibility of utilizing this energy is limited by climatic and temporal conditions and 

depends on the average temperature of the process. Since dissipation is quantitatively equal to the 

heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 
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where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 
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The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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. The difference between these 
values is the part of the energy that can be used in the future. In this case, this value 
has the following value:
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fuel, electricity)  kW. The dissipation of the ammonia compression process was 
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heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 
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where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 
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The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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The possibility of utilizing this energy is limited by climatic and temporal con-
ditions and depends on the average temperature of the process. Since dissipation is 
quantitatively equal to the heat that is supplied in a polytropic equilibrium process 
without friction, the average temperature of a polytropic process can be deter-
mined from the following relation:

Calculation results of the exergy efficiency ( ) of the compressor stage 

T1, K T2, K 
, 

kJ/kg∙K 

, 

kJ/kg∙K 

, 

kJ/kg∙K 
, kW  

306 466,32 0,9459 –13,581 – 12,812 47,999 0,866 

  

The final loss of exergy, which can only be compensated by external energy carriers (steam, 

fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 

 kW. 
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heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 
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where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 

; 

 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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where 

Calculation results of the exergy efficiency ( ) of the compressor stage 

T1, K T2, K 
, 

kJ/kg∙K 

, 

kJ/kg∙K 

, 

kJ/kg∙K 
, kW  

306 466,32 0,9459 –13,581 – 12,812 47,999 0,866 
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in the future. In this case, this value has the following value: 

 kW. 
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heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 
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where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 
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 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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 – average temperature of the process, K.
Based on the data obtained (Table 2.5), we determine the value of the average 

process temperature 
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fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 

 kW. 

The possibility of utilizing this energy is limited by climatic and temporal conditions and 

depends on the average temperature of the process. Since dissipation is quantitatively equal to the 

heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 

 , (3.11) 

where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 

; 

 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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The final loss of exergy, which can only be compensated by external energy carriers (steam, 

fuel, electricity)  kW. The dissipation of the ammonia compression process was 

 kW. The difference between these values is the part of the energy that can be used 

in the future. In this case, this value has the following value: 

 kW. 

The possibility of utilizing this energy is limited by climatic and temporal conditions and 

depends on the average temperature of the process. Since dissipation is quantitatively equal to the 

heat that is supplied in a polytropic equilibrium process without friction, the average temperature 

of a polytropic process can be determined from the following relation: 

 , (3.11) 

where – average temperature of the process, K. 

Based on the data obtained (Table 2.5), we determine the value of the average process 

temperature , K: 
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 K. 

The difference between the dissipation of kinetic energy for friction and the loss of exergy 

due to the irreversibility of the process is the part of the energy that can be used in the future. An 

example of energy recovery is its use in heating systems. 
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The difference between the dissipation of kinetic energy for friction and the 
loss of exergy due to the irreversibility of the process is the part of the energy 
that can be used in the future. An example of energy recovery is its use in heating 
systems.

Another example of the utilization of this energy can be the transfer to subse-
quent links in the technological chain, i.e. its use as a secondary energy resource. 
This is especially effective in large-scale and mass production [9].
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6th stage:
Evaluation of the energy perfection of the compressor unit.
The following formula is used to determine the capacity of the compressor unit:

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 

6th stage: 

Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 

 , (3.12) 

where  – power consumed by the ideal compressor stage; 

 – adiabatic internal efficiency of the compressor stage; 

 – mechanical efficiency of the shaft, which takes into account friction losses between 

the moving parts of the compressor; 

 – transfer efficiency, which takes into account the presence of a multiplier as an 

intermediate device between the shaft and the electric motor; 

 – The efficiency of the electric motor. 

In practice, the values of these efficiency factors are as follows [7, 11]: 

; ; . 

The power of the compressor plant according to formula (3.12) has the following value: 

 кВт. 

The exergy efficiency of the compressor unit is as follows: 

. 

Task 3.2 

Ammonia is compressed in a cooled reciprocating compressor, the gas flow rate is = 1 

kg/s. The compression process is non-equilibrium, it is known that the ratio of the heat removed 

and the compression work expended is j = 0,6. Gas parameters at the compressor inlet: 

, Р1 = 1 bar, gas parameters at the compressor outlet: Р2 = 5 bar. The functions of the state of 

ammonia are calculated according to the truncated virial Bogolyubov-Mayer equation. The initial 

data for ammonia (Tc, K; Pc atm;  kJ/(kg ∙ K)) are given in the condition of problem 

3.1 and are presented in Annex (P-1, P-2). The internal efficiency is hТ = 0,7. 
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where 

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 

6th stage: 

Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 
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where  – power consumed by the ideal compressor stage; 
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the moving parts of the compressor; 

 – transfer efficiency, which takes into account the presence of a multiplier as an 

intermediate device between the shaft and the electric motor; 

 – The efficiency of the electric motor. 
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 – power consumed by the ideal compressor stage;
ηS – adiabatic internal efficiency of the compressor stage;
ηмех – mechanical efficiency of the shaft, which takes into account friction loss-

es between the moving parts of the compressor;
ηпер – transfer efficiency, which takes into account the presence of a multiplier 

as an intermediate device between the shaft and the electric motor;
ηдв – The efficiency of the electric motor.
In practice, the values of these efficiency factors are as follows [7, 11]:

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 

6th stage: 

Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 
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kg/s. The compression process is non-equilibrium, it is known that the ratio of the heat removed 

and the compression work expended is j = 0,6. Gas parameters at the compressor inlet: 
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ammonia are calculated according to the truncated virial Bogolyubov-Mayer equation. The initial 

data for ammonia (Tc, K; Pc atm;  kJ/(kg ∙ K)) are given in the condition of problem 

3.1 and are presented in Annex (P-1, P-2). The internal efficiency is hТ = 0,7. 
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The power of the compressor plant according to formula (3.12) has the follow-
ing value:

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 

6th stage: 

Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 
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kg/s. The compression process is non-equilibrium, it is known that the ratio of the heat removed 
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ammonia are calculated according to the truncated virial Bogolyubov-Mayer equation. The initial 

data for ammonia (Tc, K; Pc atm;  kJ/(kg ∙ K)) are given in the condition of problem 

3.1 and are presented in Annex (P-1, P-2). The internal efficiency is hТ = 0,7. 
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The exergy efficiency of the compressor unit is as follows:

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 

6th stage: 

Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 

 , (3.12) 

where  – power consumed by the ideal compressor stage; 

 – adiabatic internal efficiency of the compressor stage; 

 – mechanical efficiency of the shaft, which takes into account friction losses between 

the moving parts of the compressor; 

 – transfer efficiency, which takes into account the presence of a multiplier as an 

intermediate device between the shaft and the electric motor; 

 – The efficiency of the electric motor. 

In practice, the values of these efficiency factors are as follows [7, 11]: 

; ; . 

The power of the compressor plant according to formula (3.12) has the following value: 

 кВт. 

The exergy efficiency of the compressor unit is as follows: 
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Task 3.2 

Ammonia is compressed in a cooled reciprocating compressor, the gas flow rate is = 1 

kg/s. The compression process is non-equilibrium, it is known that the ratio of the heat removed 

and the compression work expended is j = 0,6. Gas parameters at the compressor inlet: 

, Р1 = 1 bar, gas parameters at the compressor outlet: Р2 = 5 bar. The functions of the state of 

ammonia are calculated according to the truncated virial Bogolyubov-Mayer equation. The initial 

data for ammonia (Tc, K; Pc atm;  kJ/(kg ∙ K)) are given in the condition of problem 

3.1 and are presented in Annex (P-1, P-2). The internal efficiency is hТ = 0,7. 
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Task 3.2
Ammonia is compressed in a cooled reciprocating compressor, the gas flow 

rate is ṁ = 1 kg/s. The compression process is non-equilibrium, it is known that 
the ratio of the heat removed and the compression work expended is φ = 0,6. Gas 
parameters at the compressor inlet: T1 = 306 K, Р1 = 1 bar, gas parameters at the 
compressor outlet: Р2 = 5 bar. The functions of the state of ammonia are calculat-
ed according to the truncated virial Bogolyubov-Mayer equation. The initial data 

for ammonia 

Another example of the utilization of this energy can be the transfer to subsequent links in 

the technological chain, i.e. its use as a secondary energy resource. This is especially effective in 

large-scale and mass production [9]. 
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Evaluation of the energy perfection of the compressor unit. 

The following formula is used to determine the capacity of the compressor unit: 
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where  – power consumed by the ideal compressor stage; 

 – adiabatic internal efficiency of the compressor stage; 

 – mechanical efficiency of the shaft, which takes into account friction losses between 

the moving parts of the compressor; 

 – transfer efficiency, which takes into account the presence of a multiplier as an 

intermediate device between the shaft and the electric motor; 

 – The efficiency of the electric motor. 

In practice, the values of these efficiency factors are as follows [7, 11]: 
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The power of the compressor plant according to formula (3.12) has the following value: 

 кВт. 

The exergy efficiency of the compressor unit is as follows: 
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kg/s. The compression process is non-equilibrium, it is known that the ratio of the heat removed 

and the compression work expended is j = 0,6. Gas parameters at the compressor inlet: 

, Р1 = 1 bar, gas parameters at the compressor outlet: Р2 = 5 bar. The functions of the state of 

ammonia are calculated according to the truncated virial Bogolyubov-Mayer equation. The initial 

data for ammonia (Tc, K; Pc atm;  kJ/(kg ∙ K)) are given in the condition of problem 

3.1 and are presented in Annex (P-1, P-2). The internal efficiency is hТ = 0,7. 
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of problem 3.1 and are presented in Annex (P-1, P-2). The internal efficiency is
ηТ = 0,7.

To define:
1. Internal power consumed by the compressor, 

To define: 

1. Internal power consumed by the compressor, , kW. 

2. The final temperature of ammonia at the outlet of the compressor, Т2, K. 

3. Dissipation of kinetic energy into friction, , kW. 

4. Exergy efficiency of the compressor unit in the nominal mode of operation . 

 

 

 

 

Let's imagine a schematic diagram of a reciprocating compressor (Fig. 8). 

 

 Fig. 4. Schematic diagram of a reciprocating compressor: 

1 - suction valve; 2 - discharge valve; 

3 - cylinder body; 4 - piston; 5 - shaft 

1st stage: 

We determine the internal power of the compressor spent in the real process of gas 

compression , kW. 

The internal power of an isothermal compressor, taking into account the indicated efficiency, 

is calculated according to the following relationship: 

 , (3.12) 

where  - work of an ideal compressor compressing 1 kg of gas 

in isothermal mode [1]; 

= 0,7 – internal isothermal efficiency of the reciprocating compressor; 

 kg/s – gas consumption. 
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2. The final temperature of ammonia at the outlet of the compressor, Т2, K.
3. Dissipation of kinetic energy into friction, 
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is calculated according to the following relationship: 
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4. Exergy efficiency of the compressor unit in the nominal mode of operation ηex.
Let's imagine a schematic diagram of a reciprocating compressor (Fig. 8).
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Figure 8. Schematic diagram of a reciprocating compressor:
1 - suction valve; 2 - discharge valve; 3 - cylinder body; 4 - piston; 5 - shaft; 

6 - cooling jacket.
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The internal power of an isothermal compressor, taking into account the indi-
cated efficiency, is calculated according to the following relationship:
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where 

To define: 

1. Internal power consumed by the compressor, , kW. 

2. The final temperature of ammonia at the outlet of the compressor, Т2, K. 

3. Dissipation of kinetic energy into friction, , kW. 

4. Exergy efficiency of the compressor unit in the nominal mode of operation . 
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3 - cylinder body; 4 - piston; 5 - shaft 

1st stage: 

We determine the internal power of the compressor spent in the real process of gas 

compression , kW. 

The internal power of an isothermal compressor, taking into account the indicated efficiency, 

is calculated according to the following relationship: 

 , (3.12) 

where  - work of an ideal compressor compressing 1 kg of gas 
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= 0,7 – internal isothermal efficiency of the reciprocating compressor; 

 kg/s – gas consumption. 
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 - work of an ideal compressor compress-

ing 1 kg of gas in isothermal mode [1];
ηT = 0,7 – internal isothermal efficiency of the reciprocating compressor;
ṁ = 1 kg/s – gas consumption.
The results of calculations of the internal power of the real ammonia compres-

sion process are presented in Table. 3.6.

Table 3.6.
Calculation of the internal power  of a non-ideal compressor

Т1,
K

ρ1,
kg/m3

B · 102,
kg/m3

ρ2T
,

kg/m3

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 

Т1, 

K 

, 

kg/m3 

, 

kg/m3 

, 

kg/m3 

,  

kJ/kg 

, 

kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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2nd stage:
We determine the temperature of ammonia at the outlet of the compressor Т2, K.

The temperature Т2 is calculated by the method of successive approximation from 
the relation obtained on the basis of the equation for the balance of the total energy 
of the nonequilibrium

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 
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– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 
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Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 
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The calculation results are presented in Table. 3.7. 

 

           Table 3.7 

вн12W!

1r 210×B T2
r P

T
W12 вн12W!

086,335
вн12 -=W!

0)1()Δ(Δ)( 12212

2

1

=---+-= ò вн
WhhdTCTf дд

T

T
ридn j

( )åò
=

=

++

+
-

=
3

0

1
1

1
2

1

2

1

n

i

ii
i

T

T
рид i

TTddTC

574,5Δ 1 -=дh
дh2Δ

086,33512 -=
вн

W

)0(
2nT

0Δ 2 =
дh Mрид RC 5,4=

K48,364)0(
2 =nT

)(
2
i
nT

( ))( 2
i
nTf

2

2

)1(
2

)(
2 101 -

-

×£
-

= i
n

i
n

i
n

T T
TTe

                (3.13)

where 

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 
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kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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where , kJ/kg; 
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– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 
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We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 
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The calculation results are presented in Table. 3.7. 
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 (table 3.1);

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 

Т1, 

K 

, 

kg/m3 

, 

kg/m3 

, 

kg/m3 

,  

kJ/kg 

, 

kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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 – isothermal deviation of the enthalpy of ammonia from the ideal gas state 
according to the parameters of the gas at the outlet of the compressor, kJ/kg;

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 

Т1, 

K 

, 

kg/m3 
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kg/m3 

, 

kg/m3 

,  

kJ/kg 

, 

kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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 (table 3.6).

The value of the zero approximation 

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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,  
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306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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 is determined based on the condition:

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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,  
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kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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We get the following value:

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 

Т1, 
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kg/m3 
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kg/m3 
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kg/m3 

,  

kJ/kg 

, 

kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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Subsequent values 

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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,  
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306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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 are determined based on the value 

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 

Table 3.6 

Calculation of the internal power of a non-ideal compressor 

Т1, 
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kg/m3 
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kg/m3 
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kg/m3 

,  

kJ/kg 

, 

kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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, obtained from 
equation (3.13). We solve by numerical approximation method with accuracy:

The results of calculations of the internal power of the real ammonia compression process 

are presented in Table. 3.6. 
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,  
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kW 

306 0,676 –1,416 3,523 –234,56 –335,086 

The power consumed by the compressor in the real process is:  kW. 

2nd stage: 

We determine the temperature of ammonia at the outlet of the compressor Т2, K. The 

temperature T2 is calculated by the method of successive approximation from the relation obtained 

on the basis of the equation for the balance of the total energy of the nonequilibrium 

 , (3.13) 

where , kJ/kg; 

 kJ/kg (table 3.1); 

– isothermal deviation of the enthalpy of ammonia from the ideal gas state according to 

the parameters of the gas at the outlet of the compressor, kJ/kg; 

 kJ/kg (table 3.6). 

 The value of the zero approximation  is determined based on the condition: 

; . 

We get the following value: 

. 

Subsequent values  are determined based on the value , obtained from equation (3.13). 

We solve by numerical approximation method with accuracy: 

. 

The calculation results are presented in Table. 3.7. 
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The calculation results are presented in Table. 3.7.

 Table 3.7.
Calculation of the temperature of ammonia T2n at 

the outlet of a non-ideal compressor
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Selecting a value  with precision 

. 

3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 

, 

where  kW – internal power of the nonequilibrium process; 

 – power of the equilibrium polytropic 

process, kW, 

 – power of the equilibrium polytropic 

process, kW, 

  - the average value of the polytropic index for the initial and final parameters characterizing 

the state of the gas at the inlet and outlet of the compressor. 

2nT

,1r ,Δ 1
дh ,2Tr ,12

P
T

W
K
,2nT ,2nr

ò
nT

T
ридdTC

2

1

,Δ 2
дh ),( 2nTf

K345,3722 =nT

2102,0
345,372

087,373345,372 -×=
-

=Te

Wk,тр12Y!

ò -+-=Y
nT

T

dPmW
2

1

вн12
тр
12 r

!!!

086,335
вн12 -=W!

ú
ú
ú

û

ù

ê
ê
ê

ë

é

÷÷
ø

ö
çç
è

æ
-×

-
=-

-

ò
n
n

T

T P
PP

n
nmdPm

n
1

1

2

1

1 1
1

2

1
rr

!!

1

2

1

2

r
r

nln

P
Pln

n =

kJ/kg

ρ2T,

kg/m3

Calculation of the temperature of ammonia  at the outlet of a non-ideal compressor 

 

kg/m3 

 

kJ/kg 

 

kg/m3 

 

kJ/kg 

 
 

kg/m3  
, 

kJ/kg 

 

kJ/kg 

 

kJ/kg 

0,
67

6 

–5
,5

74
 

3,
52

3 

–2
34

,5
6 

37
3,

08
7 

2,
80

99
 

14
5,

49
3 

–1
5,

42
3 

–1
,6

08
7 

0,
67

6 

–5
,5

74
 

3,
52

3 

–2
34

,5
6 

37
2,

34
5 

2,
81

6 

14
3,

85
6

2 

–1
5,

52
5 

0,
12

91
 

 

 

 

Selecting a value  with precision 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 

, 

where  kW – internal power of the nonequilibrium process; 

 – power of the equilibrium polytropic 

process, kW, 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 

, 

where  kW – internal power of the nonequilibrium process; 

 – power of the equilibrium polytropic 

process, kW, 
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Selecting a value  with precision 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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the state of the gas at the inlet and outlet of the compressor. 

2nT

,1r ,Δ 1
дh ,2Tr ,12

P
T

W
K
,2nT ,2nr

ò
nT

T
ридdTC

2

1

,Δ 2
дh ),( 2nTf

K345,3722 =nT

2102,0
345,372

087,373345,372 -×=
-

=Te

Wk,тр12Y!

ò -+-=Y
nT

T

dPmW
2

1

вн12
тр
12 r

!!!

086,335
вн12 -=W!

ú
ú
ú

û

ù

ê
ê
ê

ë

é

÷÷
ø

ö
çç
è

æ
-×

-
=-

-

ò
n
n

T

T P
PP

n
nmdPm

n
1

1

2

1

1 1
1

2

1
rr

!!

1

2

1

2

r
r

nln

P
Pln

n =

kJ/kg

0,
67

6

–5
,5

74

3,
52

3

–2
34

,5
6

37
3,

08
7

2,
80

99

14
5,

49
3

–1
5,

42
3

–1
,6

08
7

0,
67

6

–5
,5

74

3,
52

3

–2
34

,5
6

37
2,

34
5

2,
81

6

14
3,

85
62

–1
5,

52
5

0,
12

91



44

Khabibova Natalya Zamilovna Dissipative function in engineering calculations. Fundamental principles and practical applications

Selecting a value 

Calculation of the temperature of ammonia  at the outlet of a non-ideal compressor 

 

kg/m3 

 

kJ/kg 

 

kg/m3 

 

kJ/kg 

 
 

kg/m3  
, 

kJ/kg 

 

kJ/kg 

 

kJ/kg 

0,
67

6 

–5
,5

74
 

3,
52

3 

–2
34

,5
6 

37
3,

08
7 

2,
80

99
 

14
5,

49
3 

–1
5,

42
3 

–1
,6

08
7 

0,
67

6 

–5
,5

74
 

3,
52

3 

–2
34

,5
6 

37
2,

34
5 

2,
81

6 

14
3,

85
6

2 

–1
5,

52
5 

0,
12

91
 

 

 

 

Selecting a value  with precision 

. 

3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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the state of the gas at the inlet and outlet of the compressor. 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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where  kW – internal power of the nonequilibrium process; 
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process, kW, 
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process, kW, 

  - the average value of the polytropic index for the initial and final parameters characterizing 

the state of the gas at the inlet and outlet of the compressor. 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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where  kW – internal power of the nonequilibrium process; 
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 – power of the equilibrium polytropic 

process, kW, 
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We estimate dissipation using the balance equation for kinetic and potential 
energy for a nonequilibrium process (2.4).
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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where  kW – internal power of the nonequilibrium process; 
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process, kW, 
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  - the average value of the polytropic index for the initial and final parameters characterizing 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 

, 

where  kW – internal power of the nonequilibrium process; 

 – power of the equilibrium polytropic 

process, kW, 

 – power of the equilibrium polytropic 

process, kW, 

  - the average value of the polytropic index for the initial and final parameters characterizing 

the state of the gas at the inlet and outlet of the compressor. 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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where  kW – internal power of the nonequilibrium process; 
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process, kW, 
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  - the average value of the polytropic index for the initial and final parameters characterizing 

the state of the gas at the inlet and outlet of the compressor. 
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3rd stage: 

Calculation of dissipation of kinetic energy on friction . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 

, 

where  kW – internal power of the nonequilibrium process; 

 – power of the equilibrium polytropic 

process, kW, 
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process, kW, 

  - the average value of the polytropic index for the initial and final parameters characterizing 

the state of the gas at the inlet and outlet of the compressor. 
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The results of calculations of viscous dissipation Wk,тр
12   are presented in 

Table. 3.8.
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Let us represent the equilibrium polytropic process of ammonia compression (1–2 n ) in 

coordinates (PV), (TS) (table 9). 

 
Рис. 9. Polytropic equilibrium process of ammonia compression with heat removal in the 

coordinates PV(a), TS(b). 

We determine the polytropic efficiency, the value of which characterizes the degree of 

energy perfection of the gas compression process пол . 
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4th stage: 

Exergy analysis of ammonia compression process with heat removal. 

The exergy analysis of the ammonia compression process with heat removal is carried out 

on the basis of the exergy balance equation (3.7). Heat flow exergy is calculated based on equation 

(3.14): 
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Figure 9. Polytropic equilibrium process of ammonia compression 
with heat removal in the coordinates PV(a), TS(b).

