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Introduction

Large-scale digitalization of our planet, artificial intelligence, and much more
are coming. The level of people's comfort will be enhanced due to intelligent digi-
tal technologies based on modern digital systems. Each such system has many im-
portant characteristics, of which we single out noise immunity. It determines the
number of errors in the document depending on the signal level and interference.
Currently, digital systems provide one error per ten million bits of information.
In relation to the document, we can talk about one error in the text with font 12
on one hundred sheets of A4 paper. Is it a lot or a little? If we consider a hundred
pages of an e-book, then this is not enough. If we take a document in the form of
one hundred receipts for the transfer of funds to recipients, then this is a lot, since
an error can alter the amount of payment to any one of the hundred clients. There
should not be a similar and any other mistake in the digital economy. Therefore,
for the introduction of the digital economy, it will be necessary to increase the
noise immunity of digital systems by several orders of magnitude at once.

Historically, it has become a rule for the transmission of messages to modulate
the parameters of a deterministic oscillation, believing that its presence in practice
is possible by inertia. This confidence existed until the results of measurements of
amplitude, phase, and frequency fluctuations of physical sources of harmonic os-
cillations appeared in 1950. After that, it turned out that the deterministic vibration
is nothing more than some kind of mathematical abstraction, which is unrealizable
in practice. Then the experimentally established fluctuations of the oscillation pa-
rameters were hidden by the term "parasitic amplitude, phase, frequency fluctua-
tions". This has survived to the present, they are being fought. And as a result of
this, the theoretically established indicators of noise immunity of communication
systems are still unattainable. To overcome the current situation and increase the
noise immunity of digital systems by a big leap forward, we propose an alternative
option, namely, to abandon the unpromising deterministic oscillation and switch
to a random or, at the first stage, to a quasi-deterministic signal. Both signals, in
our understanding, are synonymous with dynamic chaos, which opens up great
opportunities in the development of new methods for transmitting, storing and
processing information. When applying dynamic chaos, it would be appropriate to
talk about digital systems with high noise immunity, in which the error probabil-
ity will be 1-104, i.e. one error when receiving one hundred duodecillion binary
characters.

In addition, to achieve high noise immunity of digital systems, a new approach
to signal modulation is proposed, which includes what was said above about chaos
and the transition to modulation of the characteristic function of the signal, which,
will serve as a “space suit” for the modulated signal by analogy with astronautics.
The new method of random signal modulation will be conditionally called statisti-
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cal modulation, which forms the basis of the theory of statistical communication.
The results of the analysis show that with the help of the new method it is possible
to achieve the limiting values of noise immunity, spectral and energy efficiency
of digital systems.

Thus, the monography is devoted to increasing the noise immunity of digital
data transmission systems by several orders of magnitude using new methods,
techniques and devices. Its material complements the content of the avant-garde
direction of statistical radio engineering, aimed at involving random processes in
solving problems in the theory of statistical communication, which remain rele-
vant to this day. Using random signals with probabilistic characteristics, the author
in his research proves the promise of using dynamic chaos in a new generation of
radio engineering devices, for example, in modems.

The monography considers various modem structures, algorithms for modu-
lation and demodulation of a quasi-deterministic signal, and characteristic func-
tions of signals that are proposed to be used in digital data transmission. Along
the way, new knowledge was obtained regarding the characteristic function and
the distribution law of signals, which were not known in probability theory. It is
shown that the signal, characteristic function, signal modulation and demodulation
algorithms in aggregate are the product of digital technology. The noise immunity
of modems of the new generation when operating in a noisy channel was assessed
qualitatively and quantitatively. At the same time, it was found that with a signal-
to-noise ratio of 3 dB, the noise immunity of the modem is at least ten orders of
magnitude higher than the same characteristic of known analogues, for example,
with phase modulation.
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1. CHARACTERISTIC FUNCTION

The characteristic function (ch.f.) is a probabilistic characteristic of a random
process, or a random variable. It was proposed and used (1901) by the mathemati-
cian A.M. Lyapunov to prove the probability limit theorem. Since then, ch.f. has
acquired independent significance and is successfully used to solve both funda-
mental and applied problems [1, 2]. In our opinion, it is appropriate to call it the
characteristic function of A.M. Lyapunov, as it is done, for example, with the
functions of F. Bessel, P. Dirac, P. Struve, O. Heaviside and other scientists. For
more than fifty years, the characteristic function of A. Lyapunov served as a tool of
mathematics and remains so to this day. Thanks to this function, mathematicians
solve complex problems and construct difficult proofs of theorems. Since 1954
this function has been studied and applied by applied science. With its help, new
results have been obtained in non-destructive testing and diagnostics, in commu-
nication technology, in noise filtering in the probability space, in detecting signals
that are an order of magnitude or more superior to those previously known [2,3].

1.1. Characteristic function: definition, properties

A one-dimensional characteristic function is a statistical mean of an exponent
with an imaginary exponent of the form jV ¢ (¢), in which the random process
¢(t) is multiplied by an arbitrary real parameter V. Mathematical model ch. 1. is
represented by the expression

©,(V,)=m fexpl;V, ()]}, (1.1
Where 6, (V) is the characteristic function (ch.f.); m {-} is mathematical sign
of the statistical average (expectation operator); ¥ = mAV is the ch.f. parameter;
AV is the discretization step (quantization) of the ch.f. parameter; me[-o0,+00]. In
expression (1.1), the number 1 denotes a one-dimensional function. Obviously,
using the Euler's formula, we can write

61 (V) = my{cos[Vn$ (O] +/ sin[1,E (D]} = 12
= A(Vm) +jB(Vm). '
where A(V, ) =m {cos[V E(D)]} is the real part of ch.f.; B(V, ) =m {sin[V &(1)]}
is the imaginary part of the ch.f. Then there will be an equality
0,(V,) =10, (V) exp [Y(V,)]. (1.3)

Here |6, (V)| = A2(Vy) + B2(Vn), Y(V,)=arcigB(V, )/ A(V,)] are the modulus
and argument of ch.f., respectively. Geometric interpretation ch. f. shown in figure
1.1. It depicts a spatial figure formed by the rotation of the radius - a vector with
a length equal to the module |6 (V' )|, around the axis on which the values of the

10 |
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parameter V are plotted. In this case, the projections of a point belonging to the
figure on the coordinate axes are respectively equal to the real and imaginary parts
of ch. f. The shape and dimensions of the figure are determined by the random
process £(t). The figure in picture 1.1 is built for a Gaussian process with m, = 0.3,
o =0.01 and looks like a funnel, where m, is the expectation of the process; o is
the mean square deviation (MSD) of the process. In the section of the figure, for a
fixed value of £V , a circle is obtained.

Vi
3

>

AVn)
Picture 1.1. One of the possible geometric interpretations of the ch.f.

From a physical point of view, the parameter V is the coefficient (or multi-
plicity) of amplification (weakening) of the instantaneous values of the random
process, and the product ¥, {(t) is the instantaneous phase of the analytical signal

w(t) = eVmd® = cos[V,£(1)] + j sin[V, £(1)] . (1.4)
Then ch.f. is the mathematical expectation of an analytical signal with a con-

stant modulus \/ cos?[V, ()] + sin?[V;,&(t)] = 1, while the random process
&(t) only determines the law of change of the instantaneous phase of the signal
(1.4). In this case, the meaning of the picture in Figure 1.1 is as follows. With
an increase in the multiplication factor of the instantaneous phase of the analyti-
cal signal, its expectation decreases, since the rapidly changing signal is strongly
averaged, as a result of which its constant component tends to zero. For a certain
multiplication factor V , it even becomes equal to zero. In this place, the top of the
spatial figure appears.

The well-known relation of the ch.f. with probabilistic characteristics of a ran-
dom process is represented by the formula [4]

+00

01 (V) = f Wi (x)elVm¥dx (1.5)

where W (x) is the one-dimensional probability density of the random process £(t).
In a particular case, we have

[ n
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+00

0, (V) = J. W, (x) cos(V,,.x) dx, (1.6)

if the imaginary part of the ch.f. equals zero. This implies that if ch. f. takes on
only real values, then it is even, and the corresponding probability density will
be symmetric. Conversely, if the probability density of a random process is sym-
metric, then ch. f. is a real, even function of the parameter V . In addition to (1.5),
a relation x is established ch. f. with initial and central moment functions of a
random process. The book [4] gives the equality

d'e,(,) .k
[dV”Sk) . =] mk{f(t)} (17)

It follows from this that the initial moment functions of the kth order differ
from the value of the k-x derivatives of ch. f. if // = 0 only by the factor j*. In a
particular case, if k = 1, we obtain an expression for the expectation of a random
process

mi{§(©} = —j6y (V). (1.8)
In the general case, if there are initial moments of any order, then, as follows
from (1.7), ch. f. can be represented next to Maclaurin

61(V) = 1+ ) [mid§@/KRIGV* (1.9)
k=1

If we expand not ch.f. into a Maclaurin series, but a cumulant function as In 6,
(V), then we obtain the expression

MUk = 106, (Vh) = D [/ GV)*, (1.10)
k=1

The coefficients of this series, called cumulants (or semi-invariants) of the dis-
tribution, are expressed in terms of central moments by the formulas [4]

xn=mEO) = MEM) = Ms,
Xa = My—3M3, xs= Ms—10M;Ms,
where M {&(t)} is the central moment functions of the A™ order of the random
process &(t). It can be seen from formulas (1.11) that the 1% order semi-invariant is
equal to the expectation, and the 2" order semi-invariant is equal to the variance
of the random process.
For many random processes, the ch.f. is defined and calculated. Information

about them is systematized in the literature [2,5]. A graph of the ch.f. widely used
Gaussian random process is shown in Figure 1.2. It's plotted for the function

(1.11)

12
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2y72
6, (Vi) = exp [j myVm — (J ZV’")], (1.12)

for which the coefficient m =0. When o=1, the value of ch.f. for V| = 4 differs
from 0,(0) = 1 by a factor of 300. Therefore, ch.f. of normal random process
rapidly decreases to zero. This behavior ch.f. is determined by its noise filtering
property, which will be discussed below. In addition, the ch.f. has

01(Vin)

L LA LN
/ N\

= Vm 0 Vm
-3 -2 -1 0 1 2 3
Ve

Figure 1.2. Characteristic function of a Gaussian process
(m,=0, 0=1)

other properties, for example, its maximum value is equal to one at ¥/ = 0 and the
modulus |0 (0)| = 1. This implies the measurability and boundedness of the ch.f. if
all values V_[-00,400].

When solving many problems, it is especially useful to have the property that the
ch.f. additive mixture of signal and noise is equal to the product of the characteris-

tic functions of individual terms. This property is easy to extend to the sum Z-fi (1)
of independent random processes. Ch.f. of the amount will be -

0:0) = | [ 02 i, (1.13)
i=1

where 0 (V ) is the ch.f. i-th random process. Here we can also talk about the
probability density of the sum of independent random processes, which, as you
know, is calculated by the convolution formula
+00
Wi(z) = f W (W, (z — w)du =

(1.14)

+o00

- f Wi (z — Y)W, 3)dy,

—00
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where z(t)=u(t)+y(t). Then, using transformation (1.5), we can pass to the charac-
teristic function of the additive mixture z(¢). However, these two options for solv-
ing the problem do not reject each other. In some cases, it turns out to be easier
to find the probability density, in others, the characteristic function. For example,
when measuring the probability density of only a signal from a mixture z(z), of
course, it is much easier to measure the ch.f. mixtures of z(¢) and ch.f. interference
y(¢) when the signal u(#)=0. Then, it is necessary to find the ch.f. signal from the
ratio of the characteristic functions, and to calculate its probability density using
the Fourier transform

+00
Wy (x) = %f 0, (V) e~ TVmXqV, (1.15)
The solution of such a problem with the help of convolution (1.14) is much
more complicated.
If we divide the characteristic function of the additive mixture by the ch.f. in-
terference, we get the quotient. It contains expressions for the real and imaginary
parts of the ch.f. separate signal. Expressions are equal

A, Ay V) + By By (V)
) = = Y B,

BZ (Vm)Ay (Vm) - Az (Vm)By (Vm)
A5 (V) + BS (V) '

where 4 (V ), A, (V), Az (V) is the real part of the ch.f. of signal, interference
and additive mixture, respectively; B (V), By (V), B_(V ) is the imaginary part of
the ch.f. of signal, interference and additive mixture, respectively. When the noise
has a symmetric distribution function and mathematical expectation equal to zero,

then the calculation algorithms (1.16), (1.17) become simpler:

(1.16)

By (V) = (1.17)

AZ (Vm)
A =20 1.18
u(Vm) Ay (Vm)’ ( )
B,V
B, (V) = 4,0 (1.19)
In accordance with (1.2), the ch.f. signal will be equal to
A,V iB,(V,
01 () = 22, 1B Uin) (1.20)

Ay (V) Ay(V)

If the additive mixture of signals is represented as z(2)= K, (1) + U, then the
ch.f. sum looks like this:

01,(Vn) = 01, (KoVp)elVovm, (1.21)

