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Abstract. The problem of the effect of a mobile load on a soil layer of finite thickness 

lying on a horizontal elastic foundation is considered. 

The soil is modeled by an ideal nonlinearly compressible and irreversible unloading 

medium, in which the relationship between pressure and volumetric deformation under loading 

and during unloading of the medium is linear and irreversible. 

 The load is applied to the upper surface of the layer and moves at a superseismic speed. 

The problem of the effect of a moving load on a two-layer medium consisting of a soft soil layer 

and an elastic-yielding pad with different thicknesses and densities is considered. The solution to 

the problem is constructed analytically in both reverse and direct ways. 

        A two-layer medium consists of a soft soil layer of thickness h with an elastic deformable 

base. The soil is modeled by an inelastic ideal medium with linear compressibility and linear 

irreversible unloading. Consequently, the shear resistance of the medium is neglected. According 

 
1 The work was carried out under the program APО9562377 of the Grant financing of 
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to this statement, the influence of the deformability of the base and the load profile on the 

distribution of the dynamic parameters of the layer and the contact surface was investigated. 

           Keywords. Mathematical models, propagation, plastic wave, half-spaces, analytical 

solution, wave front, ideal fluid, linear compressibility, irreversible unloading, equation of 

motion, continuity, states of the medium. 

Formulation of the problem. Let us consider the problem of the effect of a moving load 

on a two-layer medium consisting of a soft soil layer and an elastic-yielding pad with thicknesses 

1,h h  and densities 1,  . The soil is modeled by a nonlinearly compressible medium, and the 

pad, which has a weaker, than a soil with a stiffness K and a density 2 1  −with a Winkler 

base. The lower boundary of the two-layer medium is solid and non-deformable. According to 

the accepted assumptions, the wave process in the spacer is neglected, and the compressed wave 

OA  at a   from the contact surface of the two media is reflected in the form of the 

unloading wave AB of a strong rupture, and the behavior of the soil in regions 1, 2, 3, etc. is 

determined by the unloading branches of the P   diagram. 

The problem is of practical importance in assessing the levels of reduction of dynamic 

loads on various underground structures using a bulk screen with a resilient pad. 

The solution to the problem is constructed analytically in both reverse and direct ways. 

Let's proceed with the presentation of these decisions. In the course of this task, the load profile 

( )f  , was determined, which in the future, when constructing solutions to the problem for 

areas 2 and 3, is considered given [1,2-5]. 

Taking into account that the medium in region 2 is in a state of unloading, then to solve the 

problem with respect to the velocity potential ( )2 ,    we have the equation 

2 2 2
2 22 2

2 2 2

1

0, 1, p

p

D E
C

C

 
 

  

  
− = = − =     

,           (1) 

with the following boundary conditions 

( ) ( )1 2 1 2tg V V U U − = −     at 12tg h  + = ,                      (2) 

2
2x

P
D K V




=


,     at , a ch   =   ,                          (3) 

Where    2sin , 1 ,h xC D tg M K K h = = = , 2 2,U V − horizontal and vertical 

components of speed; 2P −medium pressure in area 2;  − the angle of inclination of the 

reflected wave with the line AC ; K −Young's modulus spacers. 
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It is known that equation (1) for 
pD C  admits a solution of the form 

( ) ( ) ( )2 1 2, f f      = − + + .                                            (4) 

Hence 

( ) ( ) ( )

( ) ( ) ( )

2
2 1 2

2
2 1 2

, ,

, .

U f f

V f f


     




       




 = = − + +




 = = − − + +



                         (5) 

Substituting (5) into (2), after some transformations, we obtain 

( )
( ) ( ) ( )

( )
( )

1 1 1

1

2 2 2 2

. 5.6.6
2

a a a

a

z h tg z h tg z h tg
f z u tg

z h tg

        
 

  

   + + − + + +
 = − − −   

   

− +
− 


 

Substitute (5) into (3). Then we have  

( ) ( ) ( ) ( )2 2 1 12 2

1 1

2 2x xK K
f z f z f z h f z h

D D

 
 

 
   + = − − + − ,       (7) 

where the dash above means the derivative with respect to the argument. 