We determine the polytropic efficiency, the value of which characterizes the 
degree of energy perfection of the gas compression process ηпол.
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4th stage:
Exergy analysis of ammonia compression process with heat removal.
The exergy analysis of the ammonia compression process with heat removal is 

carried out on the basis of the exergy balance equation (3.7). Heat flow exergy is 
calculated based on equation (3.14):
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 – average thermodynamic temperature of the process, K,
The exergy balance equation (2.7), taking into account relation (3.14), takes the 
following form:The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 
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The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 
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The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 

 

Table 3.9 

Calculation of loss of specific exergy of ammonia due to convection 

  
 

kJ/kg 

 

kJ/(kg∙K) 

     

kJ/kg 
kJ/kg kJ/(kg∙K) 

0)1()( 1212
пр

o.c.
21 вн

=---+- DinW
T
TQeem xx

!!!!

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

÷
÷
ø

ö
ç
ç
è

æ
-+--

--+

-=-

ò

ò
2

1

2

1

)Δ(Δln

)Δ(Δ

)(

12
1

2
o.c.

12

21 T

T

дд
M

рид

дд
T

T
рид

xx

ss
P
PRdT

T
C

T

hhdTC

meem !!

÷
÷
ø

ö
ç
ç
è

æ
-=

пр

o.c.1
T
TQxE Q !!

T

P
T

W
W

h
12

12вн

!
! =

12Din !

12Din !

пр

o.c.тр
1212 T
TDin Y= !!

тр
12Y!

K15,298o.c. =T

прT

д
ThΔ

д
TsΔ

K
,1T
K
,2T

,
2

1

ò
T

T
ридdTC ,

2

1

ò
T

T

рид dT
T
C ,1

дhD ,2
дhD ,1031 ×D дs ,1032 ×D дs ( ),21 xx ee -

                  (3.15)

where 

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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due to the convective movement of the gas flow, kW,
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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 – heat flow exergy, kW,

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 

 

Table 3.9 

Calculation of loss of specific exergy of ammonia due to convection 

  
 

kJ/kg 

 

kJ/(kg∙K) 

     

kJ/kg 
kJ/kg kJ/(kg∙K) 

0)1()( 1212
пр

o.c.
21 вн

=---+- DinW
T
TQeem xx

!!!!

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

÷
÷
ø

ö
ç
ç
è

æ
-+--

--+

-=-

ò

ò
2

1

2

1

)Δ(Δln

)Δ(Δ

)(

12
1

2
o.c.

12

21 T

T

дд
M

рид

дд
T

T
рид

xx

ss
P
PRdT

T
C

T

hhdTC

meem !!

÷
÷
ø

ö
ç
ç
è

æ
-=

пр

o.c.1
T
TQxE Q !!

T

P
T

W
W

h
12

12вн

!
! =

12Din !

12Din !

пр

o.c.тр
1212 T
TDin Y= !!

тр
12Y!

K15,298o.c. =T

прT

д
ThΔ

д
TsΔ

K
,1T
K
,2T

,
2

1

ò
T

T
ридdTC ,

2

1

ò
T

T

рид dT
T
C ,1

дhD ,2
дhD ,1031 ×D дs ,1032 ×D дs ( ),21 xx ee -

 – internal exergy losses due to irreversibility of the process, kW.
The calculation of internal exergy losses 

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 
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where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 
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the ideal gas state is carried out according to the calculated ratios presented in the author's manual 
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process itself is carried out on the basis of the following relationship:

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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is carried out on the basis of the following relationship: 
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where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 
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where 

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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 – dissipation of kinetic energy due to friction, kW,
T o.c.= 298,15 K – ambient temperature under standard conditions,

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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 – average thermodynamic temperature of the process, K.
The results of calculations of the ammonia exergy flux due to convection are pre-
sented in Table. 3.9. The calculation of isothermal deviations of the enthalpy 

The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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convective movement of the gas flow, kW, 
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 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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 of ammonia from the ideal gas state is carried out according to the 
calculated ratios presented in the author's manual [1].

Table 3.9.
Calculation of loss of specific exergy of ammonia due to convection
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 
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where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 
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the ideal gas state is carried out according to the calculated ratios presented in the author's manual 
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 

 , (3.16) 

where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 

[1]. 
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The exergy balance equation (2.7), taking into account relation (3.14), takes the following form: 

 , (3.15) 

where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 
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where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 
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convective movement of the gas flow, kW, 
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 – ambient temperature under standard conditions, 
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where  – exergy flow due to the 

convective movement of the gas flow, kW, 

 – heat flow exergy, kW, 

 – internal power of the compressor, kW, 

 – internal exergy losses due to irreversibility of the process, kW. 

The calculation of internal exergy losses , due to the irreversibility of the process itself 

is carried out on the basis of the following relationship: 
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where  – dissipation of kinetic energy due to friction, kW, 

 – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K. 

The results of calculations of the ammonia exergy flux due to convection are presented in Table. 

3.9. The calculation of isothermal deviations of the enthalpy , entropy  of ammonia from 

the ideal gas state is carried out according to the calculated ratios presented in the author's manual 
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The calculation of the average thermodynamic temperature of the process  is carried out 

on the basis of the exergy balance equation (3.15). 

 

. 

The calculation of exergy losses due to the irreversibility of the process  is carried out 

according to the calculated ratio (3.16): 

. 

The value  is the final loss of exergy, which can only be compensated by 

external energy carriers. 

The difference between the values of dissipation of kinetic energy and internal losses of exergy, 

due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 

. 

The calculation of the exergy efficiency of the ammonia compression process in a cooled 

compressor, provided that the removed heat flow is usefully used in the future, is carried out 

according to the relation (3.10): 

. 

In the event that the thermal energy of the cooling agent is not used, then the exergy losses are 

calculated according to the equation: 
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on the basis of the exergy balance equation (3.15). 
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according to the calculated ratio (3.16): 
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The difference between the values of dissipation of kinetic energy and internal losses of exergy, 

due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 
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The calculation of the exergy efficiency of the ammonia compression process in a cooled 

compressor, provided that the removed heat flow is usefully used in the future, is carried out 
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 is the final loss of exergy, which can only be 
compensated by external energy carriers.

The difference between the values of dissipation of kinetic energy and internal 
losses of exergy, due to the irreversibility of the process, is that part of the exergy 
that can still be usefully used in the future.
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The calculation of the average thermodynamic temperature of the process  is carried out 

on the basis of the exergy balance equation (3.15). 
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The calculation of exergy losses due to the irreversibility of the process  is carried out 

according to the calculated ratio (3.16): 
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due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 
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The calculation of the exergy efficiency of the ammonia compression process in a cooled 

compressor, provided that the removed heat flow is usefully used in the future, is carried out 

according to the relation (3.10): 
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In the event that the thermal energy of the cooling agent is not used, then the exergy losses are 

calculated according to the equation: 

 , (3.17) 

where  – total exergy losses, kW, 

 – internal exergy losses, kW, 

прT

=
ú
ú
û

ù

ê
ê
ë

é

--+
Y+

=
вн1221

тр
1212

..пр )( WeemQ
QTT

xx12
co !!!

!!

K19,337
086,335538,2460516,201

816,730516,20115,298 =úû

ù
êë

é
+--

+-
=

12Din !

кВт27,65
19,337
15,298816,73

пр

o.c.тр
1212 ==Y=
T
TDin !!

кВт27,6512 =Din !

кВт546,827,65816,7312тр =-=-Y Din !!

805,0
086,335
27,6511

вн12

12 =-=-=
W-
Din

ex !
!

h

121212 DexDinD !!! +=

12D!

12Din !

The calculation of the exergy efficiency of the ammonia compression process 
in a cooled compressor, provided that the removed heat flow is usefully used in the 
future, is carried out according to the relation (3.10):
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The calculation of the average thermodynamic temperature of the process  is carried out 

on the basis of the exergy balance equation (3.15). 
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The calculation of exergy losses due to the irreversibility of the process  is carried out 

according to the calculated ratio (3.16): 

. 
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The calculation of the exergy efficiency of the compression process with heat removal in this case 

is carried out according to the following relation: 
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The results of calculations of the exergy efficiency of the ammonia compression process without 

utilization of the removed heat are presented in Table. 3.10. 
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The exergy analysis of the process indicates that it is advisable to use the thermal energy of 

the cooling agent as a secondary energy resource. The possibility of practical implementation of 

heat exergy in each specific case is decided individually. [9, 10]. 

Task 3.3  

To obtain high-pressure gas, multistage compressors are used, between the stages of which 

heat exchangers are installed to provide cooling of the gas compressed in the previous stage. Let's 

consider the process of gas compression in a two-stage turbocharger with intermediate cooling in 

a refrigerator at constant pressure. The schematic diagram of the compressor unit is shown in fig. 
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The exergy analysis of the process indicates that it is advisable to use the ther-
mal energy of the cooling agent as a secondary energy resource. The possibility 
of practical implementation of heat exergy in each specific case is decided indi-
vidually. [9, 10].

Task 3.3 
To obtain high-pressure gas, multistage compressors are used, between the 

stages of which heat exchangers are installed to provide cooling of the gas com-
pressed in the previous stage. Let's consider the process of gas compression in 
a two-stage turbocharger with intermediate cooling in a refrigerator at constant 
pressure. The schematic diagram of the compressor unit is shown in fig. 10.

 

 Fig. 10. Schematic diagram of a two-stage adiabatic compressor with intercooling: 

1 - electric motor; 2 - the first stage of the compressor; 

3 - heat exchanger cooled by recycled water; 

4 - the second stage of the compressor 

Gas with initial parameters T1, P1 enters the first stage 2 of the compressor unit, where an adiabatic 

compression process takes place from the initial pressure P1  to the intermediate pressure P2. Then, 

the gas with temperature T2, pressure P2 is sent to the intermediate cooler 3, where it is cooled to 

the initial temperature T1 at a constant pressure with water from the circulating water supply. The 

resistance of the cooler along the gas path is made small in order to save energy spent on 

compression, which makes it possible to consider the gas cooling process as isobaric. After the 

cooler 3, the gas is sent to the second stage 4 of the compressor unit, where the adiabatic 

compression process takes place from the intermediate pressure P2 to the specified final pressure 

P3. 

In multi-stage compression, in order to select the optimal intermediate pressures at which the work 

would be the least, the distribution of the load on each stage is calculated according to the 

following relation: 
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where e1, e2, … en – the degree of gas pressure increase in the first stage, second stage, n-th stage 

of the multistage compressor; 

n – number of compressor stages; 

eобщ =  – total degree of increase in gas pressure in the compressor with the number of 

steps n from the initial pressure Рнач to the specified final pressure Ркон. 
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Figure 10. Schematic diagram of a two-stage 
adiabatic compressor with intercooling:

1 - electric motor; 2 - the first stage of the compressor;
3 - heat exchanger cooled by recycled water;
4 - the second stage of the compressor

Gas with initial parameters T1, P1 enters the first stage 2 of the compressor unit, 
where an adiabatic compression process takes place from the initial pressure P1 
to the intermediate pressure P2. Then, the gas with temperature T2, pressure P2 is 
sent to the intermediate cooler 3, where it is cooled to the initial temperature T1 at 
a constant pressure with water from the circulating water supply. The resistance 
of the cooler along the gas path is made small in order to save energy spent on 
compression, which makes it possible to consider the gas cooling process as iso-
baric. After the cooler 3, the gas is sent to the second stage 4 of the compressor 



49

Dissipative function in engineering calculations. Fundamental principles and practical applications

unit, where the adiabatic compression process takes place from the intermediate 
pressure P2 to the specified final pressure P3.

In multi-stage compression, in order to select the optimal intermediate pres-
sures at which the work would be the least, the distribution of the load on each 
stage is calculated according to the following relation:
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                                   (3.19)
where ε1, ε2, … εn – the degree of gas pressure increase in the first stage, second 
stage, n-th stage of the multistage compressor;

n – number of compressor stages;
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 – total degree of increase in gas pressure in the compressor with the 

number of steps n from the initial pressure Рнач to the specified final pressure Ркон.
If this condition (3.19) is met, the pressure ratio in all stages is the same, which 

is favorable not only for the power consumption, but also for the discharge tem-
peratures in reciprocating compressors, which in this case are lower than with 
different pressure ratios in the stages. With an increase in the number of stages 
and intermediate coolers of the compressor unit, the compression process is more 
and more close to isothermal, i.e. to the most advantageous in terms of energy con-
sumption. This does not exhaust the advantages of the multi-stage compression 
process. In reciprocating compressors, a decrease in the discharge temperature is 
achieved, and the risk of ignition of lubricating oils is reduced [10]. In the practice 
of compressor construction, there are very different relationships between the num-
ber of stages and the final pressure. The number of compressor stages of medium 
and high efficiency should be chosen so that the pressure ratio in each stage of the 
turbocharger does not exceed the value ε, equal to four. When compressing polyat-
omic gases, such as ammonia, it is advantageous to take higher pressure ratios than 
for compressors compressing diatomic gases, such as nitrogen. In compressors for 
gases with a low specific gravity, such as hydrogen, it is advantageous to adopt a 
reduced pressure ratio (ε = 1,5 ÷ 2), since the pressure losses between stages are 
below average. To increase the efficiency of compressors, they strive for the most 
complete cooling of the gas in intermediate coolers. The limit of possible cooling 
is determined by the initial temperature of the cooling water. When using water 
from a circulating water supply system, this temperature is determined by climatic 
and weather conditions. In modern designs of multistage compressors, the differ-
ence between the final and initial temperatures of the cooling water is 5–10 °C.
The choice of the most advantageous number of stages should be carried out, 
guided not only by the desire for the minimum energy consumption, but also by 
considerations of a general economic nature.

Let us give a specific example of calculating gas compression in a two-stage 
compressor unit.
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A two-stage ammonia turbocompressor with an intermediate isobaric cooler 3 
serves to compress ammonia to a final pressure Р3 = 7 bar (fig. 10). The compres-
sion process is non-equilibrium, the consumption of ammonia is 

If this condition (3.19) is met, the pressure ratio in all stages is the same, which is favorable 

not only for the power consumption, but also for the discharge temperatures in reciprocating 

compressors, which in this case are lower than with different pressure ratios in the stages. With an 

increase in the number of stages and intermediate coolers of the compressor unit, the compression 

process is more and more close to isothermal, i.e. to the most advantageous in terms of energy 

consumption. This does not exhaust the advantages of the multi-stage compression process. In 

reciprocating compressors, a decrease in the discharge temperature is achieved, and the risk of 

ignition of lubricating oils is reduced [10]. In the practice of compressor construction, there are 

very different relationships between the number of stages and the final pressure. The number of 

compressor stages of medium and high efficiency should be chosen so that the pressure ratio in 

each stage of the turbocharger does not exceed the value e, equal to four. When compressing 

polyatomic gases, such as ammonia, it is advantageous to take higher pressure ratios than for 

compressors compressing diatomic gases, such as nitrogen. In compressors for gases with a low 

specific gravity, such as hydrogen, it is advantageous to adopt a reduced pressure ratio (e = 1,5

2), since the pressure losses between stages are below average. To increase the efficiency of 

compressors, they strive for the most complete cooling of the gas in intermediate coolers. The limit 

of possible cooling is determined by the initial temperature of the cooling water. When using water 

from a circulating water supply system, this temperature is determined by climatic and weather 

conditions. In modern designs of multistage compressors, the difference between the final and 

initial temperatures of the cooling water is 5–10 °C. The choice of the most advantageous number 

of stages should be carried out, guided not only by the desire for the minimum energy 

consumption, but also by considerations of a general economic nature. 

Let us give a specific example of calculating gas compression in a two-stage compressor 

unit. 

A two-stage ammonia turbocompressor with an intermediate isobaric cooler 3 serves to 

compress ammonia to a final pressure Р3 = 7 bar (fig. 10). The compression process is non-

equilibrium, the consumption of ammonia is  kg/s. The parameters of ammonia at the inlet 

to the first stage 2 of the compressor unit are as follows: Р1 = 1 bar, Т1 = 306 K. Cooling water 

from the circulating water supply is used to cool the ammonia compressed in the first stage 2 to an 

intermediate pressure P2. The cooling of ammonia after the first stage 2 in the isobaric cooler 3 is 

achieved to the initial temperature Т3 = Т1 = 306 K. Water heating is DТВ = 5 K. The value of the 

adiabatic efficiency of each stage of the compressor unit is assumed to be the same and equal to 

the following value: 
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 The 
parameters of ammonia at the inlet to the first stage 2 of the compressor unit are as 
follows: Р1 = 1 bar, Т1 = 306 K. Cooling water from the circulating water supply 
is used to cool the ammonia compressed in the first stage 2 to an intermediate 
pressure P2. The cooling of ammonia after the first stage 2 in the isobaric cooler 3 
is achieved to the initial temperature Т3 = Т1 = 306 K. Water heating is ΔТВ = 5 K.
The value of the adiabatic efficiency of each stage of the compressor unit is as-
sumed to be the same and equal to the following value:

If this condition (3.19) is met, the pressure ratio in all stages is the same, which is favorable 

not only for the power consumption, but also for the discharge temperatures in reciprocating 

compressors, which in this case are lower than with different pressure ratios in the stages. With an 

increase in the number of stages and intermediate coolers of the compressor unit, the compression 

process is more and more close to isothermal, i.e. to the most advantageous in terms of energy 

consumption. This does not exhaust the advantages of the multi-stage compression process. In 

reciprocating compressors, a decrease in the discharge temperature is achieved, and the risk of 

ignition of lubricating oils is reduced [10]. In the practice of compressor construction, there are 

very different relationships between the number of stages and the final pressure. The number of 

compressor stages of medium and high efficiency should be chosen so that the pressure ratio in 

each stage of the turbocharger does not exceed the value e, equal to four. When compressing 

polyatomic gases, such as ammonia, it is advantageous to take higher pressure ratios than for 

compressors compressing diatomic gases, such as nitrogen. In compressors for gases with a low 

specific gravity, such as hydrogen, it is advantageous to adopt a reduced pressure ratio (e = 1,5

2), since the pressure losses between stages are below average. To increase the efficiency of 

compressors, they strive for the most complete cooling of the gas in intermediate coolers. The limit 

of possible cooling is determined by the initial temperature of the cooling water. When using water 

from a circulating water supply system, this temperature is determined by climatic and weather 

conditions. In modern designs of multistage compressors, the difference between the final and 

initial temperatures of the cooling water is 5–10 °C. The choice of the most advantageous number 

of stages should be carried out, guided not only by the desire for the minimum energy 

consumption, but also by considerations of a general economic nature. 

Let us give a specific example of calculating gas compression in a two-stage compressor 

unit. 

A two-stage ammonia turbocompressor with an intermediate isobaric cooler 3 serves to 

compress ammonia to a final pressure Р3 = 7 bar (fig. 10). The compression process is non-

equilibrium, the consumption of ammonia is  kg/s. The parameters of ammonia at the inlet 

to the first stage 2 of the compressor unit are as follows: Р1 = 1 bar, Т1 = 306 K. Cooling water 

from the circulating water supply is used to cool the ammonia compressed in the first stage 2 to an 

intermediate pressure P2. The cooling of ammonia after the first stage 2 in the isobaric cooler 3 is 

achieved to the initial temperature Т3 = Т1 = 306 K. Water heating is DТВ = 5 K. The value of the 

adiabatic efficiency of each stage of the compressor unit is assumed to be the same and equal to 

the following value: 
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The functions and parameters of the state of ammonia are calculated according 
to the equation of state of an ideal gas with a constant heat capacity.

To define:
1. The power absorbed by each stage of the compressor unit 

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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2. Heat flow removed in the intermediate heat exchanger 3 

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 
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Calculation of internal power of compressor steps ( ; ) 
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3. Exergy efficiency of the compressor unit ηex.

Stage 1:
Calculation of the power absorbed by the first stage of the compressor unit,  

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 
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Calculation of internal power of compressor steps ( ; ) 
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The determination of the power spent on compressing the gas from the initial 
pressure P1 to the intermediate pressure P2 in the first stage of the compressor unit 
is carried out according to the calculated ratio:

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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                             (3.20)

where: 

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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 – ammonia temperature at the end of the nonequilibrium 

compression process in the first stage, K;

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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 – temperature of ammonia at the end of the adiabatic equilib-

rium compression process in the first stage, K.
The determination of the intermediate pressure of ammonia after the first stage 

Р2 is carried out according to the calculated relation (3.19).

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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The calculation results 

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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 are presented in Table. 3.11.

Table 3.11.
Calculation of internal power of compressor steps 

The functions and parameters of the state of ammonia are calculated according to the 

equation of state of an ideal gas with a constant heat capacity. 

To define: 

1. The power absorbed by each stage of the compressor unit , , kW. 

2. Heat flow removed in the intermediate heat exchanger 3 , kW. 

3. Exergy efficiency of the compressor unit . 

Stage 1: 

Calculation of the power absorbed by the first stage of the compressor unit, , kW. 

The determination of the power spent on compressing the gas from the initial pressure P1 to 

the intermediate pressure P2 in the first stage of the compressor unit is carried out according to the 

calculated ratio: 

 , (3.20) 

where: = 4,5RM  

T2 = T1–  – ammonia temperature at the end of the nonequilibrium compression 

process in the first stage, K; 

– temperature of ammonia at the end of the adiabatic equilibrium 

compression process in the first stage, K. 

The determination of the intermediate pressure of ammonia after the first stage Р2 is carried 

out according to the calculated relation (3.19). 

 

 The calculation results ,  are presented in Table. 3.11. 

Table 3.11 

Calculation of internal power of compressor steps ( ; ) 
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equation of state of an ideal gas with a constant heat capacity. 

To define: 
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306 380,82 399,53 2,196 –205,39 –205,39 –205,39 2,646

Since the ammonia compression ratio in both stages of the compressor unit is 
the same, the gas temperatures at the inlet to the first and second stages are equal 
to each other, and the adiabatic efficiency of the stages is the same, the internal 
power in both stages will be the same and equal to the following value :
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Calculation of the heat flow 
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 removed in the intermediate isobaric cooler 3, 
cooled by circulating water, kW.

The calculation is carried out in accordance with the total energy balance equa-
tion (2.2) for heat exchanger 3 with respect to ammonia:
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                                        (3.21)
where 
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 – the enthalpy flow of ammonia, kW;
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 – heat flow supplied by the cooling circulating water, kW;
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 = –205,39 кВт – heat flow removed from ammonia in the intermediate 
cooler 3.

To determine the flow rate of cooling water, we use the total energy balance 
equation (1.25) for heat exchanger 3 with respect to water:
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 – heat flow supplied by ammonia compressed in the first 
stage;
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Since the ammonia compression ratio in both stages of the compressor unit is the same, the 

gas temperatures at the inlet to the first and second stages are equal to each other, and the adiabatic 

efficiency of the stages is the same, the internal power in both stages will be the same and equal 

to the following value : 

= = –205,39 kW. 

2nd stage: 

Calculation of the heat flow , removed in the intermediate isobaric cooler 3, cooled by 

circulating water, kW. 