14
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where U, is deterministic signal, constant in time (for example, constant voltage);
0, V,'n) is ch.f. process z(t), anq 0,V )is ch.f. of signal u(z). Where U, = 0, ex-
pression (1.21) is transformed into the equality

glz(Vm) = elu(KOVm)‘ (1.22)
Consequently, amplification (attenuation) of the signal by a factor of K leads
only to a change in the real parameter of the ch.f. the same number of times. This
property of the ch.f. is especially important when constructing instruments of a
new class with the conditional name characterometers. When the sign of the real
parameter of the ch.f. equality (1.22) takes the form

617 (= Vin)=014 (Ko Vi) (1.23)

ie 0. -V )and 0, (K, ) are complex conjugate functions. If we put K =1 in
expression (1.23), then it is reduced to the known

012 (V)= 01 (Vin)=A(V) —J B(Vy). (1.24)
Let us onsider a complex signal

) = u@) + v,

in which the terms are functions of a real variable. Then

elf(Vm) = ml{exp(_VmV(t))}elu(Vm): (1243)

where 0,.(),0,,() are the characteristic functions of the signals &(z), u(t), respec-
tively. Thus, ch.f. of complex signal is equal to the product of the ch.f. of the real
part of this signal and the expectation of the exponential function, whose exponent
with the opposite sign is the imaginary part of the complex signal amplified by V'
times. If a random signal v(?) is subject to the distribution law W (x), then

+00
ml{exp(—va(t))} = — f W (x) e "m*dx. (1.246)
For example, for a law of the form W (x)=1/(2x) we have
sh(nV,,)
elf(Vm) =-— 01y (Vm)- (1.248)
¥,

Multidimensional ch.f. of random process has the following form:

0, (Vi, Vs, oo, Vi ty, Egy vy E)

L 1.25
» Vifm)] ] -2
i=1

The quantization step AV is applicable to any ch.f. parameter. Taking into ac-
count the previously adopted notation, we can write

=m {exp

[ 15
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Vl = Vlm = mAV, V2 = VZm = mAV, ey
V, = Vi = mAV. (1.26)
Moreover, it is not necessary at all in (1.26) to have a constant quantization
step for all parameters of the ch.f. Each parameter (or group of parameters) ch.f.
can be discretized by its step.
If the instantaneous values of the random process, taken at the moments of

time ¢, ¢,...,z, do not depend on each other, then the expression (1.25) takes a
different form:

n
Gn(Vll V2, ...,Vn, tl’ tz, sy tn) = n Hll(Vl)’ (127)
i=1

where 6, (V) is ch.f. of i-th set of instantaneous values of a random process.
For stationary random processes, expression (1.25) is written in a simpler way:

» Vl-f(ti)] } (1.28)

since ch.f. does not depend on time or depends only on the differences of indi-
vidual moments of time L-t, -1t -t =nT, 1.e.

0,(Vy, Vs, ., V) = my [exp

0,(V, Vs, oo, Vo, 7,27, ., (n — D7) =

n

=m {EXP jz Vig(t + it) } (1.29)
i=1

It is quite clear that the ch.f. of lower dimension is quite simply obtained from

the n-dimensional characteristic function, namely:
9k(V1, Vz, ey Vk) = Bn(Vl, V2, ey VTU 0, 0, ey 0) (130)
Calculation of n-dimensional ch.f. random process is a difficult task. Therefore,

the publication contains few examples of multidimensional ch.f. Nevertheless, the
expression for the n-dimensional ch.f. normal random process:

0,(V,Vy, .., V) =

n

n n

_ 1

J ) Vin =5 ) ) ViveoioRa (1)
i=1

i=1 k=1

(1.31)

’

= exp

where m , 6 are the mathematical expectation and variance of the random process;
R, (7) is the normalized correlation function, with R (t)=R, (1), R (0) = 1, R ,(0)=1.
Examples of other multidimensional ch.f. can be found in the books [2,5].

16 |
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1.2. Estimates of the characteristic function of instantaneous values of a
random process

Formula (1.1) contains the mathematical operation m {-} is the statistical mean
(or the expectation operator), which involves averaging an infinitely large number
of values of the function exp[jV ()], depending on the instantaneous values of
the random process &(t).

It is quite clear that in the instrumental analysis of ch.f. a finite number of
instantaneous values of the random process or its parameters (envelope, instanta-
neous phase, frequency) will be used. The result of calculating the value of ch.f.
according to a limited set of sample data' of a random process is called the esti-
mate of the function. The estimate of the ch.f. will be denoted by the previously
adopted symbol, and to distinguish it, mark with an asterisk:

05 (V) = L{exp|[jVn&i ()15}, (1.32)

0; (Vi) = L{exp[jViné (t)]1%}, (1.33)

where L is the transformation operator for an array of sample data, a set of sample
values, or time-limited implementations of a random process; k is the number of
implementations or sequences used?.

The transformation operator L can be different. In [6], three operators are con-
sidered, namely: an ideal integrator with normalization with respect to T’

T
1
Ly = 'Il‘I—EEIOF dt, (1.34)
0
ideal adder normalized by N
N
Ly= lim ~ >
N = m ) (1.35)
i=1
ideal adder-integrator with normalization on N and T’
N T
Lyr = i ! d (1.36)
NT—N}‘BOOWZf b :
i=10

where T is the averaging time (the duration of the implementation of the random

IThe instantaneous value of the implementation of a random process is called the sample value and
is denoted by the symbol £(t ) - the value of the i-th implementation at the time 7.

The set of instantaneous values corresponding to the values of the i-th realizations at the same
time ¢ is called the n™ sequence of the process &(¢) and denoted by ().
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process); N is the amount of sample data or the set of sample values. Taking into
account (1.34) - (1.36), we can write:

N
1
0; (V) = lim — > exp [jVn&;(ta)], (1.37)
1 N%wN;
T
1
01 W) = Jim 7 [ exp [¥méicoldt, (1.38
0
1%
010 = Jim 7> [ exp [néi(olde. (1.39)
i=10

By definition [6], estimates (1.37) - (1.39) are called & - current, ¢ - current and
average, respectively. The application of these estimates is largely determined by
the type of random process. Using the classification [4] of random processes, we
can specify the following:

- for a stationary ergodic random process, all estimates of the ch.f. are equal
to each other;

- for a stationary non-ergodic random process # - current and average estimates
of ch.f. are equal to each other;

- for a non-stationary ergodic random process k - current and average estimates
of the ch.f. are equal to each other;

- for a non-stationary non-ergodic random process, all estimates of the ch.f. are
not equal to each other. In this case, we recommend using average ch.f. estimates,
since they converge better than others to a probabilistic characteristic (character-
istic function).

Passing to the estimates of the real and imaginary parts of the ch.f., taking into
account (1.37) — (1.39), we write

T

A W) = lim % f cos[V, & (D)]dt, (1.40)
0
T
. 1
B (V) = lim T f sin[V & (t)]dt, (1.41)
0
1 N
A W) = lim = > cos[Véi(t)], (1.42)
N—-oo N ;
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N
B (W) = Jim ) sinllndi(t)], (1.43)
i=1
N T
A4, = Nl%rllwﬁz f cos [V,&;(t)]dt, (1.44)
' i=190
N T
B (v, = N};@m%z J’ sin[V,&;(t)]dt. (1.45)
i=10

Our further analysis is connected with the k-current estimate of the ch.f. To
simplify the notation, we omit the symbols £, n in formulas (1.37), (1.40), (1.41),
and we will only have them in mind. If in estimates (1.37), (1.40), (1.41) the inte-
gration operation is performed by a non-ideal integrator, and a real device with an
impulse response ¢(?), then these expressions take the form

8; (V) = f, (T —t) exp[jVi £(1)] dt, (1.46)
T
A W)= ] q(T = t)cos[V,&(D)]dt, (1.47)
0
T
B (V) = f q(T — t)sin[V,,&(t)]dt. (1.48)
0

Let us extend the notion of an estimate to an n-dimensional ch.f. Similarly to
estimates (1.37)—(1.39), let us write

G;{(Vl, Vz, ""‘/71.) =
1 T
= 71jm FJ- exp [j(Vy + Vo + -+ V)& ()]dE, (1.49)
—00 0
Bf*l(Vll V2, ey Vn) =

N
1
= Jim " exp [y + Vs + -+ RG], (150)
i=1
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N T
. 1 )
= N?%Tmﬁz f exp [i(Vy +Vy + - + VD&MD, (1.51)
i=190

Separately for the real and imaginary parts of the ch.f. we have

AWV, Vy, ., V) =

T
1
= Tlilgﬁf cos[(Vy + Vy + - + V)& (D]d, (1.52)
0
Bﬁ'= (Vl' Vz, 'I/Tl) =
1 T
= Tlirgij sin[(Vy + Vy + - + V)& (D]dt, (1.53)
0
AV, Vy, o V) =
1 N
= lim Nz cos[(Vy + Vy + -+ V)EED], (1.54)
i=1
B* (Vll VZ" 'Vn) =
1 N
= I\l[im N sin[(Vy + Vy + -+ V)& ()], (1.55)
i=1
AV, Vy, o V) =
1<
= N!}Twﬁz f cos [(Vy + Vo + - + V)& (D)]dt, (1.56)
i=10
B (Vy,Vy, . V) =
1<
= N,l%rl‘ooﬁz f sin[(Vy + V, + - + V)& (B)]dt . (1.57)

i=19

For a k-current estimate of a multidimensional ch.f. taking into account (1.46)
- (1.48) we can write
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9‘;‘:(V1’ Vz, vy ‘/n) =

T

- f 4(T = ) expli(Vy + Vs + - + VEWD] dt, (1.58)
0
AWV, Vy, . V) =
T
- f q(T = D)cos[(Vy + Vs + -+ V)E(D]dr, (1.59)
0

B (Vy,Vy, .., V) =
T

- f Q(T — O)sin[(V, + Vy + -+ V,)E(O)]dt. (1.60)
0

In the above formulas, the model of a random process can be any, and the
model of the impulse response of a physically realized integrator is presented in
Table 1.1.

In the theory of estimating the probabilistic characteristics of a random process,
much attention is paid to the fundamental nature of estimates. Fundamentality is
characterized by properties of estimates. They must be wealthy, efficient and unbi-
ased. The properties of estimates (1.40 - 1.45, 1.47, 1.48) are studied in detail and
described in the book [2]. It is also shown there that the estimates for the real and
imaginary parts of the ch.f. are consistent, efficient, and asymptotically unbiased,
i.e. they are fundamental.

Table 1.1.
Classification of integrators
Integrator type Characteristic q(T-t)
RC -integrator BeftT2/2sh(BT/2)
RC -integrator (1-BT+Bt)e?/T
RC -integrator 2(T-t-BePtD)/(2ePT+T2-2)
Mg et i proener gy

Turning to estimates of the form (1.36 - 1.39, 1.46), we can say that they are
also fundamental. Their properties will be the same as those of the estimates
(1.40,1.41,1.47,1.48) of the real and imaginary parts of the ch.f. Here it is appro-
priate to say the following. Estimates (1.40), (1.41), (1.47), (1.48) are assigned the
role of some approximators, with the help of which estimates of the probability
density, correlation function, initial and central moment functions are constructed.
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Since the initial estimates (approximators) of the probabilistic characteristics of a
random process are consistent, other estimates of the probabilistic characteristics
constructed from them by classical methods will also be consistent, which is con-
sistent with the conclusion in [2].

In the instrumental analysis of random processes, it can be difficult to obtain
an estimate of a probabilistic characteristic that satisfies all of the above proper-
ties at once. For example, it may turn out that even if an effective estimate exists,
then the algorithms for calculating it are too complicated and one has to be content
with a simpler estimate, the variance of which is somewhat larger. The same can
be said about biased estimates, as slightly biased estimates are sometimes used.
The final choice of the estimate, as a rule, is dictated by the results of its analysis
in terms of simplicity, ease of use in equipment or mathematical statistics, and reli-
ability of properties. Estimates of the probability distribution function, probability
density, correlation function, initial and central moment functions of the kth order
are given in the book [2].

1.3. Estimation of the characteristic function of a discrete quantity

Let us consider a special case when the process £(t) is represented only by
instantaneous values (tn). To simplify the formulas, we introduce the notation
¢(t) = ¢. This is a discrete random variable for which the probability density has
the form [4]

N
Wi = ) pid(E - 6, (1.61)
i=1

where p. is the probability of occurrence of the i-th value of a discrete random vari-
able; N is the total number of discrete values of a random variable; 6 (-) is the delta
function [4]. In view of (1.61), the ch.f. discrete random variable

N
6:0jn) = ) P exp(Un) (1.62)
i=1

If a discrete random variable {=U = const with probability p=1, then the ch.f.
constant value is calculated by the formula

61 (V) = exp(j1,Up). (1.63)

Known distribution laws for a discrete random variable are tabulated in the
book [5]. The characteristic functions obtained taking into account the known dis-
tribution laws of a discrete quantity are also given there. For example, a discrete
random variable distributed according to the Poisson law has a ch.f. kind

6, (V) = exp[A(e/Vm — 1)], (1.64)
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where A — Poisson distribution parameter. This function is widely used when ob-
serving the flows of elementary particles, such as electrons.

