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ABSTRACT 

The report is devoted to research on the capacity of information networks and related stochastic 

fluctuations and bursts. In open systems, the exchange of energy and information with surrounding 

bodies, due to their complexity, generates the formation of various structures. This process of 

creating structures is especially relevant when it comes to systems with a fractal structure. Analysis 

of such processes should be carried out in terms of fractional geometry. The dynamics of such 

processes are characterized by such effects as memory, complex spatial mixing processes and self-

organization. The use of fractional dynamics methods opens up new possibilities for solving 

problems of forecasting and decision making in complex systems. 
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1. INTRODUCTION 

It is known that during the operation of complex transport systems (networks) both the capacity 

of the network (channels) and the demand for traffic are subject to stochastic fluctuations and bursts 

(Levy flight) [1-5]. These random fluctuations are the main sources of uncertainty of the transit 

time, and a result, losses information (technological losses). 

It is important to note that the heterogeneity of stochastic processes and the asymmetry of claims 

causes uncertainty, different from the traditional one. In the context of the coordinate of emerging 

problem, for the purpose of traffic assignment, the model of entropy of Tsallis is proposed that 

allows tracking coherent processes.  

It is known that stochastic transport processes represent a generalization of the diffusion process, 

which is expressed in the transition from the usual root dependence to the ratio [1]:  

z/tr 22  ,                                                                           (1) 



characterized by dynamic exponents 2z  (here r  - the coordinate of the wandering particle, t  - 

time). 

When sub diffusion, the presence of traps leads to a divergence of the average waiting time for 

jumps =t , so that the latter acquire a discrete character in space and the transport process slows 

down ( 2z ). 

Its acceleration in the process of super diffusion of levels is due to the fact that the particle at 

discrete instants of time performs jumps of arbitrary length, characterized divergent mean square 

displacement =2x  [1]. 

 

2. Mathematical Model of Fractional Traffic Levy Motion 

  - stable Levy motion, ( )tL H, . The in terms of the Riemann-Liouville operator, we have [2, 3]: 

( ) ( )( )
−

−









+

=
t

/H

H, tdL

H

tL
0

21

2

1

1
 ,                                 (2) 

where ( )tL  is the ordinary symmetric   - stable Levy Motion (oLm), and ( )  denotes the gamma 

function, H  - Hurst parameter. 

From a mathematical model of fractional traffic Levy will be expressed as [2, 3]: 

( ) ( ) ( )tLmmttA
~

H,

/






1
+= ,                                         (3) 

where 0m  is the mean input rate,   is the scale factor, and ( )tL H,  is the fLm process defined by 

(2). 

The model has four parameters  ,,m  and H  with the following interpretations [2, 3]: 

• 0m  is the mean constant input rate 

• ( 21,  measures the “thickness” of the tails of the stable distribution 

• 0  is the scaling parameter that can be seen as the dispersion around the mean of the 

traffic 

• 

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,H   is the Hurst parameter (index of self-similarity) 

Based on the mathematical model of traffic (3) transport models of the types: Branching 

processes as a particle branching and fractional Brownian motion (fBm). 

 



  

Figure 1. Levy motion. 

 

2.1  Branching processes as a particle branching 

In this section deals with general Bienayme-Galton-Watson processes describing branching particle 

systems in the discrete time setting [6, 7]. We denote by ( )AZn  the number of n -th generation 

particles whose types belong to A . The same generation particles are assumed to produce 

offspring to a random algorithm.  

A key characteristic of the multi-type reproduction law is the expectation kernel [4]: 

( ) ( ) = A,Ax,AZE:A,xM x 1  ,                             (4) 

where the operator xE  is indexed by type x  of the ancestral particle. 

Here LF -processes, branching particle systems are characterized by general linear-fractional 

( LF ) distributions. 

It is assumed that the type of the desired genus x , the total number of offspring ( )EZ:Z 11   

follows linear-fractional distribution [6]: 
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where ( ) ,m 0 . 

If ( ) ( )E,xkxP −=10 , where k  - is kernel, the ancestral particle has no offspring, and with 

probability ( )xP01− , it produces a shifted-geometric number of offspring [6]: 
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where parameter m  is independent of x . 

Then on the basis of [7] the model of fractional traffic Bienayme-Galton Watson processes will have 

the form: 

( ) ( ) 1Z
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where ,l 0 - scale factor. 

                         

Figure 2. Branching process.                                                Figure 3. Percolation lattice. 

 

2.2  Fractional Brownian Motion (fBM) 

Fractional Brownian motion is defined by its stochastic representation [8]: 
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where Γ  represents the gamma function ( ) ( )

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1 dxxexpx:    and 10  H  is called 

the Hurst parameter. The integrator B  is a stochastic process, ordinary Brownian motion. The traffic 

model using Brownian motion is defined: ( ) ( ) ( )tBllttA H+= . 

 

Figure 4. Fractional Brownian motion. 



3. Transport problem on a percolation lattice (algebraic structures) 

In report shows the possibility of homomorphism stochastic processes in percolation lattice in the 

context of recognizing the transport properties of these systems. The formal basis for embedding 

systems is the results of a modern general algebra on the embedding of complex algebraic structures 

into relatively simple algebraic structures.  

In this connection, the principle of fractal homomorphism (universal similarity), in the context of 

category theory, fixes on the one hand the fundamentality of Not What is reflected, but How, and on 

the other hand means the mutuality of fractional structures of any scale [7, 9]. 

 

                     

Figure 5. An example of the solution of the transport problem. 

 

3.1  Main provisions 

Percolation represents the basic model for a structurally disordered system. The percolation 

transition is characterized by the geometrical properties of the clusters near cp . The probability p  

that a site belong to the infinite cluster is zero below cp  as [9, 10]: 

( )Bcppp − .                                                    (10) 

When p  approaches cp ,   increases as [8, 9]: 
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with the same exponent   below and above the threshold and   - correlation length.  



Here p  depends on the type of the lattice, the critical exponent and  , and   they are universal 

and can be depend only from the dimensions of the lattice. 

Axiom of embedding. Let the one – dimensional array 1D  N

iixx̂
1=

=  be transformed into a 

square matrix 2d, j,ia . 

The fractal dimension 
x̂

fd  of the analyzed segment of the array is empty.  

Then the homomorphism h  will be determined as: 

2ELL,LLa:h j,i  ,                                     (12) 

fd  for reliability.  

Then the percolation lattice will represent the geometric and dynamic realization of the stochastic 

cluster. 

 

3.2  Conductivity of Percolation Lattice 

It is noted [11, 12] that the conductivity is represented as: 

( )Ncdc pp − ,                                                       (13) 

where the critical exponent   is (semi) – universal, 5927460,pc   - critical probability. 

For percolation on a lattice,   depends only on d , where d  is lattice dimension.  

Critical exponent for two lattice dimension equals 0020301 .. = . 

Thus, a transport problem is posed in the context of the homomorphism of stochastic discrete 

systems onto the percolation lattice.  

 

Conclusion 

As a result of the analytical and numerical studies, it can be concluded that it is necessary to take 

into account a large number of accompanying and influencing parameters of the information 

network. This approach will allow you to more reliably assess the resources of the existing network 

and help in choosing the best configuration. Comprehension and application of a large amount of 

important visual information requires the use of Visual Thinking technology, as well as the use of a 

set of Deep learning algorithms. 
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