The calculation is carried out in accordance with the total energy balance equation (2.2) for 

heat exchanger 3 with respect to ammonia: 

 , (3.21) 

where – the enthalpy flow of ammonia, kW; 

– heat flow supplied by the cooling circulating water, kW; 

= –205,39 кВт – heat flow removed from ammonia in the intermediate cooler 3. 

To determine the flow rate of cooling water, we use the total energy balance equation (1.25) 

for heat exchanger 3 with respect to water: 

 , (3.22) 

where = 205,39 kW – heat flow supplied by ammonia compressed in the first stage; 

– enthalpy flow of water coming from the circulating water 

supply to heat exchanger 3, kW; 

= 4,19  [3, nomogram XI] – the value of the heat capacity of water at an average 

temperature = 302,5 K. 

The cooling water flow is as follows: 

 kg/s. 
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2nd stage: 

Calculation of the heat flow , removed in the intermediate isobaric cooler 3, cooled by 

circulating water, kW. 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 

5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 

calculated ratio, excluding transit exergy flows: 

 𝜂𝜂𝑒𝑒𝑒𝑒 =  𝐸𝐸𝑥̇𝑥вых− 𝐸𝐸𝐸̇𝐸транзит
𝐸𝐸𝐸̇𝐸вх− 𝐸𝐸𝐸̇𝐸транзит

, (3.34) 

where выххE – exergy flux at the output of the expander stage; 

вххЕ – exergy flux at the inlet to the expander stage; 

транзитхЕ – transit flows of exergy, i.e. constituting that part of the exergy of incoming flows, 

which passes invariably through the entire apparatus. 

The nitrogen exergy flux at the expander inlet is calculated by the relation: 
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where Тос = 298,15 K – temperature value in the reference state; 
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TTdTC  – change in the enthalpy of nitrogen in the ideal gas state, 
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kJ

; 


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dид
T

T

р T
T

C
 – change in the entropy of an ideal gas depending on the change in temperature, 

кг
кДж ; 


1Δh  – isothermal deviation of the nitrogen enthalpy from the ideal gas state according to 

the parameters at the expander inlet,
kg
kJ ; 


1ΔS  – isothermal deviation of the entropy of nitrogen from the ideal gas state in terms of 

the parameters T1, P1, 
Kk

kJ
g

. 

The calculation results вххE  are presented in Table 3.18. 

Table 3.18 

 [3, nomogram XI] – the value of the heat capacity of water at 

an average temperature T̅ = 302,5 K.
The cooling water flow is as follows:
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Since the ammonia compression ratio in both stages of the compressor unit is the same, the 

gas temperatures at the inlet to the first and second stages are equal to each other, and the adiabatic 

efficiency of the stages is the same, the internal power in both stages will be the same and equal 

to the following value : 

= = –205,39 kW. 

2nd stage: 

Calculation of the heat flow , removed in the intermediate isobaric cooler 3, cooled by 

circulating water, kW. 

The calculation is carried out in accordance with the total energy balance equation (2.2) for 

heat exchanger 3 with respect to ammonia: 

 , (3.21) 

where – the enthalpy flow of ammonia, kW; 

– heat flow supplied by the cooling circulating water, kW; 

= –205,39 кВт – heat flow removed from ammonia in the intermediate cooler 3. 

To determine the flow rate of cooling water, we use the total energy balance equation (1.25) 

for heat exchanger 3 with respect to water: 
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where = 205,39 kW – heat flow supplied by ammonia compressed in the first stage; 

– enthalpy flow of water coming from the circulating water 

supply to heat exchanger 3, kW; 

= 4,19  [3, nomogram XI] – the value of the heat capacity of water at an average 

temperature = 302,5 K. 

The cooling water flow is as follows: 

 kg/s. 

Stage 3: 
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Stage 3:
Calculation of the exergy efficiency of the compressor unit, ηex.
The calculation of the exergy efficiency of the compressor unit is carried out 

according to relation (3.12):relation (3.12): 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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; WW    – technical power of the first and second stages, kW; 

BW = 9,81 кВт – power absorbed by the pump for pumping circulating water; 

o.c.T = 298,15 K – ambient temperature. 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 

 

 
Fig. 11. Polytropic equilibrium process of two-stage ammonia compression with 

intermediate cooling in coordinates PV(a) and TS(b). 

Due to the cooling of ammonia in the intermediate cooler 3 at a constant pressure (isobaric 

process 23) the overall compression process in the compressor unit approaches isothermal, i.e. 

most advantageous in terms of energy savings. 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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; WW    – technical power of the first and second stages, kW; 

BW = 9,81 кВт – power absorbed by the pump for pumping circulating water; 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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; WW    – technical power of the first and second stages, kW; 
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o.c.T = 298,15 K – ambient temperature. 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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; WW    – technical power of the first and second stages, kW; 

BW = 9,81 кВт – power absorbed by the pump for pumping circulating water; 

o.c.T = 298,15 K – ambient temperature. 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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; WW    – technical power of the first and second stages, kW; 

BW = 9,81 кВт – power absorbed by the pump for pumping circulating water; 

o.c.T = 298,15 K – ambient temperature. 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 

 

 
Fig. 11. Polytropic equilibrium process of two-stage ammonia compression with 

intermediate cooling in coordinates PV(a) and TS(b). 

Due to the cooling of ammonia in the intermediate cooler 3 at a constant pressure (isobaric 

process 23) the overall compression process in the compressor unit approaches isothermal, i.e. 

most advantageous in terms of energy savings. 

P, 

бар 

Т2=Т4 

V, m3/kg 
Т1=Т3 

1 

2 3 

4 

Р1 

Р2 = Рпр 

Р3 

Т, 

K 

1 

2 

3 

4 

S3 S4 S1 S2 

Т1=Т3 

Т2=Т4 

Р1 Р3 Р2 = Рпр 

S, J/K 

а b 

 – ambient temperature.

relation (3.12): 

B
II

34
I

12

14o.c.14г

трвх

трвых

внвн

)]()([
WWW

ssTTTCm
xExE
xExE p

ex 














 , 

where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 
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In the quasi-static approximation, the actual compression process in the com-
pressor can be represented as an equilibrium polytropic process, the initial and 
final states of which completely coincide with the real process. Let's represent this 
process in the coordinates PV(a) and TS(b), (Fig. 11).
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where 4гвых xemxE    – ammonia exergy flow at the outlet of the compressor unit, kW; 

1гтр xemxE    – transit flow of exergy, kW; 
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In the quasi-static approximation, the actual compression process in the compressor can be 

represented as an equilibrium polytropic process, the initial and final states of which completely 

coincide with the real process. Let's represent this process in the coordinates PV(a) and TS(b), (Fig. 

11). 
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intermediate cooling in coordinates PV(a) and TS(b). 

Due to the cooling of ammonia in the intermediate cooler 3 at a constant pressure (isobaric 

process 23) the overall compression process in the compressor unit approaches isothermal, i.e. 
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Due to the cooling of ammonia in the intermediate cooler 3 at a constant pres-
sure (isobaric process 2→3) the overall compression process in the compressor 
unit approaches isothermal, i.e. most advantageous in terms of energy savings.

For a non-ideal gas, the problem of economic distribution of compression be-
tween stages becomes more complicated. In this case, when the pressure ratios are 
equal, the work flow in individual stages is different. It is greater in the last stages 
if the final pressure is high enough.

In order to save energy in compressor installations, an automatic process con-
trol system is used, which ensures the regulation of those parameters, the deviation 
from which requires the compressor to be stopped in order to protect against an 
accident.

3.2 Analysis of the energy perfection of the processes of expansion and 
cooling of non-ideal gases.

3.2.1 Features of the use of low-temperature thermal resources

In most cases, the analysis of the effectiveness of actual processes in a par-
ticular device is carried out using the method of classical thermodynamics, which 
is able to determine predictions that are important for practice at the initial de-
sign stage. In this case, it is possible not only to predetermine the consumption of 
energy and material resources in a real unit, but also to get an idea of a number 
of engineering factors, such as the weight of the apparatus, the dimensions of in-
dividual components and the cost of their manufacture. The desire to reduce the 
cost of primary and traditional energy sources (consumption of fuel, electricity) 
without reducing or even increasing the return of energy to the end consumer due 
to its more rational transformation is the main trend of modern technology. The 
questions raised are reflected both when considering the features of the energy 
of low-temperature processes in chemical technology, and in a wide variety of 
industries. The need to use artificial cold arises in all cases when the task is to 
remove heat from a technological object at temperatures below ambient Тср. The 
variety of chemical industries, in which almost all known physical and chemical 
processes are carried out using substances with a wide variety of properties, gives 
rise to a variety of specific technological problems that can be solved with the help 
of cold. However, some typical applications of cold in chemical technology can 
be identified:

1. The need for cooling in exothermic reactions of chemical interaction, and 
we are talking not only about preliminary cooling of the starting materials to a 
given temperature and ensuring the removal of process heat, but also about direct 
control of the rate and direction of the reaction. The highest yield of dichloroeth-
ane in the reaction of ethylene chlorination is fixed in the range from 243 to 253 
K. Even the production of polymers of high molecular weight is expedient in the 
low-temperature regime of the polymerization reaction, in particular, butyl rub-
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ber with desired properties is formed during the catalytic copolymerization of 
isobutylene and isoprene at 173 K.

2. Liquefaction of low-temperature gases and gas mixtures and associated with 
these processes low-temperature distillation and fractional condensation.

3. In the processes of polythermal crystallization, by changing the temper-
ature, one can control the speed of the process, adjust the size and shape of the 
crystals. Fractionated crystallization at low temperatures is used in the production 
of aromatic compounds in the separation of para- and meta-xylenes (200 K), in 
the production of mineral fertilizers in the freezing of calcium nitrate (263 K), in 
dewaxing processes in the production of petroleum oils (240 K).

4. Large consumers of cold in the chemical industry are drying processes, in-
cluding freeze-drying, industrial air conditioning systems.

In all cases, the introduction of cold allows you to create new technological 
processes, intensify production, increase product yield and quality. In addition, it 
becomes possible to reduce the level of toxicity of industrial emissions and create 
more comfortable working conditions. It should be noted that obtaining artificial 
cold is an expensive and energy-intensive process, in connection with which the 
questions of the economic justification of technological processes using cold arise 
very sharply. Modern chemical industries are the largest consumers of cold. At the 
same time, chemical enterprises have a huge amount of secondary energy resources 
(SER) in the form of flue and waste gases, gas flares, waste steam of low param-
eters. The use of these types of energy to produce cold in absorption refrigeration 
machines can drastically reduce electricity consumption, which is an import-
ant way to create economical (energy-saving) chemical-technological systems.

More than half a century of history of the development of refrigeration has led 
to its differentiation and specialization. Currently RU are classified:

– according to the temperature range of work;
– by type of energy used;
– according to the state of aggregation of the working fluid;
– by methods of obtaining a cooling effect.
There are areas distinguished:
1) Moderate cold 150 К <Тх<Тос:

ТсублимацииСО2 = 195 K; ТнвNH3 = 240 K; ТнвSO2 = 263 K;
2) Deep cold 70 K<Тх< 150 K:

Тнв О2 = 90 K; ТнвAr = 87 K; ТнвN2 = 72 K;
3) Cryogenic cold 3–5 K<Тх< 70 K:

Тнв Н2 = 20 K; Тнв Не = 27 K.
In refrigeration engineering, to obtain low temperatures, phase transforma-

tions, adiabatic expansion of gases and vapors with the return of external work, 
throttling, vortex effect, thermoelectric and thermomagnetic effect, and desorption 
are used.
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Consider the energy consumption of the most used methods for obtaining the 
effect of cooling gases and vapors in the chemical industry.

3.2.2 Analysis of the adiabatic expansion of gases in the expander

The processes of expansion of gases and vapors are widely practiced in equip-
ment of chemical industries, for example, in turbines (steam, gas, hydraulic), ex-
panders (piston, turbo expanders), nozzles, throttle devices. Adiabatic expansion 
of gases and vapors with the return of external work in expanders is the most 
effective method of internal cooling. Expanders are low-temperature expansion 
machines that serve to produce cold by expanding the working fluid with a de-
crease in temperature and the return of external work (energy). The term "expand-
er" comes from the French word "de'tendre", which means to reduce pressure. In 
practice, there are basically two classes of expanders:

1. Expansion machines of volumetric action, such as piston, screw and rotary 
expanders (Fig. 12).

3

4
21

5

Figure 12. Scheme of a piston expander:
1 - piston; 2 - cylinder; 3 - inlet valve; 4 - exhaust valve;
5 - crank mechanism

2. Expansion machines of dynamic type (kinetic action), turbo-expanders (Fig. 
13).

⍵

1
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3

4

Figure 13. Scheme of a centripetal jet turboexpander:
1 - spiral gas supply; 2 - directing nozzle apparatus; 3 - rotor; 4 - outlet diffuser
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In volumetric expanders, gas expansion occurs due to a direct change in the 
volume of the working fluid by moving a piston or some other device. In kin-
etic action expanders (turbo-expanders), gas expansion occurs due to the force 
interaction of the expanding gas with the blades of the impeller when the gas 
flow moves in a specially profiled channel in which a rotating lattice of the blade 
apparatus (impeller) is installed. With the help of the rotating blades of the impel-
ler, the internal and kinetic energy of the gas flow is converted into mechanical 
energy of the rotating lattice of the blade apparatus. This mechanical energy is 
converted into electrical or thermal energy, and then transferred to the rotation 
of the blower or compressor impeller. Expanders of both volumetric and kinetic 
action, depending on the pressure of the working fluid used at the inlet, are divided 
into high, medium and low pressure expanders. High pressure expanders have an 
inlet pressure of more than 10 MPa; low-pressure apparatus, not more than 1.5 
MPa. In accordance with the working gas used, the devices are divided into air, 
nitrogen, hydrogen, helium. Structurally, both volumetric expanders and expan-
sion machines of kinetic action are very diverse.

Main energy characteristics of expanders
Expanders are characterized by an adiabatic (internal) coefficient of perform-

ance (COP), which is the ratio of real power, i.e. non-equilibrium process in the 
nominal mode of operation (excluding mechanical losses), to the reference power 
of the ideal expansion process:
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where ηS – the adiabatic (internal) efficiency of the expander; 
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the expander in the actual expansion process, kW; ṁ – the mass flow rate of the 
working fluid, kg/s; 
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Fig. 14. Schematic diagram of the expander refrigeration cycle: 

 1 - electric motor; 2 – adiabatic compressor; 3 – heat exchanger for cooling compressed 

gas; 4 - pump for water supply from the circulating system; 5 – turbo expander; 6 - electric 

motor; 7 - heat exchanger, where heat is removed from the cooling object 
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For piston expanders, the values of the indicator (internal) efficiency are
ηS = 0,6 − 0,75, for turbo-expanders the higher values are ηS = 0,75 − 0,83. 
Expanders are widely used in refrigeration cycles, i.e. reverse circular processes 
designed to transfer heat from less heated bodies to more heated ones. Expander 
refrigeration cycles are characterized by the following energy characteristics: re-
frigeration capacity, power absorbed by refrigeration unit, and coefficient of per-
formance (Fig. 14).
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Figure 14. Schematic diagram of the expander refrigeration cycle:
1 - electric motor; 2 – adiabatic compressor; 3 – heat exchanger for cooling 

compressed gas; 4 - pump for water supply from the circulating system; 5 – turbo 
expander; 6 - electric motor; 7 - heat exchanger, where heat is removed from the 
cooling object

The principle of operation of the expander refrigeration cycle is based on the 
adiabatic expansion in the turboexpander 5 of pre-compressed gas (for example, 
nitrogen) in the adiabatic compressor 2 and then cooled in the isobaric heat exchan-
ger 3. As a heat carrier that removes heat from the working fluid of the refrigera-
tion cycle (for example, nitrogen) in the heat exchanger 3, the water supplied by 
the pump 4 from the circulating water supply circuit is used. There is a transfer 
of heat taken from nitrogen to the external environment. The technology provides 
for control of the water temperature at the inlet to the cooled heat exchanger. The 
prepared nitrogen enters the turbo expander 5, where the adiabatic expansion of 
nitrogen takes place with the return of external work 

 

Fig. 13. Scheme of a centripetal jet turboexpander: 

1 - spiral gas supply; 2 - directing nozzle apparatus; 3 - rotor; 4 - outlet diffuser 
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gas is accompanied by a decrease in its temperature, external work is removed in 
the form of electricity in the electric motor 6, sitting on the same shaft with the 
expander 5. Next, nitrogen is sent to the isobaric heat exchanger 7, where it is used 
as a coolant that removes heat from the cooling object Qхол. Hydrocarbons (ethane, 
propane), air can serve as coolants.
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Let us consider in detail the real process of adiabatic expansion of nitrogen in 
an expander. When studying the expansion process in expanders, the following 
tasks should be solved:

1. Determination of the integral cooling effect, i.e. degree of cooling of the 
working fluid;

2. Determination of the technical capacity of the expander in the non-equilib-
rium expansion process;

3. Determination of the exergy efficiency of the process.
The following is a specific example of calculating and analyzing the adiabatic 

expansion of gas in a turboexpander:
Task 3.4. Nitrogen expands in an adiabatic turboexpander. The expansion 

process is non-equilibrium, the nitrogen consumption is ṁ = 1 kg/s. Parameters 
of nitrogen at the expander inlet: T1 = 300 K, Р1 = 5 bar, nitrogen pressure at the 
expander outlet Р2 = 1,5 bar, nitrogen state functions are calculated according to 
the truncated Bogolyubov-Mayer virial equation (Fig. 15).

To define:
1. Integral temperature effect of the expansion process ΔT12, K.
2. Technical capacity of the expander, 
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3. Exergy efficiency of the nitrogen expansion process in the expander, ηex.

 

~ 

 

4 3 2 

1 
Т1, Р1 

Р2, Т2 
Figure 15. Schematic diagram of the turboexpander stage:

1 – expander stage body; 
2 - rotating elements (blades) of the impeller; 
3 - shaft;
4 - electric motor

The thermophysical characteristics and reference data of nitrogen are as fol-
lows (Annex, Table P.1):
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М = 28,013 kg/kmol; Тс = 126,2 К; Рс = 33,5 atm; ω = 0,04; virial coefficients   
b1j of nitrogen:

3. Exergy efficiency of the nitrogen expansion process in the expander, . 

 

Fig. 15. Schematic diagram of the turboexpander stage: 

1 – expander stage body;  

2 - rotating elements (blades) of the impeller;  

3 - shaft; 

4 - electric motor 

 

 

 

 

The thermophysical characteristics and reference data of nitrogen are as follows (Annex, Table 

P.1): 

М = 28,013 kg/kmol; Тс = 126,2 К; Рс = 33,5 atm; ω = 0,04; virial coefficients  of nitrogen: 

  m3/kg; 

  m3/kg; 

  m3/kg; 

  m3/kg. 

The heat capacity series constants  have the following values (Annex, Table 

P.3): 

   VH = 1,113	
]®

]ü·К
; 

   V@ =–4,846 · 10?Ñ 	
]®

]ü·К%
	; 

   VD = 9,573 · 10?É 	
]®

]ü·К4
; 

   VG =–4,173 · 10?@H 	
]®

]ü·К&
. 

 

1st stage: calculation of the integral effect of nitrogen cooling in an ideal equilibrium 

expansion process, , K. 

 

exh

jb1
3

10 10623,1 -×=b

3
11 10642,3 -×-=b

3
12 10,3831 -×-=b

4
13 10032,3 -×-=b

å
=

=

=
3

0
p

n

i

i
iTdC

12SΔT

~ 

 

4 3 2 

1 
Т1, Р1 

Р2, Т2 

The heat capacity series constants 

3. Exergy efficiency of the nitrogen expansion process in the expander, . 

 

Fig. 15. Schematic diagram of the turboexpander stage: 

1 – expander stage body;  

2 - rotating elements (blades) of the impeller;  

3 - shaft; 

4 - electric motor 

 

 

 

 

The thermophysical characteristics and reference data of nitrogen are as follows (Annex, Table 

P.1): 

М = 28,013 kg/kmol; Тс = 126,2 К; Рс = 33,5 atm; ω = 0,04; virial coefficients  of nitrogen: 

  m3/kg; 

  m3/kg; 

  m3/kg; 

  m3/kg. 

The heat capacity series constants  have the following values (Annex, Table 

P.3): 

   VH = 1,113	
]®

]ü·К
; 

   V@ =–4,846 · 10?Ñ 	
]®

]ü·К%
	; 

   VD = 9,573 · 10?É 	
]®

]ü·К4
; 

   VG =–4,173 · 10?@H 	
]®

]ü·К&
. 

 

1st stage: calculation of the integral effect of nitrogen cooling in an ideal equilibrium 

expansion process, , K. 

 

exh

jb1
3

10 10623,1 -×=b

3
11 10642,3 -×-=b

3
12 10,3831 -×-=b

4
13 10032,3 -×-=b

å
=

=

=
3

0
p

n

i

i
iTdC

12SΔT

~ 

 

4 3 2 

1 
Т1, Р1 

Р2, Т2 

 have the following values 
(Annex, Table P.3):

3. Exergy efficiency of the nitrogen expansion process in the expander, . 

 

Fig. 15. Schematic diagram of the turboexpander stage: 

1 – expander stage body;  

2 - rotating elements (blades) of the impeller;  

3 - shaft; 

4 - electric motor 

 

 

 

 

The thermophysical characteristics and reference data of nitrogen are as follows (Annex, Table 

P.1): 

М = 28,013 kg/kmol; Тс = 126,2 К; Рс = 33,5 atm; ω = 0,04; virial coefficients  of nitrogen: 

  m3/kg; 

  m3/kg; 

  m3/kg; 

  m3/kg. 

The heat capacity series constants  have the following values (Annex, Table 

P.3): 

   VH = 1,113	
]®

]ü·К
; 

   V@ =–4,846 · 10?Ñ 	
]®

]ü·К%
	; 

   VD = 9,573 · 10?É 	
]®

]ü·К4
; 

   VG =–4,173 · 10?@H 	
]®

]ü·К&
. 

 

1st stage: calculation of the integral effect of nitrogen cooling in an ideal equilibrium 

expansion process, , K. 

 

exh

jb1
3

10 10623,1 -×=b

3
11 10642,3 -×-=b

3
12 10,3831 -×-=b

4
13 10032,3 -×-=b

å
=

=

=
3

0
p

n

i

i
iTdC

12SΔT

~ 

 

4 3 2 

1 
Т1, Р1 

Р2, Т2 

1st stage: calculation of the integral effect of nitrogen cooling in an ideal equi-
librium expansion process, 

3. Exergy efficiency of the nitrogen expansion process in the expander, . 

 

Fig. 15. Schematic diagram of the turboexpander stage: 

1 – expander stage body;  

2 - rotating elements (blades) of the impeller;  

3 - shaft; 

4 - electric motor 

 

 

 

 

The thermophysical characteristics and reference data of nitrogen are as follows (Annex, Table 

P.1): 

М = 28,013 kg/kmol; Тс = 126,2 К; Рс = 33,5 atm; ω = 0,04; virial coefficients  of nitrogen: 

  m3/kg; 

  m3/kg; 

  m3/kg; 

  m3/kg. 