Formulas (1.7) - (1.11) can be used to calculate the distribution moments of a
discrete random variable. Substituting the ch.f. (1.64) into formula (1.7), we obtain

mi& =2, miE =2+ 2, Mig}=2. (1.65)

They coincide with the results contained in [4]. Thus, the above material re-
garding ch.f. random process can be extended to a discrete random variable, the
ch.f. which is defined by formula (1.32).

Let us consider a complex number =uijvi, which, in accordance with the
notation adopted earlier, can be called a complex discrete quantity. Similarly to
(1.24a), we obtain

0, (Vm): m, {exp(— Vavi )}®lu (Vm) (1.66)

Let’s denote y, =exp(~V,,v,). Then we have

m (v} Zp Vi, (1.67)

where p. is the probability with which the random variable takes on the value y.. If
the probability density of this quantity is

=2 pdly-y) (1.68)

and the probability density of the random variable v is equal to

w(v)=2 5ol -v,) (1.69)
then we get the equation

1 .
m=7mwwwﬂ (1.70)

m

Taking into account (1.67), (1.70), we have the ch.f. discrete random variable

%L,NVZWMM (171)

m i=1

When the probability is p = %V’ then

mfewl-v,v )= 1, (1.72)

where N is the number of equiprobable values of the discrete random variable v.
For this case, expression (1.71) takes on the form
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01¢(V) = # 010 (V). (1.73)

New formulas of the form (1.73) follow from consideration of other laws of
distribution of a discrete random variable.

1.4. New property of the characteristic function

In the above analysis of the characteristic function, special attention was paid
to its properties known from the publication, such as, for example, boundedness,
measurability, and others. We have discovered a new property of ch.f., which
concerns filtering in the space of noise probabilities with the help of this function.

Expressions (1.16 - 1.19) form the basis of the filtering capacity of the char-
acteristic function. Filtering capacity of ch.f. has an applied value [3,7] and the
following physical meaning.

The probability density of a random process and its ch.f. are connected by a
pair of Fourier transforms (1.5), (1.15). It turns out that the ch.f. is the spectral
density of the probability density (or, in short, the spectral density of the prob-
abilities) of a random process in the domain of probabilities, if we use the termi-
nology of the Fourier transform of signals, in which the domain is called the fre-
quency domain. Ch.f. carries information about the probabilities of occurrence of
instantaneous values of a random process depending on the parameter ¥ , which
we previously proposed to call the multiplicity of values of a random process.
This multiplicity can be written as integer and fractional real numbers. For integer
multiplicities, ¥, = +1, +2, ..., #oo, and for fractional multiplicities, V takes any
other values on the real axis from -co to +oo. This is done in the same way as in the
frequency domain, when imaging a line spectrum, the spectral lines are located at
points with abscissas +m, £2®, £3®,..., =n®, where o is the circular frequency of
the signal. By analogy with the physical spectrum when using the ch.f. in practice,
the multiplicity ¥, is taken to be integer and positive. At ¥ =0 ch.f. ©® (0)=1 is
the total probability. This total probability is distributed between the probabilities
of presence in the signal of instantaneous values with a multiplicity one (¥ =1),
with a multiplicity two (¥ =2), with a multiplicity three (V, =3), etc. For example,
for "white" noise with dispersion 6> =1 and ch.f. of the form (1.12) at m, = 0 we
have: p,=0,6065at V =1;p,=0,1353 at V/_ =2; p,=0,0111 at /=3 etc. to infin-
ity, and for ¥/ =oo the probability p_=0. When filtering the additive mixture using
expressions (1.16 - 1.19) with I/ =1, all instantaneous noise values that are pres-
ent with a probability p, =0.6065 are “cut out” from it. In this case, after filtering,
instantaneous noise values remain in the additive mixture with a total probability
of 0.3935, i.e. with a probability less than one. At the filter output, the additive
mixture is different, it will be partially “cleaned” of noise. And, as a result of this,
the signal-to-noise ratio at the filter output increases.
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You can continue filtering further the "purified" additive mixture, "cutting out"
from itat /| =2 the instantaneous noise values that are present with a probability
p, = 0.1353. Then, at the output of the second filter, the signal-to-noise ratio in-
creases even more, and the additive mixture becomes “cleaned” twice. And so it
should be continued further, changing only the value of the multiplicity ¥, =mAV.
When AV=1, it is appropriate to use the well-known term "filter section" and write
the definition of a new device in the form m - link virtual filter.

Simulation of virtual filters using the characteristic function with ¥/, =1 showed
good results. The works [3,7] present quantitative and graphical data obtained us-
ing equation (1.19). As an example, Figure 1.3 shows graphs of noise and signal
suppression when filtering an additive mixture, where o, o, of are the SNR at the
input and output of the filter, respectively; o, is the SNR of the signal; %_ is the
signal-to-noise ratio at the filter input. The designation N is taken from expressions
(1.42,1.43). An analysis of the curves in Figure 1.3 shows that the filter suppresses
signal and noise differently. "White" noise with the help of ch.f. is suppressed by
a factor of 5053, while the quasi-deterministic signal is attenuated by only a factor
of 120. Thus, the signal-to-noise ratio at the output of a single-link virtual filter
increased by an average of 30 times.

00/Cg (COCS
A (Oc)uscx o
10 10°

108 3
102 W@&é:é:é
102 W
2
101 -2 -1 0 1 > 101 -2 -1 0 1 >
10 10 10 10"y, 10 10 10 0y
a) b)

Figure 1.3. Filter suppression of noise (a) and signal (b):
1,4-N=52-N=10;3-N=50
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2. QUASI-DETERMINISTIC SIGNALS

To implement statistical modulation, quasi-deterministic signals are required,
which, by definition [4 p. 171] ".... are described by time functions of a given type,
containing one or more random parameters ¢, ¢, ¢,..., that do not depend on time."
From this class of signals, the model and probabilistic characteristics of a quasi-
deterministic signal with the arcsine distribution law are quite fully presented in
the publication. Information about other quasi-deterministic signals is presented
only fragmentarily.

2.1. Signal model with arcsine distribution law

Let us consider a signal with a mathematical model of the form
u(t)= asin(w,t +7), 2.1)

where a is the constant amplitude of the signal; e, - constant circular frequency of
the signal; # - a random variable (initial phase angle) with a uniform distribution
law within - 7 . . 7; u(¢) instantaneous values of the signal, obeying the distribu-
tion law of the arcsine. In the publication, this signal is called quasi-deterministic.

We begin the description of probabilistic characteristics with the probability

density of instantaneous values of the signal, which, by definition [4], is equal to
1 1
W, ()= - : 22)
[ 2 2 2
e Ty V2ro 1—(£]

a

where ¢ =a” /2 dispersion (average power) of the signal. Here and below, the
number 1 denotes the one-dimensionality of the function. The graph of function
(2.2) is shown in Figure 2.1.

Let's take a look at the shape of the graph. It looks like a horseshoe and is
centered around zero because the mathematical expectation of the signal is zero.
At the edges, the value of the function tends to infinity when the value of the ar-
gument is equal to the amplitude of the signal. This results in the probability of
occurrence of the signal amplitude as if equal to one, since this is like depicting a
probability density of a constant value using a delta function J(-). However, this
is possible, and this is explained only by the fact that the signal model (2.1) is
some mathematical abstraction. The physical process has amplitude fluctuations
[8], which are random. And as
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W)

Figure 2.1. Signal probability density

a result of this, the specified equality a=const is violated. The arcsine law was
established in 1939 by the mathematician P. Levy for random walks of a point on
a straight line and later adapted for signal (2.1).

The characteristic function of the signal in accordance with (1.5) is equal to

G)1(Vm):f_ooOo Wy (x) exp(jV, x)dx = J,(V, a), (2.3)
where J () is the zero-order Bessel function of the first kind (see Fig. 2.2). For a
random variable | with probability density W (n)=(1/2x) ch.f. will be [4]

sin(V, 7w
0,(/,)= % - 24
m’t
For a constant signal amplitude ch.f. was defined earlier with the help of expres-
sion (1.63), which we repeat with our designations

©,(,)=exp(jV,a). 2.5)
The signal correlation function (2.1) will be
k,(r)= J.u(t)u(t +W(n)dn = %az COS@,T =0’ COSW,T > (2.6)

where W(n) is the probability density of the random phase 7, 7 is the shift in time.
The dependence of the average signal power on time turns out to be harmonic,
it is shown in Figure 2.3.
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k(t) 1

0 0,002 0,004 0,006 0,008 0.01 0.012 0,014 0.016

Figure 2.3. Correlation function of a signal with a frequency of 30 Hz

Let us proceed to the analysis of the power spectral density (energy spectrum)
of the signal (2.1). Let's write down its energy spectrum

G, (0)= .Tk" (c)exp(~ joor)dr = %O’Z [6(0—w,)+ (0 +@,)] - (2.7

The spectrum (2.7) turned out to be lined. It contains a spectral component
S(@— w, ) anging from - oo to 0 and a spectral component &(@ — @, ) ranging from
0 to oo, where 5() — delta is a function. In the transition to the physical spectrum,
i.e. to the spectrum in the region of positive frequencies, we get

G, (0)=r58(0+w,) . (2.8)
The energy spectrum as a function of frequency is shown in Figure 2.4.

60 g | | é | N N

3.5x10"3

Figure 2.4. Signal power spectral density at 30 Hz

To clarify, Figures 2.1-2.4 show estimates of the probabilistic characteristics of
the signal (2.1) measured using the virtual instrument “Characteriometer” [3, 9].
Signal (2.1) was obtained from the output of the G3-54 generator.

2.2. Signal model with the Veshkurtsev distribution law

Let's repeat the mathematical model of the signal (2.1)
u(t)= a sin (o, +n), 2.9)
where @, # - random variables (amplitude and initial angle of phase shift, respec-
tively); w, - constant circular frequency of the signal; u() - instantaneous signal
values distributed according to the Veshkurtsev law [10]. There is no description
of such a signal in the publication.
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Let the signal amplitude (2.9) be distributed according to the Gauss law (nor-
mal law)

2
1 _x=
W (x) = 5 ¢ 20% (2.10)

and the random phase - according to a uniform law within — 7 . ., where ¢ is
the amplitude dispersion. Then the instantaneous values of the signal obey the
Veshkurtsev distribution

1 x? x?
0= oo ol ) 210

where K () is the cylindrical function of the imaginary argument (the Macdonald
function) [11]. The MacDonald function at x = 0 asymptotically tends to infinity
on both sides of the y-axis (Fig. 2.5). In this way, Veshkurtsev's law resembles the
arcsine law (Fig. 2.1), where the value of the probability density tends to infinity
at the edges when the argument value is equal to the signal amplitude. It turns out
that Veshkurtsev's law is a kind of copy of the transformed arcsine law, therefore,
it is also some kind of mathematical abstraction. A physical process with such a
law does not exist, and only digital technology will make it possible to put it into
practice in the form of a random process sensor.

wixH

il

._—-"/ [

—% -2 -1 0 1 2 -

Figure 2.5. Signal Probability Density

Since this law was obtained for the first time, we will agree to call it the
Veshkurtsev law in the future by the name of the author, who was the first to write
it down analytically and apply it in practice in solving new problems [10,12,13].
Naturally, all the properties of the statistical law prescribed in the theory of prob-
ability have been verified by the author and they are fulfilled. Using the Fourier
transform of this law, we obtain the ch.f. signal

0,(,)= Tm(x)exp(mx)dx= IO[V’f }exp[— me J (2.12)
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where [ (*) is the Bessel function of the imaginary zero-order argument. A similar
transformation of the distribution law (2.10) gives the ch.f.

1
0,(,)= exp[—zV,fozj (2.13)
of signal amplitude with a Gaussian distribution law. Ch.f. for the random phase
of the signal will be
sin(V,,
®1 (Vm ) = % N
T
Quasi-deterministic signal (2.9) is centered (its mathematical expectation is
zero), it has dispersion (average power)

(2.14)

2 2
, O 331 9o
== F|2,2;=20|="—, 2.15
O, 52 2( 27272 j ] ( )
Where ,F,(+) - generalized hypergeometric series [11]; ¢ - signal amplitude disper-
sion.

Concluding the analysis of the probabilistic characteristics of the quasi-de-
terministic signal (2.9), we clarify that its instantaneous values are distributed
according to the Veshkurtsev law, the amplitude is distributed according to the
Gauss law, and the phase is distributed according to the uniform law.

The signal correlation function (2.9) has the form

Jj au(t + 7 )W, (x W (7 )d ——coswoz' (2.16)

—oo—1T

The energy spectrum of the signal (2.9) coincides with the spectrum (2.7)
G, (0)= Jk 7)exp(— jCOT)dT—EO'Z[5((0 o)+ 6o+ aw,) . (2.17)

In the transition to the phys1cal spectrum, i.e. to the spectrum in the region of posi-
tive frequencies, we obtain

Gu(a))=7r0'25(a)+w0) . (2.18)
The physical spectrum of the signal with the Veshkurtsev distribution law contains

only one spectral component located on the frequency axis at the point with the
abscissa w , when @ = 0, and coincides with the origin.