Equation (7) has a solution of the form 

( ) ( ) ( ) ( ) ( )0

0

2 2 1 1 12 2 2 2

z
l z zlz lz lz

z

f z C e f z h f z h e le e f z h dz  
− −− −   = − − + − + − .(5.6.8), 

where ( ) ( )2

02 1, .a xz h l K d   = =  

Obtain 

( ) ( ) ( )2 1 1 1

1
, ,al h

a aC e U h V h
 

 


+  
= − − 

 
.                                             (9) 

Thus, the solution to the problem in region 2 is expressed by the formulas 

( ) ( ) ( )( )

2 35 36 37

1 1
( , ) , , ,

2 2

lU le         − +=  −  +  ,  (10) 

( ) ( ) ( )( )

2 38 39 40( , ) , , , ,
2 2

lV le   
        − += −  −  +  (11) 

2 1 2( , ) ( , ).P dU    = −                                            (12) 
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where 

( )

35 1

1

36 1

1

( ) ( ) ( ) ( )
( , )

2 2

1 ( ) ( ) ( ) ( )
,

2 2

( ) ( ) ( ) ( 3 )
,

2 2

1 ( ) ( ) ( ) ( 3 )
,

2 2

a a

a a

a a

a a

h h
U

h
V

h h
U

h h
V

       
 



       

 

       
 



       

 

  − + + − + +
 = − −  

 

 − + + − + +
− −  

 

 + + − + + +
 = − − 

 

 + + − + + +
− −  

 

( )
02

37 1 1

( ) ( 3 ) 1 ( )
,

2 2 2

( 3 )
,

2

lz a a a

z

a

z h z h z h
e U V

z h
dz

 
     

 
 

 



+
  + − + + + −

 = − − −  
 

+ +
− 




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38 1

1

39 1

1

( ) ( ) ( ) ( )
( , )

2 2

1 ( ) ( ) ( ) ( )
,

2 2

( ) ( ) ( ) ( 3 )
,

2 2

1 ( ) ( ) ( ) ( 3 )
,

2 2

a a

a a

a a

a a

h h
U

h
V

h h
U

h h
V

       
 



       

 

       
 



       

 

  − + + − + +
 = − −  

 

 − + + − + +
− −  

 

 + + − + + +
 = − − 

 

 + + − + + +
− −  

 

( )
02

40 1 1

( ) ( 3 ) 1 ( )
,

2 2 2

( 3 )
,

2

lz a a a

z

a

z h z h z h
e U V

z h
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 
     

 
 

 



+
  + − + + + −

 = − − −  
 

+ +
− 





Now let's start solving the problem in region 3. For this we have the equation [6,7-10]  

2 2
2 3 3

2 2
0

 


 

 
− =

 
,                                                    (13) 

and boundary conditions  

)( 2323 UUVV −−=−    at  ,2 h =−             (14) 

)()0,(3  fP =        at  0, b d   =   .           (15) 

We represent the solution of equation (6.6.6) in the form  

)()(),( 433  ++−= ff .                           (16) 
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Then, substituting (16) into (14) and (15) to find the required functions ( )3f z  and 

( )4f z  we get the formulas 

3 2 2

1

1 2 2 ( )
( ) , , ,

2 2 2 2 2

z z h z z h f z
f z V h U h

d

 
  

   

    − −
 = − + + + −    

    
(17) 

3 2 2

1

1 2 2 ( )
( ) , , ,

2 2 2 2 2

z z h z z h f z
f z V h U h

d

 
  

   

    − −
 = − + + + −    

    
(18) 