The heat capacity series constants  have the following values (Annex, Table 

P.3): 

   VH = 1,113	
]®

]ü·К
; 

   V@ =–4,846 · 10?Ñ 	
]®

]ü·К%
	; 

   VD = 9,573 · 10?É 	
]®

]ü·К4
; 

   VG =–4,173 · 10?@H 	
]®

]ü·К&
. 

 

1st stage: calculation of the integral effect of nitrogen cooling in an ideal equilibrium 

expansion process, , K. 

 

exh

jb1
3

10 10623,1 -×=b

3
11 10642,3 -×-=b

3
12 10,3831 -×-=b

4
13 10032,3 -×-=b

å
=

=

=
3

0
p

n

i

i
iTdC

12SΔT

~ 

 

4 3 2 

1 
Т1, Р1 

Р2, Т2 

The integral effect of nitrogen cooling of an ideal expansion process is deter-
mined by the equation:

The integral effect of nitrogen cooling of an ideal expansion process is determined by the 

equation: 

 , (3.24) 

where  – nitrogen temperature at the expander inlet, К; T2S – nitrogen temperature at the end of 

the adiabatic equilibrium expansion process, К. 

 The temperature T2S is calculated based on the process condition X = S = const, according 

to the equation: 

  (3.25) 

The zero approximation  is given from the condition that the isothermal entropy 

deviation from the ideal gas state of nitrogen . The calculation of nitrogen density, 

isothermal deviations of enthalpy and entropy is carried out according to the Bogolyubov-Mayer 

equation in a truncated form. 

The calculation results are presented in Table 3.12. 

Table 3.12 

Т1, K 
В1∙104, 

m3/kg 

, 

kg/m3 
Z(0) Z 

, 

kg/m3 
  

300 –1,778 5,616 0,999 0,999 5,622 –3,493 –1,137 

 is calculated by the formula (3.25), provided . 

 

Further approximations  are found from the calculated relation (3.25) by the method of 

successive approximations. The value is chosen , based on the condition: 

 

The calculation results are presented in Table. 3.13. 

2S112SΔ TTT -=

1T

0lnd)( д
1

д
2S

1

2
M

ид
12S2S

2

1

=D-D+-=-= ò SS
P
PRT

T
C

SSTf
ST

T

Р

(0)
2ST

0Δ д
2S =S

1ииr 1r

Kk
kJ

,10Δ 3д
1

×

×

g

S

kg
kJ
,Δ д

1h

(0)
2ST 0Δ д

2 =S

K97,211
296,7913,5

493,3
5
5,1ln791,296

exp300
Δln д

1
1

2
M

exp1
(0)
2S =

ú
ú
ú

û

ù

ê
ê
ê

ë

é

×

-
=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é +
= •

pC

S
P
PR

TT

2ST

S2T

2
i
2S

1i
2S

i
2S

T 101
2S

-
-

×£
-

=
T
TTe

                                         (3.24)
where T1 – nitrogen temperature at the expander inlet, К; T2S – nitrogen temper-
ature at the end of the adiabatic equilibrium expansion process, К.

The temperature T2S is calculated based on the process condition X = S = const, 
according to the equation:

The integral effect of nitrogen cooling of an ideal expansion process is determined by the 

equation: 

 , (3.24) 

where  – nitrogen temperature at the expander inlet, К; T2S – nitrogen temperature at the end of 

the adiabatic equilibrium expansion process, К. 

 The temperature T2S is calculated based on the process condition X = S = const, according 

to the equation: 

  (3.25) 

The zero approximation  is given from the condition that the isothermal entropy 

deviation from the ideal gas state of nitrogen . The calculation of nitrogen density, 

isothermal deviations of enthalpy and entropy is carried out according to the Bogolyubov-Mayer 

equation in a truncated form. 

The calculation results are presented in Table 3.12. 

Table 3.12 

Т1, K 
В1∙104, 

m3/kg 

, 

kg/m3 
Z(0) Z 

, 

kg/m3 
  

300 –1,778 5,616 0,999 0,999 5,622 –3,493 –1,137 

 is calculated by the formula (3.25), provided . 

 

Further approximations  are found from the calculated relation (3.25) by the method of 

successive approximations. The value is chosen , based on the condition: 

 

The calculation results are presented in Table. 3.13. 

2S112SΔ TTT -=

1T

0lnd)( д
1

д
2S

1

2
M

ид
12S2S

2

1

=D-D+-=-= ò SS
P
PRT

T
C

SSTf
ST

T

Р

(0)
2ST

0Δ д
2S =S

1ииr 1r

Kk
kJ

,10Δ 3д
1

×

×

g

S

kg
kJ
,Δ д

1h

(0)
2ST 0Δ д

2 =S

K97,211
296,7913,5

493,3
5
5,1ln791,296

exp300
Δln д

1
1

2
M

exp1
(0)
2S =

ú
ú
ú

û

ù

ê
ê
ê

ë

é

×

-
=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é +
= •

pC

S
P
PR

TT

2ST

S2T

2
i
2S

1i
2S

i
2S

T 101
2S

-
-

×£
-

=
T
TTe

   (3.25)

The zero approximation 

The integral effect of nitrogen cooling of an ideal expansion process is determined by the 

equation: 

 , (3.24) 

where  – nitrogen temperature at the expander inlet, К; T2S – nitrogen temperature at the end of 

the adiabatic equilibrium expansion process, К. 

 The temperature T2S is calculated based on the process condition X = S = const, according 

to the equation: 

  (3.25) 

The zero approximation  is given from the condition that the isothermal entropy 

deviation from the ideal gas state of nitrogen . The calculation of nitrogen density, 

isothermal deviations of enthalpy and entropy is carried out according to the Bogolyubov-Mayer 

equation in a truncated form. 

The calculation results are presented in Table 3.12. 

Table 3.12 

Т1, K 
В1∙104, 

m3/kg 

, 

kg/m3 
Z(0) Z 

, 

kg/m3 
  

300 –1,778 5,616 0,999 0,999 5,622 –3,493 –1,137 

 is calculated by the formula (3.25), provided . 

 

Further approximations  are found from the calculated relation (3.25) by the method of 

successive approximations. The value is chosen , based on the condition: 

 

The calculation results are presented in Table. 3.13. 

2S112SΔ TTT -=

1T

0lnd)( д
1

д
2S

1

2
M

ид
12S2S

2

1

=D-D+-=-= ò SS
P
PRT

T
C

SSTf
ST

T

Р

(0)
2ST

0Δ д
2S =S

1ииr 1r

Kk
kJ

,10Δ 3д
1

×

×

g

S

kg
kJ
,Δ д

1h

(0)
2ST 0Δ д

2 =S

K97,211
296,7913,5

493,3
5
5,1ln791,296

exp300
Δln д

1
1

2
M

exp1
(0)
2S =

ú
ú
ú

û

ù

ê
ê
ê

ë

é

×

-
=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é +
= •

pC

S
P
PR

TT

2ST

S2T

2
i
2S

1i
2S

i
2S

T 101
2S

-
-

×£
-

=
T
TTe

 is given from the condition that the isothermal 
entropy deviation from the ideal gas state of nitrogen 

The integral effect of nitrogen cooling of an ideal expansion process is determined by the 

equation: 

 , (3.24) 

where  – nitrogen temperature at the expander inlet, К; T2S – nitrogen temperature at the end of 

the adiabatic equilibrium expansion process, К. 

 The temperature T2S is calculated based on the process condition X = S = const, according 

to the equation: 

  (3.25) 

The zero approximation  is given from the condition that the isothermal entropy 

deviation from the ideal gas state of nitrogen . The calculation of nitrogen density, 

isothermal deviations of enthalpy and entropy is carried out according to the Bogolyubov-Mayer 

equation in a truncated form. 

The calculation results are presented in Table 3.12. 

Table 3.12 

Т1, K 
В1∙104, 

m3/kg 

, 

kg/m3 
Z(0) Z 

, 

kg/m3 
  

300 –1,778 5,616 0,999 0,999 5,622 –3,493 –1,137 

 is calculated by the formula (3.25), provided . 

 

Further approximations  are found from the calculated relation (3.25) by the method of 

successive approximations. The value is chosen , based on the condition: 

 

The calculation results are presented in Table. 3.13. 

2S112SΔ TTT -=

1T

0lnd)( д
1

д
2S

1

2
M

ид
12S2S

2

1

=D-D+-=-= ò SS
P
PRT

T
C

SSTf
ST

T

Р

(0)
2ST

0Δ д
2S =S

1ииr 1r

Kk
kJ

,10Δ 3д
1

×

×

g

S

kg
kJ
,Δ д

1h

(0)
2ST 0Δ д

2 =S

K97,211
296,7913,5

493,3
5
5,1ln791,296

exp300
Δln д

1
1

2
M

exp1
(0)
2S =

ú
ú
ú

û

ù

ê
ê
ê

ë

é

×

-
=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é +
= •

pC

S
P
PR

TT

2ST

S2T

2
i
2S

1i
2S

i
2S

T 101
2S

-
-

×£
-

=
T
TTe

. The calculation 
of nitrogen density, isothermal deviations of enthalpy and entropy is carried out 
according to the Bogolyubov-Mayer equation in a truncated form.

The calculation results are presented in Table 3.12.



60

Khabibova Natalya Zamilovna Dissipative function in engineering calculations. Fundamental principles and practical applications

Table 3.12.

Т1, K
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Further approximations T2S are found from the calculated relation (3.25) by 
the method of successive approximations. The value is chosen T2S, based on the 
condition:
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equilibrium process of nitrogen expansion. 
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The calculation of the power of the equilibrium adiabatic process of nitrogen expansion in 

the expander is carried out according to the relation: 
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The integral temperature effect of cooling of ΔT12S of an ideal equilibrium 
expansion process is calculated by formula (3.24).
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The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 
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(stage), 
kg
kJ . 

The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
kg
kJ ; 

The calculation results are presented in Table. 3.14.
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
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2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
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2S hh   – difference between the isothermal deviations of the nitrogen enthalpy from the 

ideal gas state in terms of gas parameters at the inlet and outlet of the expander working zone 

(stage), 
kg
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The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 

 

































)Δ(Δd

)Δ(Δd

д
1

д
2Sид

д
1

д
2ид

12

tex
12

S
2

1

2

1

hhTCm

hhTCm

W
W

T

T
р

T

T
р

P
S








 ,  (3.28) 

where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
kg
kJ ; 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 

5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 

calculated ratio, excluding transit exergy flows: 
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where выххE – exergy flux at the output of the expander stage; 
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The calculation results вххE  are presented in Table 3.18. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
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kJ ; 
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2S hh   – difference between the isothermal deviations of the nitrogen enthalpy from the 

ideal gas state in terms of gas parameters at the inlet and outlet of the expander working zone 

(stage), 
kg
kJ . 

The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
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kJ ; 
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1

д
2S hh   – difference between the isothermal deviations of the nitrogen enthalpy from the 

ideal gas state in terms of gas parameters at the inlet and outlet of the expander working zone 

(stage), 
kg
kJ . 

The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. 
non-equilibrium expansion process in the expander, 

)Δ(Δ д
1

д
2S hh   – difference between the isothermal deviations of the nitrogen enthalpy from the 

ideal gas state in terms of gas parameters at the inlet and outlet of the expander working zone 

(stage), 
kg
kJ . 

The calculation results are presented in Table. 3.14. 

                                                                                                                                  Table 3.14 

1T , 

K 

S2T , 

K 

1 , 

kg/m3 

2S , 

kg/m3 
kg
kJ

,
2

1

ид
ST

T
р dTC

 

кг
кДж

,д1h
 

kg
kJ

,д
2Sh

 
kg
kJ

,P
12SW

 
kW

,P
12SW

 

30
0 

21
2,

65
 

5,
62

2 

2,
38

4 

–9
1,

28
7 

–1
,1

37
 

– 
0,

66
6 

90
,8

16
 

90
,8

16
 

3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 

K. 

The determination of the temperature value T2 is carried out by the method of successive 

approximation based on the relationship: 
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where S  – the adiabatic efficiency of the expander ( S = 0,83); m – mass flow rate of nitrogen, 

kg/s; 
д

1Δh , 
д
2SΔh , 

д
2Δh  – isothermal deviation of the nitrogen enthalpy value from the ideal gas 

state in terms of the parameters at the inlet and outlet of the expander, 
kg
kJ ; 

The determination of the integral effect of cooling is carried out according to 
the calculated ratio:
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2S hh   – difference between the isothermal deviations of the nitrogen enthalpy from the 

ideal gas state in terms of gas parameters at the inlet and outlet of the expander working zone 

(stage), 
kg
kJ . 

The calculation results are presented in Table. 3.14. 
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3rd stage: calculation of the integral effect of nitrogen cooling in real, i.e. non-equilibrium 

expansion process in the expander, 12ΔT , K. 

The determination of the integral effect of cooling is carried out according to the calculated 

ratio: 

 2112Δ TTT  , (3.27) 

where Т1 – the nitrogen temperature at the expander inlet, K; Т2 – the nitrogen temperature at the 

expander outlet during the nonequilibrium expansion process, K; 12ΔT  – the integral cooling effect, 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 

5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 

calculated ratio, excluding transit exergy flows: 
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𝐸𝐸𝐸̇𝐸вх− 𝐸𝐸𝐸̇𝐸транзит

, (3.34) 

where выххE – exergy flux at the output of the expander stage; 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 
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4th stage: calculation of kinetic energy losses due to friction in a non-equilibrium expansion 
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kinetic and potential energy of a non-equilibrium process: 

      
2

1

tex
12

тр
12

d

PmWΨ   ,   (3.32) 

where 
tex

12W =75,351 kW – technical power removed in the actual process of nitrogen expansion, 

i.e. taking into account friction forces; 

пол12

2

1

d WPm   
 – power of the polytropic equilibrium process, calculated by the formula: 

а         b 

Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 

5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 

calculated ratio, excluding transit exergy flows: 
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where выххE – exergy flux at the output of the expander stage; 

вххЕ – exergy flux at the inlet to the expander stage; 
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which passes invariably through the entire apparatus. 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 
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The calculation results are presented in Table 3.17.
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5th stage: exergy analysis of the nitrogen expansion process in the expander.
The calculation of the exergy efficiency of the nitrogen expansion process is 
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5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 
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where выххE – exergy flux at the output of the expander stage; 

вххЕ – exergy flux at the inlet to the expander stage; 
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5th stage: exergy analysis of the nitrogen expansion process in the expander. 
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where выххE – exergy flux at the output of the expander stage; 

вххЕ – exergy flux at the inlet to the expander stage; 

транзитхЕ – transit flows of exergy, i.e. constituting that part of the exergy of incoming flows, 

which passes invariably through the entire apparatus. 
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The exergy flow at the outlet is the sum of the exergy flows due to the movement of 
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Fig. 16. Polytropic equilibrium process of nitrogen expansion in PV (a), TS (b) diagrams. 

5th stage: exergy analysis of the nitrogen expansion process in the expander. 

The calculation of the exergy efficiency of the nitrogen expansion process is based on the 
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To increase the exergy efficiency of the nitrogen expansion process, it is advisable to 

increase the efficiency of the expander, i.e. reduce exergy losses due to the irreversibility of the 

To increase the exergy efficiency of the nitrogen expansion process, it is ad-
visable to increase the efficiency of the expander, i.e. reduce exergy losses due 
to the irreversibility of the process itself. This is achieved by improving the gas 
dynamics of motion, namely by reducing friction losses in the gas path of the 
turboexpander.

3.2.3 Analysis of throttling processes

The problem of internal cooling can be solved using the throttling process. 
Throttling is an irreversible adiabatic process of reducing the pressure of a gas 
(steam) flow, when passing through a narrowed hole (throttle), and the working 
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fluid does not perform external work. For such a process, the total energy of the 
flow remains unchanged. Let us consider this process during the outflow of a gas 
flow using the example of a diaphragm as a throttle device (Fig. 17).
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Fig. 17. Scheme of throttling the working flow along the channel profile 

In the figure, d1, d2 – the cross section of the channel before and after the diaphragm; d0 – 

diaphragm (throttle) section of the channel. 

Since throttling is carried out without external work 𝑊̇𝑊 and without supply (removal) of heat 

flow 𝑄̇𝑄 when gas (steam) flows through local hydraulic resistance, then for sections (1–1) and (2–

2) that are sufficiently remote from the throttle, where the values of the parameters can be assumed 

to be steady, is obtained from the total energy balance equation (2.2): 
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This equation is a special case of the integral total energy balance equation. 

Let's analyze the presented ratio. Since the mass flow rate of the working fluid in each section 

remains constant and the area of the flow section of the channel (1–1) does not change before and 

after local constriction (2–2), the flow velocities remain practically unchanged  1  ≈   2. 

Assuming the specific gravitational potential over the flow cross section to be constant 𝜑𝜑1 = 𝜑𝜑2, 

since the area of the control section is insignificant, the following integral throttling condition is 

obtained: 
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remains constant and the area of the flow section of the channel (1–1) does not change before and 

after local constriction (2–2), the flow velocities remain practically unchanged  1  ≈   2. 

Assuming the specific gravitational potential over the flow cross section to be constant 𝜑𝜑1 = 𝜑𝜑2, 

since the area of the control section is insignificant, the following integral throttling condition is 

obtained: 
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then for sections (1–1) and (2–2) that are sufficiently remote from the throttle, 
where the values of the parameters can be assumed to be steady, is obtained from 
the total energy balance equation (2.2):

process itself. This is achieved by improving the gas dynamics of motion, namely by reducing 

friction losses in the gas path of the turboexpander. 

3.2.3 Analysis of throttling processes. 

The problem of internal cooling can be solved using the throttling process. Throttling is an 

irreversible adiabatic process of reducing the pressure of a gas (steam) flow, when passing through 

a narrowed hole (throttle), and the working fluid does not perform external work. For such a 

process, the total energy of the flow remains unchanged. Let us consider this process during the 

outflow of a gas flow using the example of a diaphragm as a throttle device (Fig. 17). 

 
Fig. 17. Scheme of throttling the working flow along the channel profile 

In the figure, d1, d2 – the cross section of the channel before and after the diaphragm; d0 – 

diaphragm (throttle) section of the channel. 

Since throttling is carried out without external work 𝑊̇𝑊 and without supply (removal) of heat 
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obtained: 

 since the area of the con-
trol section is insignificant, the following integral throttling condition is obtained:

h1 = h2                                                   (3.39)
In essence, this is a non-equilibrium process of poorly organized outflow in 

non-profiled channels, when the kinetic energy of the expanded gas is not con-
verted into external work, as happens in expanders, but is transformed due to tur-
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bulent eddies into dissipation energy ψ, which, in turn, is used to restore enthalpy. 
For analysis, it is advisable to replace such an outflow process with a quasi-static 
irreversible process that has the same integral result of the constancy of enthalpy 
(3.39). In this case, however, it becomes possible to apply the analytical apparatus 
of classical equilibrium thermodynamics.

 
Task 3.5. Determine the integral effect of throttling ∆T12h, K of nitrogen dur-

ing the outflow of the flow through the diaphragmatic constriction of the pipeline 
(Fig. 17). The process is irreversible, adiabatic. Nitrogen parameters in the section 
(1–1), before the throttle device: P1 = 5 bar, T1=300 К, nitrogen parameters in the 
cross section and (2–2), after the throttle device: P2 = 3 bar.

The functions of the state of nitrogen in the section (1–1) should be determined 
by the truncated virial equation of Bogolyubov – Mayer. In the section (2–2) it is 
permissible to use the ideal gas model.

Based on equation (3.39), taking into account the equation of state of the gas, 
the following expression is obtained:
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in turn, is used to restore enthalpy. For analysis, it is advisable to replace such an outflow process 
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equilibrium thermodynamics. 
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bar. 

The functions of the state of nitrogen in the section (1–1) should be determined by the 

truncated virial equation of Bogolyubov – Mayer. In the section 

(2–2) it is permissible to use the ideal gas model. 

Based on equation (3.39), taking into account the equation of state of the gas, the following 

expression is obtained: 

сp(T1 – T2h) + ∆ℎ1
𝜕𝜕 −  ∆ℎ2

𝜕𝜕 = 0    (3.40) 

The integral throttling effect is determined by the relation: 

∆T12h = T1 – T2h ,     (3.41) 

where T1, К – temperature of nitrogen in the section (1–1), before entering the diaphragmatic 

constriction; T2h, К – the temperature of nitrogen in the section (2–2), after the diaphragmatic 

constriction, when the pipeline section becomes full again. The integral effect ∆T12h, К can be 

found on the basis of the thermal equation of state for a nonideal gas. For an ideal gas, the throttling 

effect is zero. The calculation of T2h should be carried out using equation (3.40) together with the 

truncated Bogolyubov-Mayer equation of state in virial form. From the above it follows:  

T2h = T1+ ∆ℎ1
𝜕𝜕− ∆ℎ2

𝜕𝜕

𝐶𝐶𝑝𝑝
,     (3.42) 

where ∆ℎ1
𝜕𝜕, ∆ℎ2

𝜕𝜕 – the isothermal deviation of the nitrogen enthalpy from the ideal gas state in 

terms of the parameters in the section (1–1) and (2–2), kJ/kg. 

The change in gas temperature during throttling, due to the deviation from the ideal gas state, 

is called the Joule-Thompson effect. To reduce the load on the numerical apparatus and gain 

qualitative experience in the analysis of the problem described, it is proposed to calculate nitrogen 
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 – the isothermal deviation of the nitrogen enthalpy from the ideal 
gas state in terms of the parameters in the section (1–1) and (2–2), kJ/kg.

The change in gas temperature during throttling, due to the deviation from 
the ideal gas state, is called the Joule-Thompson effect. To reduce the load on the 
numerical apparatus and gain qualitative experience in the analysis of the problem 
described, it is proposed to calculate nitrogen in the cross section (2–2) according 
to the ideal gas equation. Therefore, the temperature value T2h is determined by 
the following relation:

in the cross section (2–2) according to the ideal gas equation. Therefore, the temperature value T2h 

is determined by the following relation: 

T2h = T1 + ∆ℎ1
𝜕𝜕

𝐶𝐶𝑝𝑝
                        (3.43) 

The results of the calculation are given in table 3.20. 