2.3. Signal model with cosine distribution law

Let's repeat the mathematical model of the signal (2.1)
u(t) = asin(wyt +17), (2.19)

where a, # - random variables (amplitude and phase shift angle, respectively),
each with its own distribution law; w - constant circular frequency; u(?) - instan-
taneous signal values obeying the distribution law
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W,(x)=B(cosx)’" at B= &, where 0> 0. (2.20)
(g
2

Here and below, the number 1 denotes a one-dimensional function. The statistical
law (2.20) is given in the book [ 5 p. 46 ] without a title and additional explana-
tions, there is no information about its use in the literature. Apparently, we are the
first to pay attention to this statistical law. For further actions, we take the value in
formula » =2 (2.20), then B = 1/2 , and expression (2.20) takes the form

W,(x)=(1/2)cos x (2.21)
at —% <x< % The statistical law (2.21) has all the properties prescribed in the

probability theory. We will call it the law of cosine in the future. There are no
quantitative parameters in the mathematical description of the law of cosine. It
should be noted that this law is centered, the mathematical expectation is zero, and

the dispersion is
2
zr

ol="--2. 2.22
M (2.22)

c

It is always constant and depends only on the bounds of the values of the variable
x. By this, this law is inferior to the Gauss law (normal law), in which the disper-
sion and mean square deviation (MSD) are included in the mathematical descrip-
tion of the law.

If the instantaneous values of the quasi-deterministic signal (2.19) are distrib-
uted according to the cosine law, then the signal amplitude will be distributed
according to the law [14]

Wl(y):wﬂa(ﬁy) at 0<y=<?, (2.23)

where J () - Bessel function of the zero order of the first kind; I' (-) — gamma —
function. Since this law was obtained by us for the first time, we will call it the
Bessel law in the future by analogy with the function of the same name included
in it. Using the Bessel law, we determine the initial moments of the distribution of
the signal amplitude (2.19), while obtaining the initial moment of the first order
(expectation) [14]

7°T(0, 2z 2z 27 NEY ,
m{a}= Fg)%){/o [;}SH(EJ +J, (ij&{iﬂ - ”2(3595) (2.24)

and the initial moment of the second order [14]

~ 21(0,95) J2r NGY s NGY 2 NGy
myla}= 8\5{2‘]{2}92’-‘ [2j +J, [2}93’0(2]} (2.25)
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where S, ,(.),S, (), S,,()S;,() - Lommel function [11 ]; J,(-) is the Bessel func-
tion of the " order of the first kind [11].

Turning to the random phase of the signal (2.19), we say that as a result of
mathematical calculations, we have obtained a uniform law according to which

the phase is distributed within —% <n< %

The characteristic function (ch.f.) of a centered quasi-deterministic signal
(2.19) is [14]

cos(Vm j
0,0, )= 71—_1’227 (2.26)

The work [2] describes the properties of the ch.f., which the function (2.26) satis-
fies. In particular, one property of the ch.f. concerns the signal distribution law,
from which it follows that the ch.f. for a signal with a non-centered distribution
law ,(x + e, ) is equal to the ch.f. obtained for a signal with a centered distribution
law Wl(x), multiplied by the exponent exp(F j¥, ¢, ), where e, — the expectation of
the signal. Let us use this property and write the function (2.26) for a non-centered
quasi-deterministic signal (c.q.s.), i.e. a signal that has an expectation. As a result,

we will have
co S[Vm ”j
2

0,,)= Wexp( iV,e,)= AW, )+ jB(V,), (2.27)

where A(V, ),B(Vm) i are the real and imaginary parts of the ch.f. respectively. In
contrast to (2.27), the ch.f. (2.26) has only a real part.
Passing to the ch.f. random amplitude of the centered signal (2.19), we have [14]

0,1)=" 21 4, )1y, ). 223)

J, (\/gﬁjcos[l/zﬂj +J, [f”]sm(mf}

B(r,)=1, [‘g’[]sm( V"z’”j—.lz[‘g”]cos[ V"é”j;

where J|(+) - Bessel function of the first order of the first kind; .J,(+) - Bessel func-
tion of the second order of the first kind [11]. Expression (2.28) is a particular
solution; it is valid for the value ¥, =+/2 , while the general solution for the ch.f.
signal amplitude (2.19) is still in the search stage. Since the expectation of the
signal amplitude (2.19) is not equal to zero, the ch.f. (2.28) is a complex function.

'
—_
~
T
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For the random phase of the signal (2.19), the ch.f. known [4 p. 162] and is
equal to

25111[ Vm)

0,(,)=— 27 (2.29)
v,

it is a real function, since the phase distribution law is centered.

Concluding the analysis of the probabilistic characteristics of the quasi-de-
terministic signal (2.19), we clarify that its instantaneous values are distributed
according to the cosine law, the amplitude - according to the Bessel law, and the
phase - according to the uniform law.

The signal correlation function (2.19) will be

T

2
1

Ju(t)u(t + T)/V( ) (r])dydf] = Emz {a}cos WyT>» (2.30)
E

where W(y) - amplitude probability density (2.23); W(n) - probability density of
the random phase 77; m,{a} is the initial moment of the second order (2.25). Let us
proceed to the analysis of the power spectral density (energy spectrum) of signals
(2.19). Let's write the energy spectrum of the signal

k,(r)=

o~_.m

Ik 7)exp(— ]a)r)dr—gmz{ a}x[8(w—w,)+ 50+, )] - (2.31)

The spectrum (2.31) turned out to be lined. It contains a spectral component
- w,) ranging from - oo to 0 and a spectral component So—w,) ranging
from 0 to oo, where 8(-)— where delta is a function. In the transition to the physi-
cal spectrum, i.e. to the spectrum in the region of positive frequencies, we obtain

G, (@)= nxm,{a}s(w+ o, ). (2.32)

Like the signal (2.9), the physical spectrum of a signal with a distribution ac-
cording to the cosine law contains only one spectral component located on the
frequency axis at the point with the abscissa w, when @ = 0 and coincides with
the origin of coordinates.

2.4. Signal model with the Tikhonov distribution law

Let's repeat the mathematical model of the signal (2.1)
u(t) = asin(wyt +7), (2.33)
where o, # - random variables (amplitude and phase shift angle, respectively),

each with its own distribution law; w - constant circular frequency; u(Z) - instan-
taneous signal values obeying the Tikhonov distribution law

1
W)= — ithin - 234
(x) oy )exp(Dcosx) within -n< x < m. (2.34)
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The authors of the book [ 5 p. 46] without additional explanations call the
statistical law (2.34) the distribution of V.I. Tikhonov, a well-known scientist who
was the first to propose it to describe the phase of self-oscillations of a synchro-
nized generator in a phase-locked loop system. Apparently, we are the leader in
the use of this statistical law in the formation of a quasi-deterministic signal.

Similarly to the cosine law (2.20), in the mathematical model (2.34) there are
no quantitative parameters of the distribution law, except for the coefficient D,
which determines the shape of the probability density graph, since it enters the
Bessel function /(D). Tikhonov's law is centered, its dispersion is determined [15,
p.334]

_ _ (1"2,(D)

ol Ix W(x)dx —_—= Z;W > (2.35)
it is constant and depends on the coefficient D, for example, at D=1 the dispersion
is equal to o> =1,604,, where I,(D) is the Bessel function of the imaginary argu-
ment of the n™ order of the first kind.

The signal amplitude (2.33) is distributed according to the law described by the
probability density of the form [16]

9y
e e s P AN SR REED

Since the statistical law (2.36) was obtamed for the first time, we will call it
the Bessel-Lommel law by analogy with the known functions included in it. The
properties of the law (2.36), prescribed in the theory of probability, have been
verified by us and they are fulfilled. The Bessel-Lommel law describes the distri-
bution of the random signal amplitude (2.33) within 0<y<7.

The expectation of a random signal amplitude is [16]

ma)= o 2 S IUD) 2 S OIS ) (), (b, k]

610([)) ”IO(D)k:I K IQ(D)k:l =

k=1 n

2 4o D) S 1D, (D)
)]2 Zz(k2+n2)3/2 [0 222:1: (k2+n )

X lJO(;r\/k2 +n? )SH (m/k2 +n? )+ J, (m/k2 +n? )S‘z,o(m/kz +n? )J (2.37)

and the initial moment of the second order of the signal amplitude will be
7 16 &1,(D) L2

m, {a}: + z

810(D) ”IO(D)H k* ]O(D)

i Ikk(3D)[2Jn (kﬂ-)SZ,—l (k”)+ Ji (k”)sz,o (k”)]+

6 <o LOLD), 2 ¢ endLD)
CROT S (e RO 25

><[2J0 (mlk2 +n’ )YZ,—I (72'\//{2 +n’ )+ J, (m/k2 +n’ )93’0(7r\/k2 +n’ )J (2.33)
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In this case, the dispersion of the signal amplitude will be &2 =m,{a}—m?{a}.
The designations in expressions (2.37), (2.38) were explained earlier when de-
scribing formulas (2.24), (2.25), (2.28), (2.35).

From the analysis of Tikhonov law, it follows that the random phase of the
signal (2.33) is distributed according to a uniform law within -x...+m.

The characteristic function of the signal (2.33) is the Fourier transform of the
probability density (2.34)

( )
W x)exp(jV,x 2.39
Properties of ch.f. depend on properties 1,,,(D) - the Bessel function of the imagi-
nary argument V- th order of the first kind. The graph of this Bessel function is
shown in the figure in the handbook [17, p.196]. For each value of the parameter
D, the graph of the function is different, however, for the value ¥, — o function

1,,(D)=0. Thus, it can be argued that the properties of the ch.f. (2.39) are ob-
served. If the signal (2.33) has expectation e, then its ch.f. will be

0,(,)= IIV:((DD)) expliVe,). (2.40)
Concluding the analysis of the probabilistic characteristics of the quasi-deter-
ministic signal (2.33), let us clarify that its instantaneous values are distributed
according to the Tikhonov law, the amplitude - according to the Bessel-Lommel
law, and the phase - according to the uniform law.
The signal correlation function (2.33) will be [16]

k,(r)= Tju )xult + W (yW(n)dydn = %mz {a}cosw,r» (2.41)

where W(y) is the amplitude probability density (2.36); W(#) - probability density
of the random phase 7; m,{a} - the initial moment of the second order (2.38).
Let us proceed to the analysis of the power spectral density (energy spectrum) of
signals (2.33). Let's write the energy spectrum of the signal

G, (0)= Ik 7)exp(— jor dr—%mz{a}x[é(a)fa)o)ﬁL&(aHa)o)]. (2.42)

The spectrum (2.42) turned out to be lined. It contains a spectral component
5(w- o,) ranging from -oo to 0 and a spectral component 5(w— @, ) ranging from 0
to oo, where 5(-)— where delta is a function. In the transition to the physical spec-
trum, i.e. to the spectrum in the region of positive frequencies, we obtain

G, (@)= mxm,{a}s(0+w,). (2.43)

Similarly to what was said earlier, the physical spectrum of a signal with a

distribution according to Tikhonov's law contains only one spectral component

located on the frequency axis at the point with the abscissa w , when @ = 0 when
and coincides with the origin of coordinates.
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Completing the stage of formation of mathematical models of quasi-determin-
istic signals for statistical modulation, let's say that we recorded three of them
for the first time with all probabilistic characteristics, including the characteristic
function. A quasi-deterministic signal with an arcsine distribution law already ex-
ists practically as a source of physical oscillations and can be used when per-
forming statistical modulation. The remaining quasi-deterministic signals can be
implemented in practice only in the form of new computer programs, which will
later serve as signal sensors as part of digital technologies. Now it is premature
to talk about the creation of new sources of physical oscillations, in our opinion.
However, the filling of a separate class of random processes with other quasi-
deterministic signals must go on constantly.




The foundations of the theory of construction of new-generation modems

3. NEW GENERATION MODEMS

Modems with amplitude, phase, frequency modulation are widely used in com-
munication technology, but they have low noise immunity when operating in a
noisy channel, and amplitude modulation is the most unprotected from interference.
Currently, they are trying to increase the noise immunity of modems by combating
interference, while inventing various devices and blocks for suppressing interfer-
ence, which, at times, are much more complicated than the modems themselves.

We offer another direction for improving the theory of modulation and another
way of building modems, based on the complication of the mathematical model of
the signal and the modulation of its characteristics, in particular the characteristic
function. It is defined in the domain of probabilities or the space of probabilities
proposed in 1933 by academician A. Kolmogorov when building information the-
ory. At the same time, the probability theory is a mathematical tool for describing
all signal transformations in the probability space. For a signal with a mathemati-
cal model (2.1, 2.9, 2.19, 2.33), the characteristic function (ch.f.) is strictly de-
fined, i.e. fundamentally. Thus, by introducing random variables into the models
(2.1,2.9,2.19, 2.33), a transition to the model of the so-called quasi-deterministic
signal, which is an element of statistical radio engineering, is achieved. At first
glance, replacing a deterministic oscillation model with a quasi-deterministic sig-
nal mathematical model is a fairly simple operation, but the modem noise immu-
nity after replacing the oscillation model turns out to be limiting in the sense that
there are no errors when receiving data.