So, to determine the components of the velocity and pressure of the medium in region 3, 

we have the formulas 

( ) ( )3 41 42

1

1 ( ) 1
( , ) , , ,

2 2

f
U

d

 
     

  

−
= −  − +     (19) 

( ) ( )3 43 44

1

1 ( ) 1
( , ) , , ,

2 2

f
V

d

 
     



−
=  + +             (20) 

3 1 3( , ) ( , )P dU    = − .                                                   (21) 

where 

( )

41 2

2

42 2 2

( ) ( ) 2
( , ) ,

2 2

( ) ( ) 2
, ,

2 2

( ) ( ) 2 ( ) ( ) 2
, , , ,

2 2 2 2

h
V h

h
U h

h h
V U h

    
  



    
 



         
   

 

  − − −
 = + +  

 

 − − −
+ +  

 

    + − − + + −
 = + +    

    

 

( )

43 2 2

44 2 2

( ) ( ) 2 ( ) ( ) 2
( , ) , , ,  

2 2 2 2

( ) ( ) 2 ( ) ( ) 2
, , , ,

2 2 2 2

h h
V h U h

h h
V h U h

         
    

 

         
    

 

    − − − − − −
 = + + +    

    

    + − − + + −
 = + + +    

    
The solution to the problem for the subsequent areas is not given, since it is constructed in a 

similar way. If the gasket material has a rigid plastic property, i.e. ,s const = =  then for the 

solution of the problem in the region of 2 substitutions (3) we have the condition [1-4,10] 

2

1

( , ) sU
d


 


= −    at  , a ch   =                         (22) 

In this case, the unknown function ( )2f z , in contrast to (8), is found using the formula 
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2 1

1

( ) ( 2 ) sf z f z h
d





 = − − − .                                               (23) 

Then the velocity components ( )2 ,U    and ( )2 ,V    in region 2 are represented as 

( ) ( )2 45 46

1

1 1
( , ) , , ,

2 2

sU
d


     


=  −  −                     (24) 

( ) ( )2 47 48

1

( , ) , , .
2 2

sV
d

   
     


= −  −  −                     (25) 

where    

( )

45 1 1

46 1 1

1 ( ) ( )
( , ) , ( ) , ( ) ,

2 2 2 2 2

( ) ( )
, , (( ) 2 ) , (( ) 2 ) ,

2 2 2 2

tg tg
U h h tg V h h

tg tg
U h tg V h

     
        

     
        

 −  −    
 = + − − −  + − −      

     

 + +    
 = − + − −  − + −    

    

( )

47 1 1 1

48 1 1

( )
( , ) , ( ) , ( ) ,

2 2 2 2

( ) ( )
, , (( ) 2 ) , (( ) 2 ) ,

2 2 2 2

tg tg
U h h V tg V h h

tg tg
U h tg V h

     
        

     
        

 −  −    
 = + − − −  + − −      

     

 + +    
 = − + − −  − + −    

    

In order to study the effect of laying on soil parameters, it is necessary to carry out a series of 

calculations on a PC for areas 2 and 3. 

Conclusion. Mathematical models of wave propagation under the influence of a moving 

load on a nonlinearly compressible and irreversible unloading soil layer with a base have been 

built. An analytical solution is obtained for the problem of the propagation of a plastic wave in 

the case when the relationship between pressure and volumetric deformation during loading and 

unloading is linear, but different. Based on the analysis of the calculation results, it is shown that 

if the moving load acting on the boundary has a monotonically decreasing profile, then in the 

perturbation region, the medium is unloaded and an oblique compression wave is obtained by the 

load-unloading wave. The pressure of the medium against the background of this wave, 

depending on the depth, decreases slowly than on the free surface. In the case when the 

dependence between P and under loading of the medium is assumed to be nonlinear and shock, 

which corresponds to the propagation of a shock wave in the medium, the pressure in the 

perturbed region, in comparison with the linear case, is somewhat overestimated. 
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