Table 3.20 

 

T1, 

K 

В1∙104,m
3/kg 

ид1 , 

kg/m3 
Z(0) Z 1 , kg/m3 

𝐶𝐶𝑝𝑝(T1), 

Kkg
kJ


 
kg
kJ

,Δ 1
дh

 

300 –1,778 5,616 0,999 0,999 5,622 1,0425 –1,137 

 

The value of the gas temperature T2h is found: 

T2h = 300 + –1,137
1,0425 = 298,9 К. 

The intensity of temperature change, called the differential Joule-Thompson effect, is 

characterized as 𝛼𝛼h = (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)h. The value of this characteristic is determined from the energy 

balance of the closed system dh = TdS – VdP together with the Maxwell equation (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝑇𝑇 =
 − (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝑃𝑃: 

𝛼𝛼h = 
𝑇𝑇(𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
𝑝𝑝

− 𝑉𝑉

𝐶𝐶𝑝𝑝
 = 𝛼𝛼S – 𝑉𝑉

𝐶𝐶𝑝𝑝
 ,           (3.44) 

where 𝛼𝛼S – differential cooling effect for an ideal reversible gas (steam) expansion. 

Relationships for determining the magnitude of the differential and integral effects of gas cooling 

in the adiabatic equilibrium process of gas expansion from pressure P1 to the final value P2:  

 

       𝛼𝛼s = 𝑘𝑘−1
𝑘𝑘 · 𝑇𝑇1

𝑃𝑃1
,      (3.45а) 

∆𝑇𝑇12S = 𝑇𝑇1 · [1 − (𝑃𝑃2
𝑃𝑃1

)
𝑘𝑘−1

𝑘𝑘 ]                                        (3.45b) 

Attention should be paid to the dependence of the value of the adiabatic exponent k in 

relation (3.45) on the thermal equation of state of the gas. The calculation of this quantity for a 

non-ideal gas, considered in the example of the model of the truncated virial Bogolyubov – Mayer 

equation, is carried out according to the formula: 

𝑘𝑘 = 1+2𝐵𝐵𝐵𝐵
1+𝐵𝐵𝐵𝐵 · 𝐶𝐶p

𝐶𝐶V
,     (3.4b) 

where В – the second virial coefficient. 

                                           (3.43)

The results of the calculation are given in table 3.20.
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Table 3.20.
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where В – the second virial coefficient.

The calculation results are given in Table 3.21.
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Table 3.21.
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Since 𝛼𝛼𝑆𝑆 > 0 and 𝑉𝑉
𝐶𝐶𝑝𝑝

> 0, then 𝛼𝛼𝑆𝑆 > 𝛼𝛼h, which is a consequence of the irreversibility of the 

process. Obviously, for an ideal gas, 𝛼𝛼h = 0. If the gas is not ideal and the value 𝛼𝛼S < 𝑉𝑉
𝐶𝐶𝑝𝑝

, then the 

throttling effect will be negative 𝛼𝛼h < 0, i.e., the gas will heat up during expansion. If the gas is 

not ideal and 𝛼𝛼S > 𝑉𝑉
𝐶𝐶𝑝𝑝

, then the throttling effect will be positive 𝛼𝛼h > 0, i.e., the expansion of the 

gas will be accompanied by cooling. The state of matter in which the differential effect changes 

sign is called the point of inversion. The set of such points forms an inversion line, the equation of 

which is as follows: 

𝑇𝑇(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝑃𝑃 = 𝑉𝑉                                                    (3.47) 

An analysis of this relationship shows that in the T–P coordinates the inversion line has a 

maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 

P<Pmax≈10 Pкр there are two inversion temperatures   𝑇𝑇ин
в   – the lower inversion temperature in 

the liquid region, 𝑇𝑇ин
в  – the upper inversion temperature in the gaseous region. If 𝑇𝑇ин

н < 𝑇𝑇 < 𝑇𝑇ин
в , 

then gas cooling will occur during throttling. Obviously, in order to use the substance as a working 

fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
𝛼𝛼S

 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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process. Obviously, for an ideal gas, 𝛼𝛼h = 0. If the gas is not ideal and the value 𝛼𝛼S < 𝑉𝑉
𝐶𝐶𝑝𝑝

, then the 

throttling effect will be negative 𝛼𝛼h < 0, i.e., the gas will heat up during expansion. If the gas is 

not ideal and 𝛼𝛼S > 𝑉𝑉
𝐶𝐶𝑝𝑝

, then the throttling effect will be positive 𝛼𝛼h > 0, i.e., the expansion of the 

gas will be accompanied by cooling. The state of matter in which the differential effect changes 

sign is called the point of inversion. The set of such points forms an inversion line, the equation of 

which is as follows: 

𝑇𝑇(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝑃𝑃 = 𝑉𝑉                                                    (3.47) 

An analysis of this relationship shows that in the T–P coordinates the inversion line has a 

maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 

P<Pmax≈10 Pкр there are two inversion temperatures   𝑇𝑇ин
в   – the lower inversion temperature in 

the liquid region, 𝑇𝑇ин
в  – the upper inversion temperature in the gaseous region. If 𝑇𝑇ин

н < 𝑇𝑇 < 𝑇𝑇ин
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then gas cooling will occur during throttling. Obviously, in order to use the substance as a working 

fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
𝛼𝛼S

 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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в  before 
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gas will be accompanied by cooling. The state of matter in which the differential effect changes 
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which is as follows: 
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maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 
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then gas cooling will occur during throttling. Obviously, in order to use the substance as a working 
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в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
𝛼𝛼S

 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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> 0, then 𝛼𝛼𝑆𝑆 > 𝛼𝛼h, which is a consequence of the irreversibility of the 

process. Obviously, for an ideal gas, 𝛼𝛼h = 0. If the gas is not ideal and the value 𝛼𝛼S < 𝑉𝑉
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, then the 

throttling effect will be negative 𝛼𝛼h < 0, i.e., the gas will heat up during expansion. If the gas is 

not ideal and 𝛼𝛼S > 𝑉𝑉
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, then the throttling effect will be positive 𝛼𝛼h > 0, i.e., the expansion of the 

gas will be accompanied by cooling. The state of matter in which the differential effect changes 

sign is called the point of inversion. The set of such points forms an inversion line, the equation of 

which is as follows: 

𝑇𝑇(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝑃𝑃 = 𝑉𝑉                                                    (3.47) 

An analysis of this relationship shows that in the T–P coordinates the inversion line has a 

maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 

P<Pmax≈10 Pкр there are two inversion temperatures   𝑇𝑇ин
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the liquid region, 𝑇𝑇ин
в  – the upper inversion temperature in the gaseous region. If 𝑇𝑇ин
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then gas cooling will occur during throttling. Obviously, in order to use the substance as a working 

fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
𝛼𝛼S

 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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𝐶𝐶𝑝𝑝

> 0, then 𝛼𝛼𝑆𝑆 > 𝛼𝛼h, which is a consequence of the irreversibility of the 

process. Obviously, for an ideal gas, 𝛼𝛼h = 0. If the gas is not ideal and the value 𝛼𝛼S < 𝑉𝑉
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, then the 

throttling effect will be negative 𝛼𝛼h < 0, i.e., the gas will heat up during expansion. If the gas is 
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which is as follows: 
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An analysis of this relationship shows that in the T–P coordinates the inversion line has a 

maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 
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fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
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 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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which is as follows: 
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fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 
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, then the 

throttling effect will be negative 𝛼𝛼h < 0, i.e., the gas will heat up during expansion. If the gas is 
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, then the throttling effect will be positive 𝛼𝛼h > 0, i.e., the expansion of the 

gas will be accompanied by cooling. The state of matter in which the differential effect changes 
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which is as follows: 
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An analysis of this relationship shows that in the T–P coordinates the inversion line has a 

maximum and limits the range of T and P, where 𝛼𝛼h > 0 and gas cooling occurs. For any pressure 

P<Pmax≈10 Pкр there are two inversion temperatures   𝑇𝑇ин
в   – the lower inversion temperature in 

the liquid region, 𝑇𝑇ин
в  – the upper inversion temperature in the gaseous region. If 𝑇𝑇ин

н < 𝑇𝑇 < 𝑇𝑇ин
в , 

then gas cooling will occur during throttling. Obviously, in order to use the substance as a working 

fluid of throttling refrigeration devices, it is necessary to cool the gas flow below 𝑇𝑇ин
в  before 

throttling. Gases at low pressures and high temperatures are ineffective as refrigerants. For 

example, for air at temperature Т = 300 К and pressure P = 10 bar, their ratio 𝛼𝛼h/𝛼𝛼S ≈ 0,2. 

However, as the temperature decreases and the pressure increases, the specific volume decreases 

and the ratio 𝛼𝛼h/𝛼𝛼S increases. For example, at temperature Т = 100 К and pressure P = 100 bar for 

air, their ratio 𝛼𝛼h
𝛼𝛼S

 ≈ 0,98. Changes in the state of the throttled nitrogen flow are shown in fig. 18. 
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The choice of nitrogen as an object for a comparative analysis of methods for obtaining a cooling 

effect is due to the fact that this gas is the main component of atmospheric air and, in its properties 

in a wide range of thermal parameters, corresponds to the model of an ideal gas. The integral 

thermal effect characterizing the cooling capacity of the throttle device Qx is determined by the 

following relationship: 

Qx = ∫ 𝐶𝐶𝑝𝑝
𝑇𝑇1

𝑇𝑇2h
𝑑𝑑𝑑𝑑 =  𝐶𝐶𝑝̅𝑝(𝑇𝑇1 − 𝑇𝑇2h) =  ℎ1

′ − ℎ2 =  ℎ1
′ −  ℎ1 =  − ∆ℎ𝑇𝑇, (3.48) 

where ∆ℎT – the isothermal effect of cooling (throttling). 

Throttle refrigeration cycles are used in cryogenic technology for liquefying and separating low-

temperature gases. The use of throttle devices allows you to control the parameters of gases 

(vapors), as well as their mixtures; determine and vary the consumption of technological objects 

in the investigated section of the equipment. 

3.3 Analysis of heat transfer processes in an isolated TDS. 

The use of any method of thermodynamic analysis poses the problem of calculating the loss of 

expended work or exergy according to the Gouy-Stodola formula (3.8), which is reduced to 

calculating the entropy produced as a result of irreversibility. Let us consider this problem for an 

irreversible heat transfer process and heat losses to the environment as a result of process 

imperfections.  

Task. 3.5. Let two bodies with different temperatures T1 and T2, and 

 ∆𝑇𝑇 = (𝑇𝑇1−𝑇𝑇2) > 0 are exchanged through the surface dF by the elementary heat flux δQ. 

Considering the set of two interacting bodies as an isolated TDS, the entropy of which must 
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where ∆hT – the isothermal effect of cooling (throttling).
Throttle refrigeration cycles are used in cryogenic technology for liquefying 

and separating low-temperature gases. The use of throttle devices allows you to 
control the parameters of gases (vapors), as well as their mixtures; determine and 
vary the consumption of technological objects in the investigated section of the 
equipment.

3.3 Analysis of heat transfer processes in an isolated TDS

The use of any method of thermodynamic analysis poses the problem of calcu-
lating the loss of expended work or exergy according to the Gouy-Stodola formula 
(3.8), which is reduced to calculating the entropy produced as a result of irrevers-
ibility. Let us consider this problem for an irreversible heat transfer process and 
heat losses to the environment as a result of process imperfections. 

Task. 3.5. Let two bodies with different temperatures T1 and T2, and
∆T = (T1 − T2 ) > 0 are exchanged through the surface dF by the elementary heat 
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flux δQ. Considering the set of two interacting bodies as an isolated TDS, the 
entropy of which must increase during irreversible heat transfer, the growth of 
entropy within the process or the produced entropy is determined by the entropy 
balance equation (2.5): 

increase during irreversible heat transfer, the growth of entropy within the process or the produced 

entropy is determined by the entropy balance equation (2.5):  

𝑚̇𝑚(𝑆𝑆1 − 𝑆𝑆2) + 𝑖𝑖𝑖𝑖𝑆̇𝑆12 = 0 

Using thermodynamic laws and heat transfer equations, we obtain a relation for calculating 

the entropy produced (3.49): 

                                                  𝑖𝑖𝑖𝑖𝑆̇𝑆12 = 𝐾𝐾∆𝑇𝑇122 𝐹𝐹
𝑇𝑇1𝑇𝑇2

      (3.49) 

where: K – heat transfer coefficient, Вт
м2К; F – the area of the heat exchange surface. 

An analysis of relation (3.49) shows that the losses from irreversible heat transfer depend 

on the squared temperature difference and on the temperature zone of heat exchange. The 

smaller the product 𝑇𝑇1𝑇𝑇2, the more significant the effect of the temperature difference in low-

temperature aggregates. Usually in refrigeration plants ∆T does not exceed  

7-10 ℃, and even lower in the cryogenic area. 

Let us estimate the amount of losses arising due to the imperfection of thermal insulation. 

In this case, from the environment to the cold elements of the installation with a temperature T, a 

heat flow is supplied that does not contain exergy δQиз. Considering this process as an 

irreversible heat transfer at ∆𝑇𝑇 = (𝑇𝑇ср − 𝑇𝑇) and 𝑇𝑇1 = 𝑇𝑇ср , we find 

                  δ𝑄𝑄из = 𝑇𝑇ср · δ𝑆𝑆из
н = δ𝑄𝑄из (𝑇𝑇ср

𝑇𝑇 − 1)     (3.50) 

The lower the temperature of the machines and apparatus of the refrigeration system, the 

greater the loss of exergy, the more perfect the thermal insulation should be. Cryogenic systems 

use high-vacuum and vacuum-powder insulation with the lowest values of effective thermal 

conductivity.  

 

4. Examples and tasks. 

 

4.1 Examples.  

Task 4.1. 𝐻𝐻2 enters the isobaric heat exchanger at a flow rate 𝑚̇𝑚𝐻𝐻2 = 0.1 𝑘𝑘𝑘𝑘 𝑠𝑠⁄ . Initial 

pressure of hydrogen 𝑃𝑃1𝐻𝐻2 = 3 ∙ 105 Pa and temperature 𝑇𝑇1 = 448 К. The heat flow removed from 

hydrogen in the heat exchanger is  𝑄𝑄 = 145.5 kW. After the heat exchanger, the gas enters the 

adiabatic compressor, where the pressure 𝐻𝐻2 increases to 𝑃𝑃3𝐻𝐻2 = 9 ∙ 105 Pa . The exergy loss rate 

in the compressor is 𝑖𝑖𝑖𝑖𝑖𝑖ех = 12.8 кВт. The ambient temperature is 𝑇𝑇ос = 298 К , the gas is 

calculated according to the MIG with a constant heat capacity, с𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 
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An analysis of relation (3.49) shows that the losses from irreversible heat trans-

fer depend on the squared temperature difference and on the temperature zone of 
heat exchange. The smaller the product T1T2, the more significant the effect of 
the temperature difference in low-temperature aggregates. Usually in refrigeration 
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The lower the temperature of the machines and apparatus of the refrigeration system, the 

greater the loss of exergy, the more perfect the thermal insulation should be. Cryogenic systems 

use high-vacuum and vacuum-powder insulation with the lowest values of effective thermal 

conductivity.  
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4. Examples and tasks
4.1 Examples
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1) Draw up an installation plan.
2) Compressor technical power, 2) Compressor technical power, 𝑊𝑊23

т𝑒𝑒𝑒𝑒, kW; 
3) 𝜂𝜂𝑆𝑆 − adiabatic compressor efficiency; 

4) 𝜂𝜂𝑒𝑒𝑒𝑒 − exergy efficiency of the compressor; 

5) 𝑇𝑇2, К − gas temperature at the compressor inlet; 𝑇𝑇3, К − gas temperature at the outlet of the 

compressor. 

 
Solution: 

 We will draw up an installation scheme 

 

 

 

 

 

 

 

 

 

Fig.19 Technological site for preliminary preparation of raw materials. 

1 − heat exchanger; 

2 − turbocharger; 

𝑚̇𝑚𝐻𝐻2 − flow 𝐻𝐻2, entering the heat exchanger. 

𝑇𝑇1, 𝑃𝑃1 − temperature and pressure 𝐻𝐻2 at the inlet from the heat exchanger; 

𝑇𝑇2, 𝑃𝑃2 = 𝑃𝑃1 − temperature and pressure 𝐻𝐻2 at the outlet of the heat exchanger; 

𝑇𝑇3,  𝑃𝑃3 − temperature and pressure 𝐻𝐻2 at the outlet of the compressor; 

𝑄̇𝑄12 − heat flow removed from 𝐻𝐻2 in the heat exchanger. 

 

I. Let us represent the total energy balance equations (2.2) for the compression zone 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

Let us analyze equation (2.2) for the considered example: 

а) Components 𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖
2

2 = 0,    ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖𝑖𝑖 = 0 − since there is no change in kinetic and potential 

energy;  

b) 𝑄̇𝑄 = 0 compressor is adiabatic, there is no heat exchange with the environment; 

c) 𝐻̇𝐻 = 0 − there is no diffusion flow, no mass transfer transformations occur 

3) ηS − adiabatic compressor efficiency;
4) ηex − exergy efficiency of the compressor;
5) T2, К − gas temperature at the compressor inlet; T3, К- gas temperature at the 

outlet of the compressor.

Solution:
We will draw up an installation scheme
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I. Let us represent the total energy balance equations (2.2) for the compression 
zone

2) Compressor technical power, 𝑊𝑊23
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3) 𝜂𝜂𝑆𝑆 − adiabatic compressor efficiency; 

4) 𝜂𝜂𝑒𝑒𝑒𝑒 − exergy efficiency of the compressor; 

5) 𝑇𝑇2, К − gas temperature at the compressor inlet; 𝑇𝑇3, К − gas temperature at the outlet of the 

compressor. 

 
Solution: 

 We will draw up an installation scheme 
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Therefore, equation (2.2) takes the following form:Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

 whence the power consumed by the compressor is 
equal to the loss of gas enthalpy flow:

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

where:
T2 − gas temperature H2 at the compressor inlet, К.
T3 − gas temperature H2 at the outlet of the compressor, К.

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

 = 3.5 Rm (MIG - model of an ideal gas,i.e.the number of degrees of free-
dom H2 is 5 (j=5),because it is a diatomic gas).
II. To determine the temperature T2 we compose the total energy balance equation 
(2.2) for the heat exchange zone:

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

a. Ḣ = 0 since there is no heat transfer;
b. Ẇtex = 0 − since the technical work in the heat exchanger is not consumed, 

since the process is isobaric;

c. 

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

 − there is no change in kinetic and potential 
energy;

d. 

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

 since the heat flow is removed from H2.
Taking into account the above remarks, we obtain the expression for the total 

energy balance:

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 
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Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone: 

Substituting the data for section 1 (heat exchange) of the technological scheme 
for T1 and 

Therefore, equation (2.2) takes the following form: 

𝑚̇𝑚(ℎ2 − ℎ3) − 𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 0, whence the power consumed by the compressor is equal to the 

loss of gas enthalpy flow: 

𝑊̇𝑊23
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚̇𝑚(ℎ2 − ℎ3) = 𝑚̇𝑚𝑐𝑐𝑝𝑝

0(𝑇𝑇2 − 𝑇𝑇3)
where: 

𝑇𝑇2 −gas temperature 𝐻𝐻2 at the compressor inlet, К. 

𝑇𝑇3 −   gas temperature  𝐻𝐻2 at the outlet of the compressor, К. 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀 

−  model of an ideal gas, i. e. the number of degrees of freedom H_2 is 5 (j
= 5), because it is a diatomic gas). 

II. To determine the temperature 𝑇𝑇2 we compose the total energy balance equation (2.2) for 

the heat exchange zone: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

a. 𝐻̇𝐻 = 0 since there is no heat transfer; 

b. 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 − since the technical work in the heat exchanger is not consumed, since the 

process is isobaric; 

c. ∑ 𝑚𝑚𝑖𝑖
𝑣̅𝑣𝑖𝑖

2

2
𝑛𝑛
𝑖𝑖 = 0, ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝜑𝜑𝑖𝑖

𝑛𝑛
𝑖𝑖 = 0 − there is no change in kinetic and potential energy; 

d. 𝑄̇𝑄 = −145.5 kW, since the heat flow is removed from 𝐻𝐻2. 

Taking into account the above remarks, we obtain the expression for the total energy 

balance: 

𝑚̇𝑚(ℎ2 − ℎ1) + 𝑄̇𝑄12 = 0 

𝑚̇𝑚с𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) = −𝑄̇𝑄12 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ с𝑝𝑝

0 = 𝑇𝑇1 − 𝑄̇𝑄12
𝑚̇𝑚 ∙ 2.5𝑅𝑅𝑀𝑀

 

𝑅𝑅𝑀𝑀𝐻𝐻2 = 𝑅̃𝑅
𝑀𝑀𝑀𝑀𝐻𝐻2

= 8314
2.016 = 4.124 kJ

kg ∙ К 

𝐶𝐶𝑝𝑝𝐻𝐻2
0 = 3.5 𝑅𝑅𝑀𝑀 = 3.5 ∙ 4.124 = 14.434 kJ

kg ∙ К 

𝑀𝑀𝑀𝑀𝐻𝐻2 = 2.016 kg
kmol  

 

          Substituting the data for section 1 (heat exchange) of the technological scheme for 𝑇𝑇1 and 

𝑄̇𝑄12, we obtain the value of the temperature H2 at the outlet from the heat exchange zone:  we obtain the value of the temperature H2 at the outlet from the 
heat exchange zone:

a. а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

Now we determine the temperature H2 at the outlet of the adiabatic compressor 
stage, T3S .

б. 

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

where k = 1.4 (adiabatic exponent for 2x atomic gases) 
In order to determine the actual gas temperature at the compressor outlet T3, 

we write the entropy balance equation (2.5) for the gas compressed in the turbo-
charger stage:

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

Let's analyze:
а. Since the compression in the compressor is carried out in the adiabatic mode  

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

 i.e. there is no change in entropy due to heat transfer.
б. 

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

 − there is no mass transfer in the compressor, i.e. there is no change 
in entropy due to diffusion.

As a result of the above,expression (2.5) takes the following form:

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

Whence the entropy growth rate due to irreversibility for the compression zone 
can be determined by the following formula:

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

Since the exergy loss rate in the compressor stage is 

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

, and the 
calculation formula for 

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

 is as follows:
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а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

The gas temperature in the actual compression process T3 can be determined by 
the expression:

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

Final answer T3 = 489.54 К − temperature H2 at the compressor outlet.
We determine the adiabatic efficiency of the compressor stage (3.1):

а. 𝑇𝑇2 = 448 − 145.5
0.1∙14.434 = 347.19 К. 

Now we determine the temperature 𝐻𝐻2 at the outlet of the adiabatic compressor stage, 𝑇𝑇3𝑆𝑆. 