3.1. The first method of signal modulation

We will consider a new modulation method [18], in which all signal param-
eters are “hidden” inside the expectation operator, as a result of which we obtain
the function

o, )=m fexp(V,u(t))} (€RY
widely known in mathematics, physics, statistical radio engineering. The math-
ematician A. Lyapunov proposed this function and published its description in
1901 [19]. In the literature [4], it is called the characteristic function. Applying L.
Euler's formula, let’s write

O, )=m,feos(V,u(t))j+ jm, sin(V,u(t)}= AV, )+ jBY,, ) (32)
where A(V ), B(V,) —real and imaginary parts of the characteristic function; V is
the parameter of the characteristic function.

By analogy with cosmonautics, the characteristic function (ch.f.) is a “space-
suit” for a signal, it serves as a fundamental probabilistic characteristic of a signal,
for example, a quasi-deterministic oscillation (2.1)
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u(t) =U, sin(w,t +17)

with parameters U,,®,,®(t) = o,t +n, where 1 — a random phase shift angle with a
uniform distribution law within — ... + w. The physical meaning of ch.f. studied
in [2], and it is shown that it is the spectral density of the probabilities of the in-
stantaneous values of the signal (2.1). Ch.f. depends on the probability density of
the signal. Consequently, each model of a quasi-deterministic signal has its own
fundamental ch.f., which has many positive properties. It is limited, measurable,
filters noise, has limiting values ®(0)=1, ®(x)=0, ©(-w)=0. Other remarkable
properties of it are described in [2]. Based on the advantages of the ch.f., we pro-
pose a method for modulating this function.

A ch.f. modulation method in which a constant voltage is multiplied with a
telegraph signal s(z), which takes on the value either "1" or "0", after which the
product e, s(?) is summed with a centered quasi-deterministic signal (2.1), expec-
tation which is equal to zero, and thus carry out the modulation of the ch.f. of the
transformed quasi-deterministic signal according to the law:
for s(¢2)=0 to obtain functions of the form

AWVm,t) = Jo(VaulUot),  B(Va,t)=0; (3.3)
for s(2)=1 to obtain functions of the form

A(Vm,t) = JO(VmUO,t) CoS (Vm eO), B(Vm,t) = JO(VmUO,t) sin (Vm eO), (34)

where J () is Bessel function of zero order; U, — the signal amplitude ¥, — the ch.f.
parameter, and at = 1 function A(1,7) and function B(1,) change in antiphase.
By the way, the dependence of the ch.f. from time to time appeared due to the
modulation of the signal, since the modulated signal is a non-stationary process.

In the future, we propose to call the modulation of a new type statistical mod-
ulation (SSK - statistical shift keying).

A block diagram of the modulator is shown in Figure 3.1, it contains a mul-
tiplier 1 and an adder 2. Timing diagrams explaining its operation are shown in
Figure 3.2. The following explanations can be given to the figures. In accordance
with the definition of the modulation method, a non-centered quasi-deterministic
signal is formed

u, () = e, 5(t) + U, sin(@yt +17) (3.5)

with ch.f. as [2]
oW,.0)=J,(V,Uy,0)exp(jV,e,). (3.6)
Let the telegraph signal be a sequence of logical zeros and ones (Fig. 3.2a). If

s(t)=0, then the ch.f. has only a real part, and its imaginary part is equal to zero
[2], i.e.

ow,.0n=AW,.0=J,,U,0,8(,,1) =0.

m
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In this case, with ¥, =1, we have 4 (1, 1), B (1, ¢) in Figure 3.2d, e. When s(9)=1,
the ch.f. is equal to (3.6). Then we get
AVn,t) = Jo(VaUo,t) cos (Vi eo),  B(Vin,t) = Jo(ViuUo,t) sin (Vi eo).
AtV =1 we have functions
A(1,8) = Jo(Uo,t) cos (e0 ),  B(1,£) = Jo(Uo,t) sin (eo), 3.7
which are shown in Figure 3.2d, e. These functions change according to the law

of the telegraph signal. Therefore, ch.f. modulated by a telegraph signal, and the
functions A(1, ¢), B(1, f) change in antiphase.

Telegraph

signal 1 N A
Constant voltage [} ] Signdl

Figure 3.1. Signal modulator circuit

In our opinion, the structure of the modulator turned out to be simple; there are
no complex nodes and sources of oscillations in it. Quasi-deterministic signal (2.1)
is present at the output of any self-oscillator up to atomic frequency standards. It is
known from the review [20] that they and quartz oscillators have short-term phase
instability, or, in other words, phase fluctuations, and thus fall under the signal
model (2.1). Moreover, the characteristics in Figures 2.1 - 2.4, measured experi-
mentally when studying the signal at the output of a standard generator, confirm
this. Constant voltage value ¢, by analogy with computers, cell phones can be
obtained from the battery. In addition, the amplitude of the high-frequency oscil-
lation in the modulator does not change and, as a result of this, the power amplifier
of the transmitting device has the linearity of the input and output characteristics
in a narrow range of input signals. All taken together characterizes the modulator
only from the positive sides.

a) S(f.'ll
0
1
6) egs(t)
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Figure 3.2. Timing waveform diagram in the modulator

However, this modulation method, in which there is a constant component of
the signal, is used only in wired communication and is not used in radio commu-
nication. Antenna-feeder devices (AFD) in radio communications do not pass the
constant component of the signal. For radio communications, a method for ampli-
tude shift keying (AM) of a signal has been developed, which can be used in statis-
tical modulation, since ch.f. of a quasi-deterministic signal will change, similarly
to the amplitude of a deterministic oscillation. In this case, the amplitude-time
diagram in Figure 3.2¢ will be different and will take the form shown in Figure
3.2e. The power amplifier of the transmitting device will change the linear mode
of operation to non-linear.

At the AM of a centered quasi-deterministic signal (2.1)

s(t)J
10
038
0.6
0.4
02

0

Uy (t) ]
10
0.5
0 H
-0,5
-10
Figure 3.2f. Time diagrams of changes in telegraph and AM signals
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We obtain only the real part of the ch.f., which changes in antiphase with the
telegraph signal and has the form shown in Figure 3.2d. The imaginary part of the
ch.f. centered signal (2.1) is always zero. Schemes of modulators with amplitude
keying of the signal are described in detail in textbooks [21] and monographs [22].

In passing, we present in more detail the diagram in Figure 3.2c for the tele-
graph signal shown in Figure 3.2e. As a result, we get a non-centered quasi-deter-
ministic signal with amplitude keying, shown in Figure 3.2g.

Figure 3.2g. Non-centered amplitude-shift keying signal

3.2. The second method of signal modulation

Let a quasi-deterministic signal (2.9) be modulated, for which the random vari-
able a is distributed according to the normal law with quantitative parameters - ex-
pectation, e, - expectation, 6* - dispersion, and the random # variable is distributed
uniformly within 0...27. Then we have

uz(t)z[s(t)x alsin(w,t +7). . (3.8)
The characteristic function of A. Lyapunov for the quasi-deterministic signal
(2.9), obtained by us earlier using the well-known expression [4, p.263]

OW,) = [J,(xV, W, (x)dx (3.9)

and tables [11], taking into account the distribution law of the random variable a
at V>0, e, =0 has the form (2.12). Ch.f. has properties [2], for example, if the
law W, (x) corresponds to the ch.f. (V' ), then the law W (x+e) corresponds to the
ch.f. @(Vm)exp( +jVmeo). Therefore, for a law with expectation e, # 0 ch.f. (2.12)
is transformed into the expression

2 2

OW,)=m{jV,u,(t)} = IO[V’”f jexp{f V,f402 Jexp(ije0 ) (3.10)

Ch.f. (3.10) at ¥/, =const, excluding zero and infinity, depends on the variables
e, o°. Consequently, by changing the expectation and amplitude dispersion of
the quasi-deterministic signal (2.9) with the help of a telegraph signal s(?), one
can modulate the ch.f. this signal. Using this method of influencing the ampli-
tude, it is possible to implement twelve variants of the considered method of ch.f.
modulation. signal. A new method, the so-called statistical modulation, using a
characteristic function, a quasi-deterministic signal u,(z) and a telegraph message

[ #
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s(t), consists in changing the quantitative parameters of the distribution law of the
amplitude of the quasi-deterministic signal in accordance with the change in the
telegraph message containing a sequence of logical "0" and logical "1".

A block diagram of the modulator is shown in Figure 3.3 [13], it contains a
(IC) interface circuit, a centered quasi-deterministic signal sensor (c.q.s) and a
(SB) settings block. In the settings block, the values of the quantitative param-
eters of the distribution law of the amplitude of the quasi-deterministic signal are
stored in the memory, which are written to the signal sensor through the interface
circuit. The algorithm for writing parameters includes a telegraph signal s(?), from
the logical "0" and "1" of which the values of the settings depend. For example,
when a logical “0” arrives, the setting 6> =1, and when a logical «1» arrives -
6,*=0,0009 is selected, while in both cases the setting e, =0. Then at the output of the
modulator we get a modulated centered quasi-deterministic signal, which is shown
inFigure 3.4. In form, the time diagram of the signal resembles arandom process that
obeys the statistical law of Veshkurtsev, with a probability density of the form (2.11).

SB
sty | o7 Exit
—» 52 > In_te;ﬁce > Sensor c.g.s. —>
L circuit
€y

Figure 3.3. Modulator circuit

002 t

Figure 3.4. Timing diagram of the modulated signal

In the modulator circuit in Figure 3.3, there is no source of physical oscilla-
tions, and instead of it, a centered quasi-deterministic signal sensor (c.q.s.) is used.
This sensor is built as a computer program using digital technology. The same can
be said about other blocks of the modulator block diagram, which are separate files
of the general program.

The instantaneous values of the centered quasi-deterministic signal (2.9) vary
in the range +30 and can reach large values at 6=1, where ¢ — is the mean square
deviation (MSD) of the signal amplitude. This, in turn, places great demands on
the linearity of the input and output characteristics of the power amplifier of the
transmitting device.
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3.3. Combined signal modulator

The first and second methods of signal modulation are implemented individu-
ally using their own modulator. However, it is possible to build some combination
of two modulators [16], shown in Figure 3.5. The combined modulator circuit
includes a multiplier 1, an adder 2, a setpoint block 3, a generator or sensor of a
centered quasi-deterministic signal 4. In contrast to the modulator in Figure 3.3,
the setpoint block contains only the energy quantitative parameters of the genera-
tor (or sensor) oscillation in the form of dispersions ¢ %, 6%, 6 * signal, which are
set using the logical "1" and "0" of the telegraph signal.

en Exdt
o 1 > 2 —
s(t) [ 1
Y
¥
3 » 4

Figure 3.5. Modulator circuit

The expectation e is introduced using a telegraph signal s(?) through another
channel containing a multiplier 1 and an adder 2, which receives a centered quasi-
deterministic signal from a sensor (or generator). As a result of these transforma-
tions, at the output of the modulator, we obtain a non-centered quasi-deterministic
signal shown in Figure 3.6.

uy(t)

0 0,002 0,004 0,008 0,008 0.01 0.012 0,014 0,016 0,018 002 t

a)

0 0.002 0.004 0,006 0,008 0.01 0012 0.014 0016 0018 002 [

b)
Figure 3.6. Timing diagrams of the modulated signal
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The amplitude-time dependence of the fluctuation in Figure 3.6a does not con-

tain the expectation (e, =0), while in Figure 3.6b the quasi-deterministic signal
(2.9) has the expectation ¢, =1.
As a result of this, the characteristic function of the signal (2.9) will be modulated,
and the variance ¢’ = ¢ of the signal (2.9) in both pictures is constant, where o,
o/ is the variance of the signal amplitude (2.9) when a logical “0” and a logical
“1” arrive at the modulator telegraph signal, respectively.

The amplitude-time dependence of the oscillation at the output of the modula-
tor with a non-centered quasi-deterministic signal (3.5) is shown in Figure 3.2c.
Let's recall that the adder 2 of the modulator in this case receives a quasi-deter-
ministic signal (2.1) with a constant dispersion ¢ > from generator 4, which in this
case replaces the sensor.

3.4. Two-channel signal demodulator

To demodulate the signal, we propose a new method [23], which uses an an-
alog-to-digital signal conversion, multiplication of discrete instantaneous signal
values with the parameter V , a functional transformation in order to obtain the
functions of the sine and cosine products, followed by the accumulation of the
values of these functions over a time interval equal to the duration symbol logical
"0" and logical "1". After that, using the sine function, the estimate §(Vm, t) of the
imaginary part of the ch.f. is calculated, and using the cosine function, the estimate
Z\(Vm, t) of the real part of ch.f.,, the current values of which are compared with
the thresholds, and the decision is made in accordance with the fulfillment of the
following inequalities:

1) if B(Vy, t) < IT, , then it is considered that the logical ,0"is accepted;
2) if B(Viy, t) > IT,, then it is considered that the logical 1" is accepted;
3)if A(Vy,, t) > I, , then it is considered that the logical, 0"is accepted;
4)if AV, t) < I, , then it is considered that the logical , 1 "is accepted.

The block diagram of the demodulator is shown in Figure 3.7. It contains an
analog-to-digital converter (ADC) 1, a multiplier 2, functional converters 3,4, ac-
cumulating averaging adders 5,6, threshold devices 7,8, an inverter 9. The princi-
ple of operation of the demodulator is as follows. The demodulator input receives,
for example, a signal (3.8). After conversion to the ADC, the discrete instanta-
neous values of the signal u, (kAf) are multiplied with the parameter V' , and the
products are converted to obtain the function sin [u, (kAt)V | and the function cos
[V, u, (kAt)]. Accumulating averaging adders 5.6 work simultaneously. The adder
5 accumulates the current values of the sine function, and the adder 6 - the current
values of the cosine function. When a synchronization pulse appears at the strobe
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inputs of the adders, the estimates of the real and imaginary parts of the ch.f. ap-
pear at their outputs.

A(Vin, t) = 5 i cos [Viyup (kAD], (3.11)

B(Vim, ) = 5 ZiLy sin [Viuz (KAD)], (3.12)

where N - sample size of instantaneous signal values; At is the signal sampling
interval. The properties of the estimates (3.11,3.12) were studied in [2], and it was
found that for N>>1 they are asymptotically consistent, effective, and unbiased.

The values of the estimates of the ch.f. (3.11,3.12) with the value V =1 are
compared in threshold devices 7,8 with the threshold IT, , IL,, . For convenience of
analysis, the series connection of blocks 3, 5, 7 will be called the sine channel of
the demodulator, and the series connection of blocks 4, 6, 8, 9 will be called the
cosine channel of the demodulator. Each channel has its own output, hence the
demodulator has two outputs. At the output of the cosine channel, the telegraph
signal is received inverse with respect to the original. Therefore, the inverter 9 is
turned on at the channel output. If the above inequalities with the value V =1 are
not met, errors occur in the decision regarding the received symbol of the tele-
graph signal.

‘ IIic  fog «O»

BV 1) «1n
3 5 7
ua(t) Syuchronization «0 I»
b 2 [ Log 1
T AV t)
Vo 4 6 8 9
T HZK

Figure 3.7. Two-channel signal demodulator

Thresholds /7, (sine channel), /7, (cosine channel) are set in accordance with the
equalities

11, = K11, 1T, = K11, (3.13)
where K, K, - variable coefficients; /7, II, are thresholds, the values of which
will be different depending on the model of the quasi-deterministic signal and are
calculated further when analyzing the noise immunity of the modem.

3.5. Single-channel signal demodulator

The sine and cosine channels of the demodulator in Figure 3.7 are not equally
affected by interference and, as a result, have different noise immunity. If we com-
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bine the advantages of each channel together, we get a single-channel demodula-
tor circuit [24], shown in Figure 3.8.

} ch
B 7,
3 5 V) 7 T .«0”
i «1n
u2 . e
(t] 5 Synchronization |
AV 1)
Vi 4 6 8 9
T HZ}:

Figure 3.8. Structural diagram of the demodulator

The block diagram of the demodulator is shown in Figure 3.8. It contains an
analog-to-digital converter (ADC) 1, a multiplier 2, functional converters 3.4,
accumulating averaging adders 5.6, threshold devices 7.8, an inverter 9, logical
AND circuit. Logic circuit 10 combines the outputs of the demodulator channels
in the figure 3.7, after which the demodulator has only one output. The demodula-
tor becomes a single-channel device.

Up to logic diagram 10, the single-channel demodulator operates in full ac-
cordance with the description of the principle of operation of the circuit in Figure
3.7. Further, the logic circuit 10 is included in the work, the operation of which is
explained in Table 3.1.

Table 3.1.
Truth or state table
Sequence number 1 2 3 4
Sinus channel output log. «1» log. «1» log. «0» log. «0»
Cosine channel output log. «1» log. «0» log. «1» log. «0»
Demodulator output log. «1» log. «0» log. «0» log. «0»

Looking ahead, let's say that in the first case, when determining the logical "1",
errors are possible, since the sinus channel determines the logical "1" satisfacto-
rily. But the logical "0" sinus channel determines without errors. Therefore, in all
subsequent cases, the absence of errors can be expected. The simulation of the cir-
cuit in Figure 3.8 confirms what has been said [24]. On average, the single-channel
demodulator in Figure 3.8 reduces the error rate by a factor of 20 compared to the
cosine channel of the two-channel demodulator. The circuit in Figure 3.8 is not
the only one; other options for combining the demodulator channels in Figure 3.7
are possible. Additional studies are required to determine the optimal option for
combining two demodulator channels into one channel.
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Consider another version of the single-channel demodulator [25], shown in
Figure 3.9. In fact, there is actually only one channel in it, namely, this is the pre-
viously designated cosine channel. However, the circuit in Figure 3.9 can equally
belong to the sine channel of the demodulator if the FC will form a sine function.

uy(t) «0»
—>» ADC » Pl » FC * AdA » TD +—>»
T T T «l»
4y Svuchronization IT,.

Figure 3.9. Single-channel signal demodulator

The circuit in Figure 3.9 includes an ADC - an analog-to-digital converter; P1
- multiplier; FC is the functional converter of the cosine function; AA - accumula-
tive averaging adder; TD is a threshold device, in the output circuit of which an
inverter is included, as is done, for example, in the circuit of Fig. 3.7. Therefore,
at the output of the demodulator, we will receive an inverse set of logical "0" and
"1", which are taken from the output of the control panel to the inverter.

Signal conversion, for example (3.8), in the demodulator proceeds in the fol-
lowing sequence. The quasi-deterministic signal (3.8) is discretized by the ADC,
and each discrete instantaneous value of the signal u, (kAt) is multiplied with the
ch.f. parameter ¥, u, (kAt), the product is converted by the functional converter into
the value of the function cos[V,u, (kat)], where At is the sampling interval of the
signal. The values of the cosine function are accumulated in the adder, and when a
synchronization command is received, they are averaged. The result of averaging
enters the threshold device and is compared with the threshold, and the decision is
made in accordance with the inequalities:

1) if K(Vm, t) = Iy, then it is considered that the logical , 1 "is accepted;

2) if A(Vp, t) < Ty, then it is considered that the logical ,0"is accepted.
The result after averaging the AA adder data is

AW, 1) = %ﬁ:cos[Vmuz(kAt)], (3.14)

k=1
where N is the sample size of discrete instantaneous values of the signal. In expres-
sion (3.14), the expectation operator is replaced by an ideal adder. Studies of the
evaluation of the real part of the ch.f. showed [2] that, as N —oo it is asymptotically
consistent, efficient, and unbiased, i.e., evaluation properties tend to fundamental
properties. Consequently, the value of the estimate (3.14) will be equal to the
value of the ch.f. (2.12), while the threshold will be (3.13)

I, =K1,

where K| - variable coefficient; /7, — TD device threshold. The coefficient K| in
each modem is different, it depends on the signal modulation algorithm.
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4. NOISE IMMUNITY OF THE MODEM IN THE CHANNEL WITH
"WHITE" NOISE

The theoretical analysis of modem noise immunity is based on the determina-
tion of the real and imaginary parts of the ch.f. additive mixture. Then the values
are calculated separately for each of the parts of the ch.f. additive mixture. And
finally, these values of the ch.f. are compared with the thresholds set in the sine
and cosine channels of the demodulator in order to make decisions in accordance
with the observance of the inequalities recorded in the signal discrimination algo-
rithm. Separately, a quantitative analysis of the probability of errors is carried out.
In total, thirteen different modems of the new generation are considered together.
To determine whether the material in this chapter belongs to the device model, the
modem name was used, which includes a cipher of letters and numbers denoting
the following: A - arcsine law; K is the law of cosine; B - Veshkurtsev's law; T
is Tikhonov's law; 1 - one channel; 2 - two channels; 2-1 - one channel resulting
from combining two different demodulator channels using digital logic circuits.
Let's correctly write down and decipher, for example, such a name: A2-1 modem
is a single-channel modem for receiving signals with distribution according to the
arcsine law.

4.1. Noise immunity of modem A when receiving an additive mixture of
noise and signal with the distribution of instantaneous values according to
the arcsine law

Let's recall that a signal with the distribution of instantaneous values accord-
ing to the arcsine law can be modulated in two ways, described above in Section
3.1. We will consider each of them separately and, on their basis, we will build
modems that are different in structure and characteristics. As a result, we get three
models of a new generation modem.

4.1.1. Noise immunity of the modem A2 when receiving an additive mixture
of noise and a non-centered signal with the distribution of instantaneous
values according to the arcsine law

The modem contains a modulator (Fig. 3.1), the quasi-deterministic signal at
the output of which is shown in Fig. 3g, and a two-channel demodulator (Fig. 3.7).
Its name will be: modem A2. The modulation algorithm for a quasi-deterministic
signal (2.1) is written in Table 4.1.
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Table 4.1.
Signal modulation algorithm with V. =1
. . . . The value of the
Telegraph signal Signal dispersion value expectation of the signal
logical "0" 0,18 0
logical "1" 0,18 0,9

The methodology and results of the studies were published in [26]. Let us turn
to the analysis of the noise immunity of the demodulator under the action of an
additive mixture of a quasi-deterministic signal (2.1) and "white" noise at its input

z()=u(t)+n(1), 4.1
where n(?) is “white” noise, u(?) is a signal with a=U, and the probabilistic char-
acteristics are known from section 2.1.

Using expressions (3.3, 3.4) and the data in Table 4.1, using formulas (3.13),
we calculate the thresholds in the sine and cosine channels of the demodulator. As
a result, with the value V. =1 and U, =0,6 we get

11 =J(U,bsin(e)) = 0,7116;  II,=J(U,t) = 0,912.
Further, with the value ¥ =1 and s(?) =0 we define for the additive mixture (4.1)

A(Lt)= Tcos(z)W(z)dz =J, (Uo)exp[— %] =

-0

=J, (0'(. ﬁ)exp(— ;h“zz ] . (4.2)

When s(2) = 0, similarly to (4.2), we calculate for the value ¥, =1 for the ad-
ditive mixture (4.1)

B(1,t)= [sin(z)W (2)dz =0, (4.3)

where W(z) — probability density of instantaneous values of the additive mixture;

2
h= U% — signal-to-noise ratio; o’ :U% — the dispersion of the quasi-deter-

ministic signal; ¢, — the dispersion of "white" noise. The results (4.2, 4.3) need
to be quantified. Tables 4.2, 4.3 present the results of calculations for /7,=0,7116;
11=0,912; K ,=0,56; K,=0,88, written in the line with the name of the evaluation.
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Table 4.2.
The probability of errors in the cosine channel at a logical "1"
Threshold /7, 0,912- 0,88 =0,8
Evaluation A(1,7) 0 0 0,37 0,83 0,9 0,9
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 2,2-105 | 2:10% | 2-10%
Table 4.3.
Probability of errors in the sinus channel at logical "0"
Threshold 17, 0,7116 0,56 = 0,4
Evaluation B(l,z) 0 0 0 0 0 0
Relation A? 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 0 0 0

When analyzing the data in tables 4.2, 4.3, we always compare the values of
the estimates of ch.f. additive mixture with the thresholds recorded in the first
line of the tables. At the same time, we see that the data in Table 4.2 exceeds the
threshold, starting from the signal-to-noise ratio from 1 to 100, i.e. in the range of
20 dB. This means that there will be no errors here when receiving a logical "0",
so the modem has maximum noise immunity. In the range of signal-to-noise ratios
from 0.1 to 1, errors when receiving a logical "0" are possible. However, it can
be stated that the noise immunity of the cosine channel of the modem is an order
of magnitude better than the data given in the publication. Analyzing the data in
Table 4.3, we see ideal results. In the sinus channel of the demodulator, all data is
below the set threshold. Therefore, we have the maximum noise immunity when
receiving a logical "0" in the range of signal-to-noise ratios from 107 to 10% or 50
dB, and the lower limit of the range is minus 30 dB. These data are at least twenty
orders of magnitude better than the noise immunity of the device known from the
publication.

Suppose the additive mixture (4.1) contain a non-centered quasi-deterministic
signal at the demodulator input; this corresponds to the condition s(¢)=1. Similarly,
to (4.2), for the value V =1 we define

o 2
A(l,t) = Icos(z)W(z —ey)dz=J,(U,) exp(— o;] cos(e,) =
- (4.4)

2

=J, (O'C V2 )exp(— 26};2 ]cos(eo)

or similarly to (4.3) for the value ¥ = 1 we calculate

50 ||



The foundations of the theory of construction of new-generation modems

-0

B(1,1)= Tsin(z)W(z —e,)dz =J, (Uo)exp[— "22 Jsin(eo) =
4.5)

2

=J, (O'C \/E)CXP[— ZO-hLZ} sin(e,).

The results (4.4), (4.5) need a quantitative analysis. Tables 4.4, 4.5 show cal-
culation data at /7,=0,7116; /1,=0,912; K,=0,56; K,=0,88, written in the line with
the name of the evaluation.