б. 𝑇𝑇3𝑆𝑆 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 347.196 (9∙105

3∙105)
1,4−1

1,4 = 475.21 К, 

where 𝑘𝑘 = 1.4 (adiabatic exponent for 2^x atomic gases)  

In order to determine the actual gas temperature at the compressor outlet 𝑇𝑇3, we write the 

entropy balance equation (2.5) for the gas compressed in the turbocharger stage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 𝑚𝑚𝑖𝑖𝑆𝑆𝑖̅𝑖 + 𝑆̇𝑆𝑄𝑄 + 𝑆̇𝑆𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑛𝑛

𝑖𝑖=1
= 0 

Let's analyze: 

а. Since the compression in the compressor is carried out in the adiabatic mode   𝑆̇𝑆𝑄𝑄 = 0, 
i.e. there is no change in entropy due to heat transfer. 

б. 𝑆̇𝑆𝑚𝑚𝑚𝑚 = 0 − there is no mass transfer in the compressor, i.e. there is no change in entropy 

due to diffusion. 

As a result of the above, expression (2.5)takes the following form: 
𝑚̇𝑚(𝑆𝑆2 − 𝑆𝑆3) + 𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 0 

Whence the entropy growth rate due to irreversibility for the compression zone can be 

determined by the following formula: 

𝑖𝑖𝑖𝑖𝑆̇𝑆23 = 𝑚̇𝑚 (𝐶̇𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) 

Since the exergy loss rate in the compressor stage is 𝐷̇𝐷23 = 12.8kW, and the calculation 

formula for 𝑖𝑖𝑖𝑖𝐷̇𝐷23 is as follows: 

𝑖𝑖𝑖𝑖𝐷̇𝐷23 = 𝑇𝑇о.с.𝑚̇𝑚 (𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

) ,

The gas temperature in the actual compression process T3 can be determined by the expression: 

𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 𝑇𝑇3
𝑇𝑇2

= 𝑖𝑖𝑖𝑖𝐷̇𝐷23
𝑇𝑇о.с.𝑚̇𝑚

+ 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

= 12.8
298 ∙ 0.1 + 4.124 ln (9

3) = 4.9605 kJ
kg ∙ К 

 

ln 𝑇𝑇3
𝑇𝑇2

= 4.9605
14.434 = 0.3437 

Final answer 𝑇𝑇3 = 489.54 К − temperature 𝐻𝐻2 at the compressor outlet. 

We determine the adiabatic efficiency of the compressor stage (3.1): 

𝜂𝜂𝑆𝑆 = 𝑊̇𝑊23𝑆𝑆
𝑇𝑇𝑇𝑇

𝑊̇𝑊23
вн =

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)  

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

III. We determine the exergy efficiency of the compressor stage:

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

where:
exвых = ex3 − specific exergy at the compressor outlet
eтр = mex2 − transit exergy H2; i.e. that part of the input exergy with which the 

gas enters the compressor and passes through the compressor zone unchanged.

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

IV. The technical power of the compressor 

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

 is determined by the 
following relation:

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 
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Task 4.2.
In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air 

consumption 4 kg/s. Heat exchanger pressure 5∙105 Pa. After the heat exchanger, 
the air enters the adiabatic turbine, where it expands to 1∙105 Pa. The air temper-
ature after the turbine is 693 K. The exergy loss rate in the turbine is 150 kW. 
Ambient temperature Tо.с. = 298 К. Air according to MIGS with 

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

 

To define:
1) To draw up an installation diagram; 
2) Heat exchanger air temperature T1, К;
3) 

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

 − technical power of the turbine kW;
4) ηs, ηex − adiabatic, exergy efficiency of the turbine;

5) 

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process 

 − rate of entropy production in the turbine.
6) 

𝜂𝜂𝑆𝑆 = 𝑇𝑇2 − 𝑇𝑇3𝑠𝑠
𝑇𝑇2 − 𝑇𝑇3

= 347.196 − 475.213
347.196 − 489.546 = 0.899 

III. We determine the exergy efficiency of the compressor stage: 

𝜂𝜂𝑒𝑒𝑒𝑒 = (𝐸̇𝐸𝑥𝑥 3 − 𝐸̇𝐸𝑥𝑥 2)
𝐸̇𝐸𝑥𝑥2  − 𝑊̇𝑊23

вн − 𝐸̇𝐸𝑥𝑥2     

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚(𝑒𝑒𝑥𝑥вых − 𝑒𝑒𝑥𝑥тр)
𝑚̇𝑚(𝑒𝑒𝑥𝑥вх − 𝑒𝑒𝑥𝑥тр) , 

where:
 𝑒𝑒𝑥𝑥вых = 𝑒𝑒𝑥𝑥3 − specific exergy at the compressor outlet 
 𝑒𝑒тр = 𝑚𝑚𝑒𝑒𝑥𝑥2 − transit exergy 𝐻𝐻2; i.e. that part of the input exergy with which the gas enters the 

compressor and passes through the compressor zone unchanged. 

𝜂𝜂𝑒𝑒𝑒𝑒 = 𝑚̇𝑚(𝑒𝑒𝑥𝑥3 − 𝑒𝑒𝑥𝑥2)
−𝑊̇𝑊13

вн = 𝑚̇𝑚((ℎ3 − ℎ2) − 𝑇𝑇о.с.(𝑆𝑆3 − 𝑆𝑆2))
−𝑊̇𝑊23

вн  

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚 (𝐶𝐶𝑃𝑃(𝑇𝑇3 − 𝑇𝑇2) − 𝑇𝑇0.𝑒𝑒. (𝐶𝐶𝑝𝑝 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
))

−𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇3 − 𝑇𝑇2)  

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝐷̇𝐷𝑒𝑒𝑒𝑒23
−𝑊̇𝑊23

вн = 1 − 12.8
0.1 ∙ 14.434(488.546 − 347.146) = 0.937 

IV. The technical power of the compressor 𝑊̇𝑊23
тех, kW is determined by the following relation: 

𝑊̇𝑊23
тех = 𝑚̇𝑚𝐶𝐶𝑝𝑝 (𝑇𝑇2 − 𝑇𝑇3) = 0.1 ∙ 14.434 ∙ (347.196 − 489.546) == −20.402 кВт 

 

Task 4.2. 

In an isobaric heat exchanger, a heat flow of 1600 kW is supplied to the air. Air consumption 

4 kg/s. Heat exchanger pressure 

5 ∙ 105 Pa. After the heat exchanger, the air enters the adiabatic turbine, where it expands to 1 ∙
105 Pa. The air temperature after the turbine is 693 K. The exergy loss rate in the turbine is 150 

kW. Ambient temperature 𝑇𝑇о.с. = 298 К. Air according to MIGS with С𝑝𝑝
0(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

 
To define: 

1) To draw up an installation diagram;  

2) Heat exchanger air temperature  𝑇𝑇1, К; 

3) 𝑊̇𝑊23
т𝑒𝑒𝑒𝑒, kW − technical power of the turbine kW; 

4) 𝜂𝜂𝑠𝑠, 𝜂𝜂𝑒𝑒𝑒𝑒 − adiabatic, exergy efficiency of the turbine; 

5) 𝑖𝑖𝑖𝑖𝑆̇𝑆23 ,
kW

К − rate of entropy production in the turbine. 

6) 𝑖𝑖𝑖𝑖𝐷̇𝐷23 , kW − exergy loss due to irreversibility of the process  − exergy loss due to irreversibility of the process

Solution:

Figure 20. Technological section 
1-isobaric heat exchanger; 2 - turbine stage; 3- electric generator

1.) Let's write the total energy balance equation for the heat exchanger:

                    

 

Solution: 

 
 

 

Fig. 20. Technological section 1-isobaric heat exchanger 2 - turbine stage 

3- electric generator 

 

1.) Let's write the total energy balance equation for the heat exchanger: 

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄 + 𝐻̇𝐻𝑚𝑚𝑚𝑚 − 𝑊̇𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 0 
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𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
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where T3, p3 − pressure and air temperature at the outlet of the turbine; T2; p2 −pres-
sure and air temperature at the turbine inlet.

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 
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𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
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𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 

𝜂𝜂𝑠𝑠 = 𝑇𝑇2 − 𝑇𝑇3
𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

= 899.3 − 693
899.3 − 626.29 = 0.756 

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3) = 4 ∙ 1.29(899.3 − 693) = 1064.51 kW −

technical power of the turbine. 
 

Task 4.3. 

 − air temperature at the inlet to the expansion 

turbine, i.e. at the outlet of the heat exchanger, so 

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 

𝜂𝜂𝑠𝑠 = 𝑇𝑇2 − 𝑇𝑇3
𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

= 899.3 − 693
899.3 − 626.29 = 0.756 

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3) = 4 ∙ 1.29(899.3 − 693) = 1064.51 kW −

technical power of the turbine. 
 

Task 4.3. 

2) Let's define ηS:

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 

𝜂𝜂𝑠𝑠 = 𝑇𝑇2 − 𝑇𝑇3
𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

= 899.3 − 693
899.3 − 626.29 = 0.756 

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3) = 4 ∙ 1.29(899.3 − 693) = 1064.51 kW −

technical power of the turbine. 
 

Task 4.3. 

Therefore, it is necessary to calculate
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T3S − air temperature at the outlet of the turbine in the equilibrium adiabatic 
process of air expansion: 

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 

𝜂𝜂𝑠𝑠 = 𝑇𝑇2 − 𝑇𝑇3
𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

= 899.3 − 693
899.3 − 626.29 = 0.756 

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3) = 4 ∙ 1.29(899.3 − 693) = 1064.51 kW −

technical power of the turbine. 
 

Task 4.3. 

where k = 1.29 (because the number of degrees of freedom of air is j = 7)

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  

𝑇𝑇3𝑠𝑠 = 𝑇𝑇2 (𝑝𝑝3
𝑝𝑝2

)
𝑘𝑘−1

𝑘𝑘 = 899.3 (1
5)

1.29−1
1.29

,

where  𝑘𝑘 = 1.29 (because the number of degrees of freedom of air is 𝑗𝑗 = 7) 

𝑇𝑇3𝑠𝑠 = 626.29 К, 

𝜂𝜂𝑠𝑠 = 𝑇𝑇2 − 𝑇𝑇3
𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

= 899.3 − 693
899.3 − 626.29 = 0.756 

𝜂𝜂𝑒𝑒𝑒𝑒 = 1 − 𝑖𝑖𝑖𝑖𝑖̇𝑖23
𝑊̇𝑊23

= 1 − 150
4 ∙ 1.29(899.3 − 693) = 0.86, 

where 𝑊̇𝑊𝑝𝑝23 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3) = 4 ∙ 1.29(899.3 − 693) = 1064.51 kW −

technical power of the turbine. 
 

Task 4.3. 

where 

where 𝑇𝑇3, 𝑝𝑝3 − pressure and air temperature at the outlet of the turbine; 𝑇𝑇2; 𝑝𝑝2 − pressure and air 

temperature at the turbine inlet. 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
− 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 , 

𝐶𝐶𝑝𝑝
0 ln 𝑇𝑇3

𝑇𝑇2
= 𝑖𝑖𝑖𝑖𝑆̇𝑆23

𝑚̇𝑚 + 𝑅𝑅𝑀𝑀 ln 𝑝𝑝3
𝑝𝑝2

, 

finally we have: 

ln 𝑇𝑇3
𝑇𝑇2

=
𝑖𝑖𝑖𝑖𝑆̇𝑆23 + 𝑚̇𝑚𝑅𝑅𝑀𝑀 ln 𝑝𝑝3

𝑝𝑝2
𝑚̇𝑚𝐶𝐶𝑝𝑝

0  

ln 𝑇𝑇3
𝑇𝑇2

=
0.503 + 40.287 ln 1

5
4 ∙ 1.29 = −0.2606 

𝑇𝑇3
𝑇𝑇2

= 0.7706 

𝑇𝑇2 = 𝑇𝑇3
0.7706 = 693

0.7706 = 899.3 К − air temperature at the inlet to the expansion turbine, i.e. 

at the outlet of the heat exchanger, so  

𝑇𝑇1 = 𝑇𝑇2 + ∆𝑇𝑇12 = 899.3 − 310.08 = 589.22 К 

2) Let's define 𝜂𝜂𝑆𝑆: 

𝜂𝜂 = 𝑊̇𝑊23
вн

𝑊𝑊23𝑠𝑠
=

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3)

𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇3𝑠𝑠) = 𝑇𝑇2 − 𝑇𝑇3

𝑇𝑇2 − 𝑇𝑇3𝑠𝑠

Therefore, it is necessary to calculate 

𝑇𝑇3𝑆𝑆 − air temperature at the outlet of the turbine in the equilibrium adiabatic process of air 

expansion:  
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𝑝𝑝1

)
𝑛𝑛−1

𝑛𝑛 ] −

polytropic power i.e. simulated equilibrium process, polytropic power i.e. simulated equilibrium process,

where where 𝑛𝑛 =
ln(𝑝𝑝2 𝑝𝑝1⁄ )
ln(𝜌𝜌2 𝜌𝜌1⁄ )

; 

𝜌𝜌1 = 𝑝𝑝1
𝑅𝑅𝑀𝑀𝑇𝑇1

= 0.194 kg
m3 ; 

𝜌𝜌2 = 𝑝𝑝2
𝑅𝑅𝑀𝑀𝑇𝑇2

= 0.102 kg
m3 ; 

where 𝑛𝑛 = ln(1 1.2⁄ )
ln(0.102 0.194⁄ ) = 0.283.  

The power of the polytropic pressure change process: 

𝑊̇𝑊12
пол = 𝑚̇𝑚 𝑛𝑛

𝑛𝑛 − 1
𝑝𝑝1
𝜌𝜌1

[1 − (𝑝𝑝2
𝑝𝑝1

)
𝑛𝑛−1

𝑛𝑛 ] 

𝑊̇𝑊12
пол = 0.1 0.283

0.283 − 1
1.2 ∙ 105

0.194 [1 − ( 1
1.2)

0.283−1
0.283

] = 14.335 kW 

II. Loss of kinetic energy due to friction: 

𝜓̇𝜓𝜎𝜎 = 𝑚̇𝑚 𝑛𝑛
𝑛𝑛 − 1

𝑝𝑝1
𝜌𝜌1

[1 − (𝑝𝑝2
𝑝𝑝1

)
𝑛𝑛−1

𝑛𝑛 ] − 𝑚̇𝑚 (𝑣𝑣2
2

2 − 𝑣𝑣1
2

2 ) ;

wheree 𝑣𝑣1, 𝑣𝑣2 − the He speed at the pipe inlet and outlet.  

𝑣𝑣1 = 4 ∙ 𝑚̇𝑚
𝜋𝜋𝑑𝑑1

2𝜌𝜌1
= 4 ∙ 0.1

3.14 ∙ (0.05)2 ∙ 0.194 = 262.66 m/s 

𝑣𝑣2 = 4 ∙ 𝑚̇𝑚
𝜋𝜋𝑑𝑑2

2𝜌𝜌2
= 4 ∙ 0.1

3.14 ∙ (0.05)2 ∙ 0.102 = 499.56 m/s 

𝜓̇𝜓𝜎𝜎 = 0.1 ∙ 143.35 − 0.1 ∙ 10−3 (499.562

2 − 262.662

2 ) 

𝜓̇𝜓𝜎𝜎 = 5.307 kW − kinetic energy leakage for friction. 

 

 

 

 

III. We determine the polytropic efficiency of the gas flow. 
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𝑊̇𝑊12
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)
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𝑚̇𝑚 𝑛𝑛
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𝑝𝑝1
𝜌𝜌1

[1 − (𝑝𝑝2
𝑝𝑝1

)
𝑛𝑛−1

𝑛𝑛 ]
 

𝜂𝜂пол = 14.335 − 5.307
14.335 = 0.63 
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 IV.  𝑄̇𝑄12 − heat flux supplied to the gas.
Let us write the total energy balance equation for the pipe:  

𝜕𝜕Э
𝜕𝜕𝜕𝜕 = ∑ 𝑚̇𝑚𝑖𝑖

𝑖𝑖
(ℎ𝑖𝑖 + 𝑣̅𝑣𝑖𝑖

2

2 + 𝑔𝑔𝜑𝜑𝑖𝑖) + 𝑄̇𝑄12 + 𝐻̇𝐻 − 𝑊̇𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 = 0 

𝑚̇𝑚(ℎ1 − ℎ2) + 𝑚̇𝑚 (𝑣𝑣2
2

2 − 𝑣𝑣1
2

2 ) + 𝑄̇𝑄12 = 0 

𝑄̇𝑄12 = 𝑚̇𝑚(ℎ2 − ℎ1) + 𝑚̇𝑚 (𝑣𝑣2
2

2 − 𝑣𝑣1
2

2 ) 

𝑄̇𝑄12 = 𝑚̇𝑚𝐶𝐶𝑝𝑝
0(𝑇𝑇2 − 𝑇𝑇1) + 𝑚̇𝑚 (𝑣𝑣2

2

2 − 𝑣𝑣1
2

2 ) 

𝑄̇𝑄12 = 9.028 + 90.822 = 99.85 kW. 
 

V. 𝑖𝑖𝑖𝑖𝑖̇𝑖12 = 𝑇𝑇о.с.
𝑇𝑇тд ∗ 𝜓̇𝜓𝜎𝜎 = 298

378.8 ∗ 5.307 = 4.17кВт, where Ттд = Т1−Т2
𝑙𝑙𝑙𝑙Т1

Т2
= 378.8 К – average 

thermodynamic temperature of the gas flow process. 

Task 4.4. To determine the dissipation of kinetic energy during the movement of ammonia 

in the heat exchanger, ammonia moves from top to bottom with a flow rate of 050,m   kg/s. 

The cross-sectional diameter of the inlet pipe 03101 ,D   м, outlet pipe 0402 ,D   m, the 

difference in the levels of the location of the pipes is 6 m. Parameters of ammonia at the inlet to 

the heat exchanger; KT 3061  ; Р1 = 1,5 bar; parameters at the outlet of the heat exchanger Т2 

= 300 K; Р2 = 1,3 bar. 

Solution: 

We find the dissipation of kinetic energy from the balance equation of kinetic and potential 

energy in the integral form (4.1): 
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To calculate the kinetic energy sink functional, we use the model of an equilibrium 

polytropic process, the initial and final states of which completely coincide with the real process: 
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V. 
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 – 

average thermodynamic temperature of the gas flow process.

Task 4.4. To determine the dissipation of kinetic energy during the movement 
of ammonia in the heat exchanger, ammonia moves from top to bottom with a flow 
rate of ṁ = 0,05 kg/s. The cross-sectional diameter of the inlet pipe D1 = 0,031 
м, outlet pipe D2 = 0,04 m, the difference in the levels of the location of the pipes 
is 6 m. Parameters of ammonia at the inlet to the heat exchanger; T1 = 306 K; 
Р1 = 1,5 bar; parameters at the outlet of the heat exchanger Т2 = 300 K; Р2 = 1,3 bar.
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Solution:
We find the dissipation of kinetic energy from the balance equation of kinetic 

and potential energy in the integral form (4.1):
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Т2
= 378.8 К – average 

thermodynamic temperature of the gas flow process. 

Task 4.4. To determine the dissipation of kinetic energy during the movement of ammonia 

in the heat exchanger, ammonia moves from top to bottom with a flow rate of 050,m   kg/s. 

The cross-sectional diameter of the inlet pipe 03101 ,D   м, outlet pipe 0402 ,D   m, the 

difference in the levels of the location of the pipes is 6 m. Parameters of ammonia at the inlet to 

the heat exchanger; KT 3061  ; Р1 = 1,5 bar; parameters at the outlet of the heat exchanger Т2 

= 300 K; Р2 = 1,3 bar. 
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We find the dissipation of kinetic energy from the balance equation of kinetic and potential 

energy in the integral form (4.1): 
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To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 

 – average value of the polytropic index for the initial and final 

parameters characterizing the state of the gas in the real process.
To determine the density of ammonia, we use the equation of state of an ideal 

gas, due to a slight deviation of the parameters from standard conditions:

where 
1

2

1

2

ln
ln



P
P

n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas in the real process. 

To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 

where 
1

2

1

2

ln
ln



P
P

n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas in the real process. 

To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 

Let's determine the value of the polytropic index: 

where 
1

2

1

2

ln
ln



P
P

n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas in the real process. 

To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 

:

where 
1

2

1

2

ln
ln



P
P

n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas in the real process. 

To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 

Let's calculate the kinetic energy sink functional:

where 
1

2

1

2

ln
ln



P
P

n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas in the real process. 

To determine the density of ammonia, we use the equation of state of an ideal gas, due to a slight 

deviation of the parameters from standard conditions: 

0041,1
30617,488

105,1 5

1

1
1 





ТR

P

M

  kg/m3; 

887,0
30017,488

103,1 5

2

2
2 





ТR

P

M

  kg/m3 

Let's determine the value of the polytropic index: n : 

154,1

0041,1
887,0ln

5,1
3,1ln

ln

ln

1

2

1

2





P
P

n  

Let's calculate the kinetic energy sink functional: 

.k0583,1
5,1
3,11

0041,1
105,1

1154,1
154,105,01

1

154,1
1154,1

5
1

1

2

1

1
2

1

W

P
PP

n
nmdPm

n
n

P

P































































 


 

The gas velocities at the inlet and outlet of the heat exchanger are determined by the equation: 

22

2
2

11

2
1

44
 DDm  , 

where: 1 – the gas velocity at the inlet to the heat exchanger, m/s; 

2 – gas velocity at the outlet from the heat exchanger, m/s. 

01,66
0041,1031,014,3

05,044
2

1
2

1
1 








D

m
 m/s, 

88,44
887,004,014,3

05,044
2

2
2
2

2 








D
m

 m/s. 
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where: υ1 – the gas velocity at the inlet to the heat exchanger, m/s;
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υ2 – gas velocity at the outlet from the heat exchanger, m/s.
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Let's determine the dissipation of kinetic energy:
Let's determine the dissipation of kinetic energy: 

kW12,13,105868,9
2
88,44

2
01,6605,0

22
тр

12 
















 . 

Task 4.5. In a cooled compressor, 𝑁𝑁2 is compressed in the state of an ideal gas with a 
constant heat capacity. Compressor initial gas parameters 
 𝑇𝑇1 = 293 К, 𝑃𝑃1 = 1 ∙ 105 Pa, gas mass flow rate 𝑚̇𝑚𝑁𝑁2 = 1 kg s⁄ . The compressor gas pressure  is 
𝑃𝑃2 = 5 ∙ 105 Pa. The compressor is cooled by circulating water entering through the compressor 
jacket, cooling water consumption 𝑚̇𝑚𝐻𝐻2𝑂𝑂 = 3.58 kg s⁄ , 𝐶𝐶𝑃𝑃

𝐻𝐻2𝑂𝑂 = 4.19 kJ
kg∙К. The compressor 

temperature of the chilled water increases 

by 10 К. The technical work of the compressor is 𝑊𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 = −200 кДж

кг . The compression 
process is non-equilibrium. 