Table 4.4.
Probability of errors in the cosine channel at logical "0"
Threshold /7,, 0,912 0,88 = 0,8
Evaluation A(1,¢) 0 0 023 | 052 | 0,57 0,57
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 2:10% | 2:10% | 2:10%
Table 4.5.
The probability of errors in the sinus channel at a logical "1"
Threshold 17 0,7116- 0,56 = 0,4
Evaluation B(1,¢) 0 0 0,29 0,65 0,71 0,71
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 81032 | 2:10% | 2:10%

Similarly, to the analysis of tables 4.2, 4.3, we will study the data of tables 4.4,
4.5. The data in Table 4.4 is below the set threshold. Hence, they correspond to the
ideal case. Here we can say that the reception of the logical "1" in the cosine chan-
nel of the demodulator occurs without errors, i.e. with ultimate noise immunity, in
the range of signal-to-noise power ratios from 10~ to 10* or in the range of 50dB.
These data are at least twenty orders of magnitude better than the noise immunity
of the device known from the publication. The data in Table 4.5 are much more
modest than the previous ones. In the sinus channel of the demodulator, a logical
"1" is received without errors only when the signal-to-noise ratio is from 1 to 100
or in the range of 20 dB. With a signal-to-noise ratio from 0.1 to 1 in the sinus
channel of the demodulator, errors are possible when receiving a logical "1".

Let's move on from qualitative data analysis to a quantitative assessment of
modem noise immunity. In tables 4.2—4.5, the following designations are adopted:
P, — the probability of errors when receiving a logical "0"; P, — the probability

of errors when receiving a logical "1"; P = %(Po +P,) - is the total probability of
device errors.
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Quantitative assessment of the noise immunity of the modem A2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we obtain estimates of the real and imaginary
parts of the ch.f., which are recorded in tables 4.2 - 4.5. Both estimates are ran-
dom variables with their own properties and distribution laws. Let us recall that
estimates for the real and imaginary parts of the ch.f. are efficient, consistent, and
unbiased. This is shown in earlier works, for example [2], in which the effective-
ness of estimates is characterized by their variances. In the book [2, p. 95 — 96] the
dependence of the variance of estimates (3.11, 3.12) on the dimensionless time is
shown §=T-AF,, where T - the duration of the signal realization; AF’, - the width
of the energy spectrum of the signal. With a value of S =100 the variance of the
estimate of the real part of the ch.f. o} =107, and the variance of the estimate of

the imaginary part of the ch.f. o3 =107, The value S =100 will be obtained when

we take with T=N-Ar=10’-0,luc=0,s and AF, =10007. Here the designations are
borrowed from expressions (3.11,3.12).

The law of distribution of estimates of the real and imaginary parts of the ch.f.
depends on the probability density of the additive mixture of signal and noise.
Let it be normal in the first approximation, since it is difficult to solve this prob-
lem mathematically exactly, and maybe even not possible. According to Professor
S.Ya. Vilenkin, who has been solving similar problems for many decades, "..an
exact solution is possible only in some cases [27, p.106]". For example, in the
same place, the author obtained the exact distribution law for the estimate of the
correlation function of a Gaussian signal, and then, after some assumptions, sug-
gested that it be considered approximately normal. Let's follow this example.
Looking ahead, we say that when modeling a demodulator (Fig. 3.7), the validity
of such a hypothesis was proved in [28].

Next, we proceed similarly to the procedure for discretizing a continuous value
by level, with one level equal to the threshold, and the second level is not limited
by the threshold, i.e. it is variable without negative consequences for the probabil-
ity of errors. At the same time, we consider that the center of the distribution law
coincides with the value of the ch.f., recorded in tables 4.2 - 4.5, since estimates
of ch.f. are not displaced. There is a corridor between the value of the assessment
and the threshold, it is different when A2. If the value of the estimate of the ch.f.
goes beyond the corridor boundary, then an error occurs when receiving a logical
element. For example, the corridor is 0.23 in table 4.4 with a value 4> =10. We
divide the value of the corridor by "sigma", i.e. on g, estimates of the real or on
estimates of the imaginary part of the ch.f. depending on the demodulator chan-
nel in question. The mean square value of the estimate in the cosine channel is
0,= 0,01, so we get the number of "23sigma" separating these two values. Then
we apply a rule similar to the “three sigma” rule and calculate the value of the er-
ror integral at “L sigma”. In our example L=23. The error probability that interests

52|



The foundations of the theory of construction of new-generation modems

us will be equal to the difference between unity and the value of the error integral.
Unfortunately, in reference books on special functions [17], the values of the error
integral are limited to the size L<10. Therefore, in tables 4.2 - 4.5, the values of the
error probability are sometimes overestimated, for example, in table 4.4 at 4> =10.
In fact, the errors will be smaller by many orders of magnitude.

For greater clarity and understanding of what was said above, we use the well-
known distribution law for the estimate of the real part of the ch.f. [28], the view
of which is shown in Figure 4.1. We will calculate the modem error probabilities
using a method developed on the basis of the statistical decision theory [29]. The
estimate is a random variable, depends on the signal-to-noise ratio and has a dis-
persion ¢’ of the real part of the ch.f. and the dispersion ¢°, of the estimate of
the imaginary part of the ch.f. The values of estimates (3.11, 3.12) are distributed
according to the Gauss law [28], in which the values recorded in tables 4.2 - 4.5
are the most probable, i.e. expectations. The distribution law and the initial data,
where W(A) — the probability density of the ch.f. estimate is shown in Figure 4.1a;
m {4} — the expectation of the estimate of the ch.f. You can also see the interval
L, =|m {4}-11,,| between the mathematical expectation of the estimate and the
threshold in the demodulator. In Figure 4.1a, the thresholds are shown to the left
and right of the expected value. This is done because either the left or the right half
of the distribution law is involved in determining the logical "0" and logical "1".

Let's start calculating the error probabilities in the demodulator when a logical
"0" is received. The mathematical expectation of the estimate is equal to the value
(4.4). All values of the evaluation (3.11) must exceed the threshold /7,,, shown in
Figure 4.1a on the left. Let's use the three sigma rule. Let's define the number of
sigmas using the relation L /o ,. The probability of errors when receiving a logical
"0" is equal to the area under the curve W(4), lying to the left of the threshold /7,,.

W) W(B)

I m{d} Ix e mB}y m,

a) 8)

Figure 4.1. The probability density of the real a)
and imaginary b) parts of the ch.f-
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where erf (+), erfc () — probability integral (error function). Formula (4.5d) is suit-
able for calculating errors in the demodulator when a logical "1" is accepted. Only
the expectation of the estimate in this case is equal to the value (4.2), and the prob-
ability of errors is equal to the area under the curve W(4), which lies to the right of
the threshold 17, (colored in black), and will be denoted by P,. Then P = % (R,+R)

the probability of modem errors. When calculating the error probability accord-

It is equal numerically

ing to formula (4.5d), data from tables 4.2, 4.4 were substituted in place m,{4}.
A similar description can be repeated for estimating (3.12) the imaginary part of
the ch.f. using the data in tables 4.3, 4.5 and figure 4.1b.

The total error probability of the sine (curve 1) and cosine (curve 2) demodula-
tor channels is shown in Figure 4.2, and its main values are listed in Table 4.6. For
comparison, in the same place from [15, p.473], the probability of errors (curve
3) of ideal phase modulation (PM), calculated in a noisy channel, is given. The
choice of PM for comparison is not accidental. It is recognized by all as the most
noise-resistant modulation.

Table 4.6.
Probability of errors of different modems

Total sinus channel error probability 0,5 | 2:10%" | 4103 | 1-10% | Less than

1-10%
Total cosine channel error Probability 0,5 [4,9-10"|1,1-10°| 1-10% | Less than

1104
PM error probability 0,9 |3,2:10"|1,510"'| 810° 2:10%
Signal-to-noise ratio 0,1 0,5 1,0 10 100

Comparison of the noise immunity of the new modem with the noise immunity
of the known device, in which ideal PM is used, shows its superiority by at least
four orders of magnitude and more, up to thirty orders of magnitude when working
with weak signals. This causes distrust among modem developers, whose opinion
says: "this cannot be, because it can never be." In the cosine channel (curve 2), the
new modem has a reference point with a non-zero error probability P=1,1-107, i.e.
from the limiting noise immunity of the device, if the probability of errors 10
is conventionally equated to zero. Its occurrence may be associated with a ran-
dom, without any justification, choice for modulating the quantitative parameters
of the distribution law of a quasi-deterministic signal. Probably, the optimization
of these parameters will eliminate the modem reference point. There are no refer-
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ence points in the sinus channel (curve 1) of the modem. Therefore, even with
such data, one can hope for a good future for the new modem with two channels.

10°4

107101

1020+

1030

10-40 t

10"
107! 10° 10’ 102
%)

Figure 4.2. Probability of errors of the two-channel modem A2

As a result, we can say that in the presence of "white" noise in the data trans-
mission channel, the potential noise immunity according to Kotelnikov of the pro-
posed modem is limiting, because with accurate synchronization of both channels
of the modem, there are no errors when receiving a telegraph signal. In the sine
and cosine channels of the modem, the range of signal-to-noise power ratios is dif-
ferent. In the sine channel it is equal to 30 dB, and in the cosine channel - 25 dB,
and the lower limit of the range in the sine channel lies at the level of minus 10 dB,
while in the cosine channel it is equal to minus 5 dB. Thus, the sine channel of the
modem has better noise immunity than the cosine channel. In Figure 4.2, curves
2 and 3 run parallel in the section 1< A* <100. Therefore, the cosine channel at the
error probability level of 1-10-° and less has an energy gain of 10 dB relative to the
ideal PM signal modem.

Single-channel modem A2-1

The new modem contains a modulator (Fig. 3.1) and a single-channel de-
modulator (Fig. 3.8). Its name will be: modem A2-1. The modulation algorithm
for a quasi-deterministic signal (2.1) remains the same and is recorded in Table
4.1. At the same time, the above theoretical analysis of modem noise immunity
when operating in a noisy channel remains unchanged for the new modem model.
However, the new modem model has only one channel and one output. Let's recall
that the demodulator (Figure 3.8) combines the advantages of the sine and cosine
channels of the demodulator in Figure 3.7.
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Table 4.3 shows that in the sinus channel of the demodulator, the logical "0"
is determined without errors in the entire range of signal-to-noise power ratios,
i.e. in the range of 50 dB. Table 4.4 shows that in the cosine channel of the de-
modulator, the logical "1" is determined without errors also in the entire range of
signal-to-noise power ratios, i.e. in the range of 50 dB, if the probability of errors
2-10 is conventionally equated to zero. Theoretically, when these advantages of
both channels are combined, they should get a new modem model with maximum
noise immunity in the range of signal-to-noise ratios of 50 dB, with the lower limit
of the range equal to minus 30 dB. However, in practice this does not work out,
which is confirmed by table 3.1 of truth. The probability of errors in modem A2 - 1
decreases on average by 20 times compared with the probability of errors in the
cosine channel of modem A2.

Figure 4.3 shows the error probability of different new generation modems,
where curve 1 is plotted for a known 4-QAM modulation and curve 3 for known
QPSK modulation. Curves 2, 4 — 7 are plotted for the new SSK modulation. Curve
2 shows the error probability of modem Al with a non-optimal modulation al-
gorithm, and curve 4 - with the optimal modulation algorithm. Curve 5 refers to
modem A2 (cosine channel), curve 7 - to modem A2 (sine channel). Curve 6 refers
to an A2-1 dual-channel modem with channel bonding connected.
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Figure 4.3. The probability of errors of different modems of the new generation

Modem A2-1 is superior in noise immunity to the cosine channel of modem
A2 and modem Al. It has a potential noise immunity in the range of 30 dB and in
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this indicator exceeds, at least twenty orders of magnitude, modems known from
domestic and foreign literature. The A2-1 modem with such characteristics has no
analogues and competitors all over the world.

To test the theory, statistical modeling was first carried out, and then, for re-
verification, simulation modeling of the A2 modem and the A2—1 modem, its re-
sults were published [24,30]. The simulation confirmed the results of the theoreti-
cal analysis of the noise immunity of the demodulator. There is marked point D in
Figure 4.3 where the results of calculations and simulations coincided.

4.1.2. Noise immunity of A1 modem when receiving an additive mixture
of noise and a centered signal with the distribution of instantaneous values
according to the arcsine law

The modem contains a modulator, the quasi-deterministic signal at the output
of which is shown in Figure 3.2¢ and coincides in shape with the classical ampli-
tude keying, and the demodulator is single-channel (Figure 3.9). Its name will be:
modem Al. The modulation algorithm for a quasi-deterministic signal (2.1) is
written in Table 4.7.