To define:  
 𝑻𝑻𝟐𝟐 − temperature 𝑵𝑵𝟐𝟐 at the outlet from the cooled compressor, К; 
 𝜓̇𝜓12 − dissipation of kinetic energy into friction, kW; 
 𝜂𝜂пол −  polytropic efficiency of the process; 
 To present (PV), (TS) the charts. 
 𝜼𝜼𝒆𝒆𝒆𝒆 − exergy efficiency of the process; 

 

                                   

 

Fig. 22. Functional diagram of gas compression in the compressor stage. 
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the compressor T2, К. 
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 − dissipation of kinetic energy into friction,kW;
3) ηпол − polytropic efficiency of the process;
4) To present (PV), (TS) the charts.
5) ηex − exergy efficiency of the process;
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1.) Let's determine the final temperature of nitrogen N2 at the outlet of the cooling stage of 

the compressor T2, К. 

Figure 22. Functional diagram of gas compression in the compressor stage

Solution:
1) Let's determine the final temperature of nitrogen N2 at the outlet of the cool-

ing stage of the compressor T2, К.
Let us compose the total energy balance equation (2.2) for the zone of the 

cooled stage with respect to nitrogen. When analyzing the compression process, 
we do not take into account changes in the kinetic and potential energy of the gas.
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Let us compose the total energy balance equation (2.2) for the zone of the cooled stage 

with respect to nitrogen. When analyzing the compression process, we do not take into account 

changes in the kinetic and potential energy of the gas. 

𝑚̇𝑚𝑁𝑁2(ℎ1 − ℎ2) − 𝑊̇𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑄̇𝑄12 = 0, 

where: 𝑊̇𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 = −200 kW, the available work flow supplied to the gas in the nominal 

operating mode. 

𝑄̇𝑄12 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 · 𝐶𝐶𝐶𝐶𝐻𝐻2𝑂𝑂 · ∆𝑇𝑇𝐻𝐻2𝑂𝑂 = −150 kW – the heat flow removed from the gas in the cooling 

system. 

We express the value of the final temperature of nitrogen at the outlet of the compressor 

stage: 

𝑇𝑇2 = 𝑇𝑇1 − 𝑄𝑄12 + 𝑊̇𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡

𝑚̇𝑚𝑁𝑁2 · 𝐶𝐶𝐶𝐶𝑁𝑁2
 

𝑇𝑇2 = 293 − 150 + (−200)
1 · 1,038 = 341,17 К 

2.) Let's determine the dissipation of kinetic energy on friction 
тр

12Ψ , kW. 

Calculation of dissipation of kinetic energy on friction Wk,тр
12 . 

We estimate dissipation using the balance equation for kinetic and potential energy for a 

nonequilibrium process (2.4). 
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n   – average value of the polytropic index for the initial and final parameters 

characterizing the state of the gas at the inlet and outlet of the compressor. 

 The results of calculations of viscous dissipation Wk,тр
12  are presented in Table 4.1. 

Table 4.1 

Analysis of the polytropic equilibrium process of nitrogen compression 

,1  

kg/m3 K
,2T
 

,2n  

kg/m3 

n  

kW

,
пол12W  

кВт
,

вн12W  
kW

,тр
12

 

1,15 341,17 4,94 1,161 –151,12 –200 48,88 

Let us represent the equilibrium polytropic process of nitrogen compression (1–2 n ) in coordinates 

(PV), (TS) (Fig. 23). 

 

 Fig. 23. Polytropic equilibrium process of nitrogen compression with heat removal in the 

coordinates PV(a), TS(b). 
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3.) Exergy analysis of the nitrogen compression process with heat removal. 
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Figure 23. Polytropic equilibrium process of nitrogen compression 
with heat removal in the coordinates PV(a), TS(b).
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3.) Exergy analysis of the nitrogen compression process with heat removal.
The exergy analysis of the process of nitrogen compression with heat removal 

is carried out on the basis of the exergy balance equation (3.7). Heat flow exergy 
is calculated based on the equation:
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The exergy analysis of the process of nitrogen compression with heat removal is carried out 

on the basis of the exergy balance equation (3.7). Heat flow exergy is calculated based on the 

equation: 
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where Q  – heat flow removed from the gas, kW, 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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where Q  – heat flow removed from the gas, kW, 

 То.с.= 298,15 K – ambient temperature, under standard conditions, 

 прT  – average thermodynamic temperature of the process, K, 

The exergy balance equation (3.7), taking into account the ratio, takes the following form: 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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efficiency of the compressor stage,
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on the basis of the exergy balance equation (3.7). Heat flow exergy is calculated based on the 
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where Q  – heat flow removed from the gas, kW, 
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The exergy balance equation (3.7), taking into account the ratio, takes the following form: 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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Calculation of internal losses of exergy 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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where Q  – heat flow removed from the gas, kW, 

 То.с.= 298,15 K – ambient temperature, under standard conditions, 

 прT  – average thermodynamic temperature of the process, K, 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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where Q  – heat flow removed from the gas, kW, 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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12  – the dissipation of kinetic energy due to friction, kW, 

K15,298o.c. T  – ambient temperature under standard conditions, 

 – the dissipation of kinetic energy due to friction, kW,
То.с.= 298,15 K – ambient temperature under standard conditions,

The exergy analysis of the process of nitrogen compression with heat removal is carried out 

on the basis of the exergy balance equation (3.7). Heat flow exergy is calculated based on the 
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where Q  – heat flow removed from the gas, kW, 

 То.с.= 298,15 K – ambient temperature, under standard conditions, 

 прT  – average thermodynamic temperature of the process, K, 

The exergy balance equation (3.7), taking into account the ratio, takes the following form: 
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
   – technical power of the compressor, kW, where T - the internal efficiency of 

the compressor stage, 

12Din   – internal exergy losses due to irreversibility of the process, kW. 

Calculation of internal losses of exergy 12Din  , due to the irreversibility of the process itself is 

carried out on the basis of the following relation (3.16): 
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where тр
12  – the dissipation of kinetic energy due to friction, kW, 

K15,298o.c. T  – ambient temperature under standard conditions, 

 – average thermodynamic temperature of the process, K.
The results of calculations of the exergy flux of nitrogen due to convection are 

presented in Table 4.2. 
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Calculation of nitrogen specific exergy loss due to convection
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The calculation of the average thermodynamic temperature of the process прT  is carried out on the 

basis of the exergy balance equation (3.15). 


















вн1221

тр
1212

..пр )( WeemQ
QTT

12
co 


 

K4,310
20013,147150

88,4815015,298 








 . 

The calculation of exergy losses due to the irreversibility of the process 12Din   is carried out 

according to the calculated ratio (3.16): 

кВт95,46
4,310

15,29888,48
пр

o.c.тр
1212 

T
TDin  . 

The value WDin k95,4612   is the final loss of exergy, which can only be compensated by external 

energy carriers. 

The difference between the values of dissipation of kinetic energy and internal losses of exergy, 

due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 

kJ/kg

прT  – average thermodynamic temperature of the process, K. 

The results of calculations of the exergy flux of nitrogen due to convection are presented in Table 

4.2.  

Table 4.2 

Calculation of nitrogen specific exergy loss due to convection 

K
,1T
 

K
,2T
 ,

2

1


T

T
ридdTC  

kJ/kg 

,
2

1


T

T

рид dT
T

C
 

kJ/(kg∙K) 

𝑊𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑥𝑥1 − 𝑒𝑒𝑥𝑥2 

kJ/kg 
 

kJ/kg 

29
3 

34
1,

17
 

50
 

0,
15

8 

–2
00

 

14
7,

13
 

The calculation of the average thermodynamic temperature of the process прT  is carried out on the 

basis of the exergy balance equation (3.15). 


















вн1221

тр
1212

..пр )( WeemQ
QTT

12
co 


 

K4,310
20013,147150

88,4815015,298 








 . 

The calculation of exergy losses due to the irreversibility of the process 12Din   is carried out 

according to the calculated ratio (3.16): 

кВт95,46
4,310

15,29888,48
пр

o.c.тр
1212 

T
TDin  . 

The value WDin k95,4612   is the final loss of exergy, which can only be compensated by external 

energy carriers. 

The difference between the values of dissipation of kinetic energy and internal losses of exergy, 

due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 

kJ/(kg∙K)

прT  – average thermodynamic temperature of the process, K. 

The results of calculations of the exergy flux of nitrogen due to convection are presented in Table 

4.2.  

Table 4.2 

Calculation of nitrogen specific exergy loss due to convection 

K
,1T
 

K
,2T
 ,

2

1


T

T
ридdTC  

kJ/kg 

,
2

1


T

T

рид dT
T

C
 

kJ/(kg∙K) 

𝑊𝑊12
𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑥𝑥1 − 𝑒𝑒𝑥𝑥2 

kJ/kg 
 

kJ/kg 

29
3 

34
1,

17
 

50
 

0,
15

8 

–2
00

 

14
7,

13
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basis of the exergy balance equation (3.15). 


















вн1221

тр
1212

..пр )( WeemQ
QTT

12
co 


 

K4,310
20013,147150

88,4815015,298 








 . 

The calculation of exergy losses due to the irreversibility of the process 12Din   is carried out 

according to the calculated ratio (3.16): 

кВт95,46
4,310

15,29888,48
пр

o.c.тр
1212 

T
TDin  . 

The value WDin k95,4612   is the final loss of exergy, which can only be compensated by external 

energy carriers. 

The difference between the values of dissipation of kinetic energy and internal losses of exergy, 

due to the irreversibility of the process, is that part of the exergy that can still be usefully used in 

the future. 

kJ/kg
kJ/kg

29
3

34
1,

17

50 0,
15

8

–2
00

14
7,

13

 
The calculation of the average thermodynamic temperature of the process 

The exergy analysis of the process of nitrogen compression with heat removal is carried out 

on the basis of the exergy balance equation (3.7). Heat flow exergy is calculated based on the 

equation: 
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where Q  – heat flow removed from the gas, kW, 

 То.с.= 298,15 K – ambient temperature, under standard conditions, 

 прT  – average thermodynamic temperature of the process, K, 

The exergy balance equation (3.7), taking into account the ratio, takes the following form: 
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
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4.2. Tasks for solitary work

Task 4.6. Reciprocating refrigerated compressor 1 sucks in nitrogen at a tem-
perature Т1 = 306 K and pressure Р1 = 1 bar and pumps compressed gas into 
cylinders 3 with a volume of 50 l (Fig. 23). The gas pressure at the outlet of the 
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compressor 1 is maintained constant and equal to Р2 = 5 bar due to the installation 
of a control valve 2 on the discharge lines. The compression process is non-equi-
librium, it is known that the ratio of the removed heat and internal work is φ = 
0,6. Gas parameters at the outlet of the compressor: Р2 = 5 bar. The compres-
sor capacity is equal to 
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1,2 m3/min in terms of compressed gas parameters. To calculate the parameters and functions of 

the state of nitrogen according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. Critical parameters and heat capacity constants of nitrogen are presented in 

Annex (P-3, P-4). The internal isothermal efficiency of the compressor is taken equal to T = 0,7. 
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capacity is 30 m3/h of compressed gas, the degree of pressure increase in one stage is not allowed 
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temperature Тнач = 280 K in heat exchangers. For cooling, water from the circulating water supply 

is used, the heating of the cooling water is OHT
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Task 4.7. The turbocharger is used to compress carbon dioxide to a final pres-
sure of Ркон = 20 bar. The state of the gas during suction is determined by the 
pressure Рнач = 1 bar and temperature Тнач = 280 K. The compression process is 
adiabatic, non-equilibrium. The compressor capacity is 30 m3/h of compressed 
gas, the degree of pressure increase in one stage is not allowed more than ε = 4. 
Between the stages, the compressed gas is cooled isobarically to the initial tem-
perature Тнач = 280 K in heat exchangers. For cooling, water from the circulating 
water supply is used, the heating of the cooling water is 

Task 4.6. Reciprocating refrigerated compressor 1 sucks in nitrogen at a temperature Т1 = 

306 K and pressure Р1 = 1 bar and pumps compressed gas into cylinders 3 with a volume of 50 l 

(Fig. 23). The gas pressure at the outlet of the compressor 1 is maintained constant and equal to Р2 

= 5 bar due to the installation of a control valve 2 on the discharge lines. The compression process 

is non-equilibrium, it is known that the ratio of the removed heat and internal work is  = 0,6. Gas 

parameters at the outlet of the compressor: Р2 = 5 bar. The compressor capacity is equal to 2V = 

1,2 m3/min in terms of compressed gas parameters. To calculate the parameters and functions of 

the state of nitrogen according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. Critical parameters and heat capacity constants of nitrogen are presented in 

Annex (P-3, P-4). The internal isothermal efficiency of the compressor is taken equal to T = 0,7. 

 

Fig. 23. Schematic diagram of the installation: 

1 - piston compressor; 2 - control valve; 

3 - cylinder for compressed gas 

Let's determine: 1) nitrogen temperature at the compressor outlet Т2, K; 

2) compressor internal power 
вн12W , kW; 3) dissipation of kinetic energy on friction, тр

12 , kW; 4) 

compressor operation time for filling thirty cylinders , s; 5) the rate of exergy loss due to the 

irreversibility of the process, 12Din  , kW; 6) exergy efficiency of the compressor unit, provided 

that the removed heat flow is usefully used, ex . 

Answer: 1) Т2 = 386,67 K; 2) 
вн12W = –18,16 kW; 3) тр

12 = 3,83 kW; 4)  = 75 с; 5) 12Din  = 

3,315 kW; 6) ex = 0,82. 

 Task 4.7. The turbocharger is used to compress carbon dioxide to a final pressure of Ркон 

= 20 bar. The state of the gas during suction is determined by the pressure Рнач = 1 bar and 

temperature Тнач = 280 K. The compression process is adiabatic, non-equilibrium. The compressor 

capacity is 30 m3/h of compressed gas, the degree of pressure increase in one stage is not allowed 

more than  = 4. Between the stages, the compressed gas is cooled isobarically to the initial 

temperature Тнач = 280 K in heat exchangers. For cooling, water from the circulating water supply 

is used, the heating of the cooling water is OHT
2

Δ = 7 K. The value of the adiabatic efficiency of 

2 3 1 

T1 

P1 P2 

T2 

 = 7 K. The value 
of the adiabatic efficiency of all stages of the compressor unit is assumed to be the 
same and equal to ηS = 0,83. In calculations, it is permissible to use the model of 
an ideal gas with a constant heat capacity.

Let's determine: 1) the number of stages of the compressor unit, n; 2) inter-
nal power of each stage 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

 3) heat flow removed in intermediate coolers 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

; 4) exergy efficiency of the compressor unit 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

Answer: 1) n = 3; 2) 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

 3) 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

;
4) 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

 = 0,78.
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Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled com-
pressor. Oxygen parameters at the compressor inlet: Т1 = 300 K, Р1 = 1 bar, com-
pressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the re-
frigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The 
gas flow rate is ṁ = 1 kg/s, the compression process is nonequilibrium. Calculation 
of the parameters and functions of the state of oxygen is carried out according to 
the virial equation of a nonideal Bogolyubov-Mayer gas in a truncated form [1]. 
The critical parameters and heat capacity constants of oxygen are given in [1, 4] 
and presented in Annex (P-1, P-2). The adiabatic internal efficiency of the com-
pressor is ηS = 0,8.

To determine: 1) oxygen temperature at the outlet of the compressor Т2, K;
2) compressor internal power 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

; 3) polytropic compressor efficiency ηпол; 
4) heat flow removed from oxygen in the heat exchanger 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 

 Let's determine: 1) the number of stages of the compressor unit, n; 2) internal power of 

each stage внW , kW; 3) heat flow removed in intermediate coolers OHQ
2

 , kW; 4) exergy efficiency 

of the compressor unit 
к.у.ex . 

 Answer: 1) n = 3; 2) 44,17III
вн

II
вн

I
вн  WWW   kW; 3) OHQ

2
 = –17,44 kW; 4) 

к.у.ex = 0,78. 

 Task 4.8. Oxygen is compressed in the adiabatic stage of an uncooled compressor. Oxygen 

parameters at the compressor inlet: Т1 = 300 K, 

Р1 = 1 bar, compressor outlet pressure: Р2 = 4 bar. After compression, the gas is sent to the 

refrigerator, where it is cooled isobarically to the initial temperature Т1 = 300 K. The gas flow rate 

is m = 1 kg/s, the compression process is nonequilibrium. Calculation of the parameters and 

functions of the state of oxygen is carried out according to the virial equation of a nonideal 

Bogolyubov-Mayer gas in a truncated form [1]. The critical parameters and heat capacity constants 

of oxygen are given in [1, 4] and presented in Annex (P-1, P-2). The adiabatic internal efficiency 

of the compressor is S = 0,8. 

 To determine: 1) oxygen temperature at the outlet of the compressor 

Т2, K; 2) compressor internal power
вн12W , kW; 3) polytropic compressor efficiency пол; 4) heat 

flow removed from oxygen in the heat exchanger OHQ
2

 , kW; 5) exergy efficiency of the compressor 

unit, provided that the removed heat flow OHQ
2

  is not usefully used, 
к.у.ex . 

 Answer: 1) Т2 = 481,55 K; 2) 
вн12W = –163,18, kW; 3) пол = 0,847;4) OHQ

2
 = –162,27 kW; 

5) 
к.у.ex = 0,87. 

Task 4.9.  Oxygen is compressed in an adiabatic compressor, gas parameters at the 

compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: Р2 = 4 bar. The 

compression process is non-equilibrium, the gas flow rate is m = 1 kg/s. It is known that the 

internal work of the compressor is 28 kJ/kg greater in absolute value than in a reversible adiabatic 

process proceeding up to the same final pressure. The functions and parameters of the state of 

oxygen are calculated according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a 

truncated form [1]. The critical parameters and heat capacity constants of oxygen are given in [1, 

4] and presented in Annex (P-1, P-2). 

; 5) exergy efficiency 
of the compressor unit, provided that the removed heat flow 

all stages of the compressor unit is assumed to be the same and equal to S = 0,83. In calculations, 

it is permissible to use the model of an ideal gas with a constant heat capacity. 
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Task 4.9. Oxygen is compressed in an adiabatic compressor, gas parameters at 

the compressor inlet: Т1 = 300 K, Р1 = 1 bar, gas pressure at the compressor outlet: 
Р2 = 4 bar. The compression process is non-equilibrium, the gas flow rate is ṁ = 
1 kg/s. It is known that the internal work of the compressor is 28 kJ/kg greater in 
absolute value than in a reversible adiabatic process proceeding up to the same 
final pressure. The functions and parameters of the state of oxygen are calculated 
according to the Bogolyubov-Mayer virial equation of a non-ideal gas in a trun-
cated form [1]. The critical parameters and heat capacity constants of oxygen are 
given in [1, 4] and presented in Annex (P-1, P-2).
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compression Т2, K; 2) compressor internal power 

To determine: 1) the final temperature of oxygen in the irreversible process of compression 

Т2, K; 2) compressor internal power 
вн12W , kW; 3) loss of exergy due to the irreversibility of the 

process 12Din  , kW; 4) dissipation of kinetic energy on friction тр
12 , kW; 5) exergy efficiency of 

the compressor ex .  

 Answer: 1) Т2 = 476,15 K; 2) 
вн12W = –161,03 kW; 3) 12Din  = 16,0063 kW; 4) тр

12 = 23,73 

кВт; 5) ex = 0,901. 

Task 4.10. To determine the savings in internal power that can be obtained by switching 

from single-stage to two-stage compression with intermediate isobaric cooling in a heat exchanger 

to the initial temperature of a mixture of oxygen and nitrogen in equal mole fractions. The 

parameters of the mixture at the inlet to the compressor: Т1 = 306 K, Р1 = 1 bar, outlet pressure: 

Р2 = 7 bar. The compression process is non-equilibrium, adiabatic, mixture flow rate is m  = 1 

kg/s. The degree of pressure increase in both stages is considered the same, the internal adiabatic 

efficiency of each stage is taken equal to S = 0,8. A mixture of gases can be considered ideal 

with a constant heat capacity. 

Answer: 10,6∙10–2. 

Task 4.11. To determine the energy dissipation during the movement of nitrogen into the 

reactor along the horizontal section of the gas pipeline. Inlet diameter 

d1 =  = 0,04 m, outlet diameter d2 = 0,03 m. Nitrogen parameters at the gas pipeline inlet: 

K3001 T , 5,11 P  bar; parameters at the outlet of the gas pipeline; K3022 T , 3,12 P  bar. Gas 

consumption 1,0m  kg/s. The process is unbalanced. Nitrogen can be considered an ideal gas 

with a constant heat capacity due to a slight deviation of the parameters from the standard ones. 

 Answer: 36,012 тр  kW. 

Task 4.12. The compressor sucks in air at a pressure of 1 atm and a temperature of 20°C and 

compresses it isothermally up to 8 atm. (compressor internal efficiency = 0,85). To determine the 

capacity of the compressor m3/h, if the theoretical engine power to drive the compressor is 40 kW. 

Also determine the hourly consumption of cooling water if its temperature rises by 10°C when the 

compressor cylinder is cooled. The heat capacity of water is taken equal to 4.19 kJ/kg K. 
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Т2, K; 2) compressor internal power 
вн12W , kW; 3) loss of exergy due to the irreversibility of the 

process 12Din  , kW; 4) dissipation of kinetic energy on friction тр
12 , kW; 5) exergy efficiency of 

the compressor ex .  

 Answer: 1) Т2 = 476,15 K; 2) 
вн12W = –161,03 kW; 3) 12Din  = 16,0063 kW; 4) тр

12 = 23,73 

кВт; 5) ex = 0,901. 

Task 4.10. To determine the savings in internal power that can be obtained by switching 

from single-stage to two-stage compression with intermediate isobaric cooling in a heat exchanger 

to the initial temperature of a mixture of oxygen and nitrogen in equal mole fractions. The 

parameters of the mixture at the inlet to the compressor: Т1 = 306 K, Р1 = 1 bar, outlet pressure: 

Р2 = 7 bar. The compression process is non-equilibrium, adiabatic, mixture flow rate is m  = 1 

kg/s. The degree of pressure increase in both stages is considered the same, the internal adiabatic 

efficiency of each stage is taken equal to S = 0,8. A mixture of gases can be considered ideal 

with a constant heat capacity. 

Answer: 10,6∙10–2. 

Task 4.11. To determine the energy dissipation during the movement of nitrogen into the 

reactor along the horizontal section of the gas pipeline. Inlet diameter 

d1 =  = 0,04 m, outlet diameter d2 = 0,03 m. Nitrogen parameters at the gas pipeline inlet: 

K3001 T , 5,11 P  bar; parameters at the outlet of the gas pipeline; K3022 T , 3,12 P  bar. Gas 

consumption 1,0m  kg/s. The process is unbalanced. Nitrogen can be considered an ideal gas 

with a constant heat capacity due to a slight deviation of the parameters from the standard ones. 

 Answer: 36,012 тр  kW. 

Task 4.12. The compressor sucks in air at a pressure of 1 atm and a temperature of 20°C and 

compresses it isothermally up to 8 atm. (compressor internal efficiency = 0,85). To determine the 

capacity of the compressor m3/h, if the theoretical engine power to drive the compressor is 40 kW. 

Also determine the hourly consumption of cooling water if its temperature rises by 10°C when the 

compressor cylinder is cooled. The heat capacity of water is taken equal to 4.19 kJ/kg K. 

 

 

 

 

 = 23,73 кВт; 5) ηex = 0,901.
Task 4.10. To determine the savings in internal power that can be obtained by 

switching from single-stage to two-stage compression with intermediate isobaric 
cooling in a heat exchanger to the initial temperature of a mixture of oxygen and 
nitrogen in equal mole fractions. The parameters of the mixture at the inlet to the 
compressor: Т1 = 306 K, Р1 = 1 bar, outlet pressure: Р2 = 7 bar. The compression 
process is non-equilibrium, adiabatic, mixture flow rate is ṁ = 1 kg/s. The degree 
of pressure increase in both stages is considered the same, the internal adiabatic 
efficiency of each stage is taken equal to ηS = 0,8. A mixture of gases can be con-
sidered ideal with a constant heat capacity.
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Answer: 10,6∙10–2.
Task 4.11. To determine the energy dissipation during the movement of nitro-

gen into the reactor along the horizontal section of the gas pipeline. Inlet diameter
d1 = 0,04 m, outlet diameter d2 = 0,03 m. Nitrogen parameters at the gas pipeline 
inlet: T1 = 300 K, P1 = 1,5 bar; parameters at the outlet of the gas pipeline; T2 = 
302 K, P2 = 1,3 bar. Gas consumption ṁ = 0,1 kg/s. The process is unbalanced. 
Nitrogen can be considered an ideal gas with a constant heat capacity due to a 
slight deviation of the parameters from the standard ones.

Answer: 

To determine: 1) the final temperature of oxygen in the irreversible process of compression 

Т2, K; 2) compressor internal power 
вн12W , kW; 3) loss of exergy due to the irreversibility of the 

process 12Din  , kW; 4) dissipation of kinetic energy on friction тр
12 , kW; 5) exergy efficiency of 

the compressor ex .  

 Answer: 1) Т2 = 476,15 K; 2) 
вн12W = –161,03 kW; 3) 12Din  = 16,0063 kW; 4) тр

12 = 23,73 

кВт; 5) ex = 0,901. 

Task 4.10. To determine the savings in internal power that can be obtained by switching 

from single-stage to two-stage compression with intermediate isobaric cooling in a heat exchanger 

to the initial temperature of a mixture of oxygen and nitrogen in equal mole fractions. The 

parameters of the mixture at the inlet to the compressor: Т1 = 306 K, Р1 = 1 bar, outlet pressure: 

Р2 = 7 bar. The compression process is non-equilibrium, adiabatic, mixture flow rate is m  = 1 

kg/s. The degree of pressure increase in both stages is considered the same, the internal adiabatic 

efficiency of each stage is taken equal to S = 0,8. A mixture of gases can be considered ideal 

with a constant heat capacity. 

Answer: 10,6∙10–2. 

Task 4.11. To determine the energy dissipation during the movement of nitrogen into the 

reactor along the horizontal section of the gas pipeline. Inlet diameter 

d1 =  = 0,04 m, outlet diameter d2 = 0,03 m. Nitrogen parameters at the gas pipeline inlet: 

K3001 T , 5,11 P  bar; parameters at the outlet of the gas pipeline; K3022 T , 3,12 P  bar. Gas 

consumption 1,0m  kg/s. The process is unbalanced. Nitrogen can be considered an ideal gas 

with a constant heat capacity due to a slight deviation of the parameters from the standard ones. 

 Answer: 36,012 тр  kW. 

Task 4.12. The compressor sucks in air at a pressure of 1 atm and a temperature of 20°C and 

compresses it isothermally up to 8 atm. (compressor internal efficiency = 0,85). To determine the 

capacity of the compressor m3/h, if the theoretical engine power to drive the compressor is 40 kW. 

Also determine the hourly consumption of cooling water if its temperature rises by 10°C when the 

compressor cylinder is cooled. The heat capacity of water is taken equal to 4.19 kJ/kg K. 

 

 

 

 

Task 4.12. The compressor sucks in air at a pressure of 1 atm and a temper-
ature of 20°C and compresses it isothermally up to 8 atm. (compressor internal 
efficiency = 0,85). To determine the capacity of the compressor m3/h, if the theor-
etical engine power to drive the compressor is 40 kW. Also determine the hourly 
consumption of cooling water if its temperature rises by 10°C when the compres-
sor cylinder is cooled. The heat capacity of water is taken equal to 4.19 kJ/kg K.

Conclusion
The monograph is a consistent continuation of previous educational publica-

tions and manuals, scientific articles written by the author and devoted to the study 
of the processes of obtaining, converting and using energy in gases, vapors, con-
densed media and their mixtures. Pedagogical experience in preparing for the pub-
lication of this work is aimed at attracting the attention and professional interest of 
young scientists to solving urgent problems in modern energy and the search for 
non-traditional energy carriers and alternative energy sources.
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Annex P-3
Critical parameters of gases

Name Formula M, 

Annex P-3 

Critical parameters of gases 

Name Formula M, kg
kmol 𝑇𝑇c, K 𝑃𝑃c, atm ω

Pitzer acentric factor 
Ammonia 

NH3 17,031 405,6 111,3 0,25 

Nitrogen N2 28,013 126,2 33,5 0,04 

Nitrogen dioxide 
NO2 46,006 431,4 100 0,86 

Sulphur dioxide 
SO2 64,063 430,8 77,8 0,251 

Oxygen O2 31,999 154,6 49,8 0,021 

Freon-22 
CF2ClH 86,469 369,2 49,1 0,215 

Freon-12 
CF2Cl2 120,914 385 40,7 0,176 

Freon-11 
ССl3F 137,368 471,2 43,5 0,188 

Carbon dioxide 
CO2 44,01 304,2 72,8 0,225 

Nitrogen monoxide 
NO 30,006 180 64 0,607 

Chlorine CL2 70,906 417 76 0,073 

Nitrous oxide N2O 44,013 309,6 71,5 0,16 

Hydrogen sulfide H2S 34,8 373,2 88,2 0,1 

Sulfur trioxide SO3 80,058 491 81 0,41 

Fluorine F2 37,997 143,3 51,5 0,048 

 

 

 

 

 

Tc, K Pc, atm ω
Pitzer acentric factor

Ammonia NH3 17,031 405,6 111,3 0,25

Nitrogen N2 28,013 126,2 33,5 0,04

Nitrogen 
dioxide

NO2 46,006 431,4 100 0,86

Sulphur dioxide SO2 64,063 430,8 77,8 0,251

Oxygen O2 31,999 154,6 49,8 0,021

Freon-22 CF2ClH 86,469 369,2 49,1 0,215

Freon-12 CF2Cl2 120,914 385 40,7 0,176

Freon-11 CCl3F 137,368 471,2 43,5 0,188

Carbon dioxide CO2 44,01 304,2 72,8 0,225

Nitrogen 
monoxide

NO 30,006 180 64 0,607

Chlorine CL2 70,906 417 76 0,073

Nitrous oxide N2O 44,013 309,6 71,5 0,16

Hydrogen 
sulfide

H2S 34,8 373,2 88,2 0,1

Sulfur trioxide SO3 80,058 491 81 0,41

Fluorine F2 37,997 143,3 51,5 0,048

Annex P-4
Critical parameters of hydrocarbons

Name Formula M, 

Annex P-3 

Critical parameters of gases 

Name Formula M, kg
kmol 𝑇𝑇c, K 𝑃𝑃c, atm ω

Pitzer acentric factor 
Ammonia 

NH3 17,031 405,6 111,3 0,25 

Nitrogen N2 28,013 126,2 33,5 0,04 

Nitrogen dioxide 
NO2 46,006 431,4 100 0,86 

Sulphur dioxide 
SO2 64,063 430,8 77,8 0,251 

Oxygen O2 31,999 154,6 49,8 0,021 

Freon-22 
CF2ClH 86,469 369,2 49,1 0,215 

Freon-12 
CF2Cl2 120,914 385 40,7 0,176 

Freon-11 
ССl3F 137,368 471,2 43,5 0,188 

Carbon dioxide 
CO2 44,01 304,2 72,8 0,225 

Nitrogen monoxide 
NO 30,006 180 64 0,607 

Chlorine CL2 70,906 417 76 0,073 

Nitrous oxide N2O 44,013 309,6 71,5 0,16 

Hydrogen sulfide H2S 34,8 373,2 88,2 0,1 

Sulfur trioxide SO3 80,058 491 81 0,41 

Fluorine F2 37,997 143,3 51,5 0,048 

 

 

 

 

 

Tc, K Pc, atm ω
Pitzer acentric factor

Methane CH4 16,043 190,6 45,4 0,008

Acetylene C2H2 26,038 308,3 60,6 0,184

Ethylene C2H4 28,054 282,4 49,7 0,065

Ethane C2H6 30,07 305,4 43,2 0,098

Propylene C3H6 42,081 365 45,6 0,148

Propane C3H8 44,097 369,8 41,9 0,152
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1,3-Butadiene C4H6 54,092 425 42,7 0,195

1-Butene C4H8 56,108 419,6 39,7 0,187

n-butane C4H10 58,124 425,2 37,5 0,193

Isobutane C4H10 58,124 408,1 36 0,176

2-Butin C4H6 54,092 488,6 50,2 0,124

1-Butin C4H6 54,092 463,7 46,5 0,27

Cyclopentene C5H8 68,119 506 – –

Cyclobutane C4H8 56,108 459,9 49,2 0,209

Isobutene C4H8 56,108 417,9 39,5 0,190

1-Chlorobutane C4H9CL 92,569 542 36,4 0,218

Annex P-5
Thermophysical characteristics of hydrocarbons

N
am

e 

Annex P-5 

Thermophysical characteristics of hydrocarbons 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 
Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB),  

kkal
kmol.  

N
am

e 
 ∆ℎV 

(𝑇𝑇HB), 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵
𝑇𝑇+𝐶𝐶,   mm Hg 

𝑑𝑑0 𝑑𝑑1
· 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Methane 
1955 19,268 5,217 1,198 –11,326 15,2243 897,84 –7,16 
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5238 –2,996 35,347 –19,919 44,665 15,7564 2132,42 –33,15 

n-butane 5252 9,495 33,155 –11,091 –28,241 15,6782 2154,90 –34,42 

Annex P-5 

Thermophysical characteristics of hydrocarbons 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 
Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB),  

kkal
kmol.  

N
am

e 
 ∆ℎV 

(𝑇𝑇HB), 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵
𝑇𝑇+𝐶𝐶,   mm Hg 

𝑑𝑑0 𝑑𝑑1
· 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Methane 
1955 19,268 5,217 1,198 –11,326 15,2243 897,84 –7,16 

Acetylene 
4050 26,841 7,584 –5,011 14,133 16,3481 1637,14 –19,77 

Ethylene 
3237 3.809 15,671 –8,355 17,565 15,5368 1347,01 –18,15 

Ethane 
3515 5,414 17,824 –6,943 8,719 15,6637 1511,42 –17,16 

Propylene 
4400 3,712 23,472 –11,611 22,065 15,7027 1807,53 –26,15 

Propane 
4487 –4,228 30,649 –15,876 32,171 15,7260 1872,46 –25,16 

1,3-
Butadiene 5370 –1,689 34,211 –23,418 63,395 15,7727 2142,66 –34,3 

1-Butene 
5238 –2,996 35,347 –19,919 44,665 15,7564 2132,42 –33,15 

n-butane 5252 9,495 33,155 –11,091 –28,241 15,6782 2154,90 –34,42 

Annex P-5 

Thermophysical characteristics of hydrocarbons 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 
Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB),  

kkal
kmol.  

N
am

e 
 ∆ℎV 

(𝑇𝑇HB), 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵
𝑇𝑇+𝐶𝐶,   mm Hg 

𝑑𝑑0 𝑑𝑑1
· 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Methane 
1955 19,268 5,217 1,198 –11,326 15,2243 897,84 –7,16 

Acetylene 
4050 26,841 7,584 –5,011 14,133 16,3481 1637,14 –19,77 

Ethylene 
3237 3.809 15,671 –8,355 17,565 15,5368 1347,01 –18,15 

Ethane 
3515 5,414 17,824 –6,943 8,719 15,6637 1511,42 –17,16 

Propylene 
4400 3,712 23,472 –11,611 22,065 15,7027 1807,53 –26,15 

Propane 
4487 –4,228 30,649 –15,876 32,171 15,7260 1872,46 –25,16 

1,3-
Butadiene 5370 –1,689 34,211 –23,418 63,395 15,7727 2142,66 –34,3 

1-Butene 
5238 –2,996 35,347 –19,919 44,665 15,7564 2132,42 –33,15 

n-butane 5252 9,495 33,155 –11,091 –28,241 15,6782 2154,90 –34,42 
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1,3 - 
Butadiene
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n-butane 5252 9,495 33,155 –11,091 –28,241 15,6782 2154,90 –34,42
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5580 27,3366 2,385 1,708 –11,858 16,9481 2132,5 –32,98 

Nitrogen 
1333 3,117 –1,358 2,682 –11,690 14,9542 588,72 –6,6 

Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20,5324 4141,29 3,65 

Sulphur 
dioxide 5955 23,870 6,704 –4,965 13,291 16,768 2302,35 –35,97 

Oxygen 
1630 28,127 –0,0036 1,747 –10,659 15,4075 734,55 –6,45 

Freon-22 
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Freon-11 
5920 41,016 16,312 –14,091 41,494 15,8516 2401,61 –36,3 

Carbon 
monoxide 1444 30,893 –1,286 2,791 –12,725 14,3686 530,22 –13,15 

Carbon 
dioxide 4100 19,81 7,349 –5,606 17,166 22,5898 3103,39 –0,16 

Nitrogen 
monoxide 3300 29,368 –0,094 0,9754 –4,19 20,1314 1572,52 –4,88 
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Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20,5324 4141,29 3,65 

Sulphur 
dioxide 5955 23,870 6,704 –4,965 13,291 16,768 2302,35 –35,97 

Oxygen 
1630 28,127 –0,0036 1,747 –10,659 15,4075 734,55 –6,45 
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4826 17,313 16,194 –9,612 30,608 15,5602 1704,8 –41,3 

Freon-11 
5920 41,016 16,312 –14,091 41,494 15,8516 2401,61 –36,3 
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dioxide 4100 19,81 7,349 –5,606 17,166 22,5898 3103,39 –0,16 

Nitrogen 
monoxide 3300 29,368 –0,094 0,9754 –4,19 20,1314 1572,52 –4,88 

d0 d1 · 102 d2 · 105 d3 · 109 A B C

Ammonia 5580 27, 
3366 2,385 1,708 –11, 

858
16, 

9481 2132,5 –32,98

Nitrogen 1333 3,117 –1,358 2,682 –11, 
690

14, 
9542 588,72 –6,6

Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20, 

5324 4141, 29 3,65

Sulphur 
dioxide 5955 23, 870 6,704 –4,965 13,291 16, 768 2302, 35 –35,97

Oxygen 1630 28,127 –0, 
0036 1,747 –10,659 15, 

4075 734,55 –6,45

Freon-22 4826 17, 313 16,194 –9,612 30, 608 15, 
5602 1704,8 –41,3

Freon-11 5920 41, 016 16, 312 –14, 
091 41, 494 15, 

8516 2401,61 –36,3

Carbon 
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Heat capacity constants of gases:

Annex P-6 
Thermophysical characteristics of gases 

 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 

Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB), 
kkal
kmol. 

 
 

N
am

e 

∆ℎV 
(𝑇𝑇HB)

, 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K 
ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵

𝑇𝑇+𝐶𝐶,  
  mm Hg  

𝑑𝑑0 𝑑𝑑1 · 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Ammonia 
5580 27,3366 2,385 1,708 –11,858 16,9481 2132,5 –32,98 

Nitrogen 
1333 3,117 –1,358 2,682 –11,690 14,9542 588,72 –6,6 

Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20,5324 4141,29 3,65 

Sulphur 
dioxide 5955 23,870 6,704 –4,965 13,291 16,768 2302,35 –35,97 

Oxygen 
1630 28,127 –0,0036 1,747 –10,659 15,4075 734,55 –6,45 

Freon-22 
4826 17,313 16,194 –9,612 30,608 15,5602 1704,8 –41,3 

Freon-11 
5920 41,016 16,312 –14,091 41,494 15,8516 2401,61 –36,3 

Carbon 
monoxide 1444 30,893 –1,286 2,791 –12,725 14,3686 530,22 –13,15 

Carbon 
dioxide 4100 19,81 7,349 –5,606 17,166 22,5898 3103,39 –0,16 

Nitrogen 
monoxide 3300 29,368 –0,094 0,9754 –4,19 20,1314 1572,52 –4,88 

Antoine’s equation constants: A, B, C;

Heat of vaporization at normal barometric temperature 

Annex P-6 
Thermophysical characteristics of gases 

 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 

Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB), 
kkal
kmol. 

 
 

N
am

e 
∆ℎV 
(𝑇𝑇HB)

, 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K 
ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵

𝑇𝑇+𝐶𝐶,  
  mm Hg  

𝑑𝑑0 𝑑𝑑1 · 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Ammonia 
5580 27,3366 2,385 1,708 –11,858 16,9481 2132,5 –32,98 

Nitrogen 
1333 3,117 –1,358 2,682 –11,690 14,9542 588,72 –6,6 

Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20,5324 4141,29 3,65 

Sulphur 
dioxide 5955 23,870 6,704 –4,965 13,291 16,768 2302,35 –35,97 

Oxygen 
1630 28,127 –0,0036 1,747 –10,659 15,4075 734,55 –6,45 

Freon-22 
4826 17,313 16,194 –9,612 30,608 15,5602 1704,8 –41,3 

Freon-11 
5920 41,016 16,312 –14,091 41,494 15,8516 2401,61 –36,3 

Carbon 
monoxide 1444 30,893 –1,286 2,791 –12,725 14,3686 530,22 –13,15 

Carbon 
dioxide 4100 19,81 7,349 –5,606 17,166 22,5898 3103,39 –0,16 

Nitrogen 
monoxide 3300 29,368 –0,094 0,9754 –4,19 20,1314 1572,52 –4,88 

Annex P-6 
Thermophysical characteristics of gases 

 

Heat capacity constants of gases: 
𝐶𝐶𝑃̃𝑃 = 𝑑𝑑0̃ + 𝑑𝑑1̃𝑇𝑇 + 𝑑𝑑2̃𝑇𝑇2 + 𝑑𝑑3̃𝑇𝑇3, kJ

kmol·K; 
Antoine’s equation constants: A, B, C; 

Heat of vaporization at normal barometric temperature 𝑇𝑇𝐻𝐻𝐻𝐻, K: ∆ℎV(𝑇𝑇HB), 
kkal
kmol. 

 
 

N
am

e 

∆ℎV 
(𝑇𝑇HB)

, 
kkal
kmol 

𝐶𝐶𝑃̃𝑃,
kJ

kmol · K 
ln 𝑃𝑃V(𝑇𝑇) = 𝐴𝐴 − 𝐵𝐵

𝑇𝑇+𝐶𝐶,  
  mm Hg  

𝑑𝑑0 𝑑𝑑1 · 102 𝑑𝑑2 · 105 𝑑𝑑3 · 109 A B C 

Ammonia 
5580 27,3366 2,385 1,708 –11,858 16,9481 2132,5 –32,98 

Nitrogen 
1333 3,117 –1,358 2,682 –11,690 14,9542 588,72 –6,6 

Nitrogen 
dioxide 4555 24,252 4,839 –2,082 0,293 20,5324 4141,29 3,65 

Sulphur 
dioxide 5955 23,870 6,704 –4,965 13,291 16,768 2302,35 –35,97 

Oxygen 
1630 28,127 –0,0036 1,747 –10,659 15,4075 734,55 –6,45 

Freon-22 
4826 17,313 16,194 –9,612 30,608 15,5602 1704,8 –41,3 

Freon-11 
5920 41,016 16,312 –14,091 41,494 15,8516 2401,61 –36,3 

Carbon 
monoxide 1444 30,893 –1,286 2,791 –12,725 14,3686 530,22 –13,15 

Carbon 
dioxide 4100 19,81 7,349 –5,606 17,166 22,5898 3103,39 –0,16 

Nitrogen 
monoxide 3300 29,368 –0,094 0,9754 –4,19 20,1314 1572,52 –4,88 



 

Khabibova Natalya Zamilovna

DISSIPATIVE FUNCTION
IN ENGINEERING CALCULATIONS. 
FUNDAMENTAL PRINCIPLES AND

PRACTICAL APPLICATIONS

Monograph

Translators S.E.Abbasova, O.V. Ryndin
Editor O.V. Ryndin

Design by Yu.S. Gracheva 
Layout by Yu.S. Gracheva

Proofreader D.R. Khismatullin

Signed in print 25.04.2022. 60x84/16
Ed. No. 1. Circulation of 500 copies.

AUS PUBLISHERS, 2022.





Khabibova Natalya Zamilovna  – 

Candidate of Technical Sciences, 
Associate Professor. 

Enrolled in the Moscow Institute 
of Chemical Technology (later - 
Mendeleev University of Chemical 
Technology) in 1982, where she 
subsequently continued her teaching 
and research activities. 

 
Alma Mater ensured the formation of Khabibova N.Z. as a teacher 

and a scientist, and also instated her professional and personal maturity. 
In turn, the university received a dedicated employee - the scientific 
interests of Khabibova N.Z. – technical thermodynamics and energy-
saving technologies, have been inextricably linked for 30 years with 
Mendeleev University of Chemical Technology - one of the leading 
classical universities and research centers in Russia.

 
This book presents the results of a study of the digital economy 

as a new paradigm of economic development, a system of economic 
relations implemented through the use of digital information computer 
technologies.

 
By publishing this work, the author expresses his gratitude to 

Mendeleev University of Chemical Technology for the knowledge, 
experience, reliable support and support in the life path.