Table 4.7.
Suboptimal signal modulation algorithm with V, =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "1" 1,125 0

logical "0" 0 0

The methodology and results of the studies were published in [25]. Let us turn
to the analysis of the noise immunity of the demodulator, under the action of an
additive mixture (4.1) of a centered quasi-deterministic signal (2.1) and "white"
noise at its input

z()=u(t)+n(1),
where n(?) — "white" noise, u(?) - a signal witha = U,

Using expressions (3.3, 3.4) and the data in Table 4.7, using formulas (3.13),
we calculate the threshold in the cosine channel of the demodulator. As a result,
with the value V=1, we get

11> = Jo(Uo,t) =Jo(0) = 1.

Further, with the value ¥, =1 and s(?) =1 let’s define for the additive mixture
4.1)
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A1) = Tcos(z)Wl (2)dz = JO(UO)exp(— "2] -

—on0

-J, (O'C\/E)exp[— ;l] , (4.52)

where W (z) — probability density of instantaneous values of the additive mixture
2

(4.1); h= G% — signal-to-noise ratio; ¢’ = U% — is the dispersion of the quasi-

deterministic signal. If the signal s(z) =0, then expression (4.5a) takes a different

form

A(l,t)= Tcos(z)Wl(z)dz =J,(0) exp[— %} = exp[— ;hfz J (4.560)

The results (4.5a), (4.5b) require a quantitative analysis. Tables 4.8,4.9 pres-

ent calculation data at I7=1; K,=0,55; o. =1125 written in a line with the name
evaluation.

Table 4.8.
Probability of errors at logical "1"
Threshold /7, 1-0,55=0,55
Evaluation Zl(l,t) 0 0 0,004 0.57 0,95 1
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 5-10°% | 2-10% | 2-10%

When analyzing the data in Table 4.8, we always compare the values of the
ch.f. additive mixture with the threshold recorded in the first row of the table. At
the same time, we see that the data in Table 4.8 exceed the threshold, starting
from the signal-to-noise ratio of 1 to 100, i.e. in the range of 20 dB. This means
that there will either be no errors here when accepting a logical “1”, or they will
be minimal. Let's recall that the inverter is turned on at the demodulator output,
therefore, the recipient of information has a logical "0".

Table 4.9.
Probability of errors at logical "0"
Threshold /7, 1-0,55=10,55
Evaluation A(1,¢) 0 0 0,002 | 0,29 0,49 0,51
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Probability of errors P, 2:10% | 2-10% | 2-10% | 2-10% |2,2-10"7| 1,5-10®
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The data in Table 4.9 came out below the set threshold. Therefore, they cor-
respond to the ideal case. This allows us to say that accepting of the logical "0"
in the demodulator occurs without errors, i.e. with maximum noise immunity in
the range of signal-to-noise power ratios from 107 to 10? or in the range of 50 dB.

LT3

And, as a result of this, simple control commands (“turn on” or “turn off”, “open”
or “close”, “raise” or “lower” and others) will be accepted by the modem with a
reliability equal to one. If there is an inverter in the demodulator, the accepting of
information receives the message in the form of a logical "1".

Let's move on from qualitative data analysis to a quantitative assessment of
modem noise immunity. In tables 4.8,4.9, the following designations are accepted:
P, - the probability of errors when accepting a logical "0"; P, - the probability of
errors when accepting a logical "1"; P= %(P0 +P,)- total probability of device er-
rors.

Quantitative assessment of noise immunity of modem Al

Again, we note that in expression (3.11), an ideal adder is used instead of the
expectation operator. And, as a result of this, we obtain an estimate of the real part
of the ch.f., which is recorded in tables 4.8,4.9. Repeating verbatim the reasoning
stated above in section 4.1.1, we obtain, in relation to the data of tables 4.8, 4.9, the
quantitative values of the error probability of the new modem model. The prob-
ability of demodulator errors depending on the signal-to-noise ratio with the help
of graphs is shown in Figure 4.4, where curves 1 (at K,=0.55), 2 (at K,=0.53) char-
acterize SSK (statistical shift keying) according to the data obtained here, curve 3
is amplitude keying according to the data of [15, p.478], curve 4 is the ideal PM
according to the data of [15, p.473]. The variable coefficient K, significantly af-
fects the noise immunity of the A1 modem, since up to the value 4’ =10 inclusive,
curve 1 looks better than curve 4, which characterizes the noise immunity of an
ideal PM. The difference between them reaches ten orders of magnitude, and the
gain in noise immunity belongs to amplitude manipulation. Here, the SSK com-
petes as a leader, outperforming phase keying even in noise immunity. To detail
the error probability, its main values are recorded in Table 4.10. For comparison,
in the same place from [15, p.478], the probability of errors of ideal amplitude
shift keying (AM), calculated in a noisy channel, is given. When the value of
the coefficient K, =0.55, modem A1l is superior in noise immunity to the known
device using the ideal AM in the range of signal-to-noise power ratios of 20 dB.

Table 4.10.
Probability of errors of different modems

New modem error probability (curve 1) 0,5 510" | 2,5-10°|1,1-10"7 | 7,5-10°
Probability of errors AM 0,82 0,62 |4,810"| 6-107? 3-107

Signal-to-noise ratio 0,1 0,5 1,0 10 100
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Comparison of the noise immunity of the A1 modem with the noise immunity
of the known device, in which the ideal AM is used, shows its superiority by at
least two orders of magnitude or more, up to fifteen orders of magnitude.

Thus, new knowledge makes it possible to improve, at least two orders of mag-
nitude, the noise immunity of modems with amplitude shift keying, which have
been operating in digital communication systems over the past decades. For this,
not much is required at all - to build a demodulator patented in Russia and conduct
its full-scale tests.

10°
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Figure 4.4. Error probability of a single-channel modem Al

First, statistical modeling was carried out, and then, for re-verification, simula-
tion modeling of the A1 modem was carried out, its results were published [24, 30].
The simulation confirmed the results of the theoretical analysis of the noise im-
munity of the demodulator.

It seems that new knowledge allows, in our opinion, to make a big leap to-
wards improving the noise immunity of old-generation modems operating with
amplitude-keyed signals. Our conclusion can be treated differently. However, it
cannot be left unattended, because in the era of the digital economy, a new genera-
tion modem has a great future.

Comparison of Figures 4.3, 4.4 shows that a single-channel A1 modem with
a non-optimal modulation algorithm (Table 4.7, curve 1 in Fig. 4.4 or curve 2 in
Fig. 4.3) is inferior in noise immunity to the same Al modem with an optimal
modulation algorithm (Table 4.11, curve 4 in Figure 4.3). The Al modem with
the optimal modulation algorithm is 10 dB more energy efficient than the known
QPSK modulation.
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Table 4.11.
Optimal signal modulation algorithm with V, =2

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "1" 0,72
logical "0" 0

The search for optimal signal modulation algorithms is aimed at constructing
such a special function J,(¥,U,s(t)) in formulas (4.5a, 4.5b), the values of which at
s(t) = 1 and s(?) = 0 differ from each other by several orders of magnitude.

4.2. Noise immunity of modem B when receiving an additive mixture of
noise and signal with the distribution of instantaneous values according to the
Veshkurtsev law

The statistical law of Veshkurtsev [12] has quantitative parameters that can be
changed abruptly, i.e. modulate the signal with the distribution of instantaneous
values according to this law. In total, we have considered 12 methods of modulat-
ing the characteristic function (ch. f.) of a quasi-deterministic signal with the dis-
tribution of its instantaneous values according to the Veshkurtsev law. The vari-
ables in this law were the variance and the expectation of the random amplitude of
the signal, which, in turn, was distributed according to the Gauss law. The result
is 6 direct signal modulation methods and 6 inverse modulation methods. The 10
signal modulation methods in the demodulator require sine and cosine channels
to transform its instantaneous values in order to recover the transmitted informa-
tion. Only 2 modulation methods require one cosine channel in the demodulator to
recover the telegraph signal.

4.2.1. Noise immunity of the Bl modem when receiving an additive mixture
of noise and signal with the distribution of instantaneous values according to
the centered Veshkurtsev law

The modem contains a modulator (Fig. 3.3) and a single-channel demodulator
(Fig. 3.9). Its name will be: modem B1. The modulation algorithm for a quasi-
deterministic signal (2.9) is written in Table 4.12.

Table 4.12.
Signal modulation algorithm with V. =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "1" 1,0
logical "0" 0,0009
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The research methodology and results are published in [10,12,31]. Let us turn
to the analysis of the noise immunity of the demodulator, when an additive mix-
ture of a quasi-deterministic signal (2.9) and "white" noise acts at its input

z()=u(t)*+n(1), (4.6)

where n(t) — "white" noise, u(t) — signal (2.9).
Using expression (2.12) and the data in Table 4.11, using formula (3.13), we
calculate the threshold in the demodulator. As a result, with the value V. = 1, we get

Hl:[{%gjexp(— O-ng =0,7917.

Let us represent the functional transformation in the demodulator circuit with
the dependence y =cosz at the value V| =1 and N>> 1. Let us calculate the expec-
tation m /y/, since the ch.f. is the expectation of the cosine function for the real
part and the sine function for the imaginary part. Let's recall that the imaginary
part of the ch.f. is equal to zero. We get with the value V =1

m{y} = Tcos(z)W(z)dz =1, (iaz)exp{— [6 220-“‘ H, 4.7)

where W(z) - the probability density of the additive mixture (4.6); ¢ * - dispersion
of "white" noise. Dispersion of the modulated c.c.s. changes abruptly from o2
to ¢ %, the values of which are recorded in Table 4.12. Then, when transmitting a
logical "0", we get

-0

2 2 2
m{y}, :10(@) eXp[_(O'U-i-ZGWH’ (4.8)
4 4
and when transmitting a logical "1" will be
2 2 2 2
m{y}, :IO(O";)eXp|:_[O_1 +4 < j:|: (49)

Having performed the following substitutions in expressions (4.8,4.9)
o=0//h’ 07=0’/h’, we get

Al,f)=1, (ij exp{— 0'5(2:}[};02 H, (4.10)
A(L)= IO(OIJ exp{— 0'12[2;1};12 H, (4.11)

where i, = o,/ o - signal-to-noise ratio when receiving logical "0";

h,= o,/ o - signal-to-noise ratio when receiving a logical "1".

The results (4.10), (4.11) require a quantitative analysis. Tables 4.13, 4.14
show the calculation data at K, =1,14, 1, = 0,7917, recorded in the line with the
name of the evaluation. In this case the following is taken into account. The modu-
lation algorithm in Table 4.12 contains 6,7 and ¢,°. This means that at a constant
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noise power in the case of transmission of a logical "0" and a logical "1", the
ratio 4,” > h?. For the given values of the dispersions, we will obtain a value
h,;=1111,11 h? and use it in the calculations. When the modem is operating in
a noisy channel, it is impossible to provide a different signal-to-noise ratio at its
input when receiving a logical "0" and a logical "1", because the noise power in
the channel does not depend on the logical "0" and "1". Therefore, the final conclu-
sions about the probability of modem errors in this case should be taken depending
on the values of the ratio /.

Table 4.13.
Probability of errors at logical "1"
Threshold /7, 0,7917-1,14=0,9
Evaluation A(1,¢) 0,6376 | 09512 1 1 1 1
Relation 4 ? 0,001 | 0,01 0,1 1,0 10 100
Probability of errors P, 1 1,5-1012 | 2-10% | 2-10% | 2:10% | 2:10%

In Table 4.13, the evaluation values A(L,9) exceed the threshold at a signal-
to-noise ratio from 0.01 to 100; here, in a noisy channel, there are no errors when
accepting a logical "1" in the demodulator. When /> < 0,01 errors appear in the
demodulator in the channel with noise when accepting a logical "1". Thus, the
range of signal-to-noise ratios is only 40 dB, with the lower limit of the range be-
ing minus 20 dB.

Table 4.14.
Probability of errors at logical "0"
Threshold 77, 0,7917-1,14=0,9
Evaluation A(1,¢) 0,505 | 0,757 | 0,788 | 0,792 | 0,792 | 0,792
Relation 4, LITULT [ T4 | TN { 1L [ 1T, | 1111
Probability of errors P, 0 0 0 0 0 0

In Table 4.14, all evaluation values A(1,f) are less than the threshold for any
signal-to-noise ratio. This means that in a channel with noise, the demodulator
does not have errors when receiving a logical “0” in the range of signal-to-noise
ratios of 50 dB.

Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the B1 modem. In tables 4.13,4.14, the following designa-
tions are accepted: P, — the probability of errors when accepting a logical "0"; P,
— the probability of errors when accepting a logical "1"; P= 1/ (P, + P) - the total
probability of device errors.

2
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Quantitative assessment of modem noise immunity B1

In expression (3.11), an ideal adder is used instead of the expectation operator.
And, as a result of this, we obtain an estimate of the real part of the ch.f., which
is written in tables 4.13, 4.14. An estimate is a random variable that has its own
properties and distribution law. Repeating verbatim the rationale and methodol-
ogy for calculating errors in the demodulator, set out in Section 4.1.1, we get the
data recorded in Table 4.15. For comparison, the error probability of ideal phase
modulation (PM) is given in the same place from [15, p.473], calculated in a noisy
channel.

Table 4.15.
Probability of errors of different modems

Less than | Less than | Less than
1-10% 1-10% 1-10%

PM error probability 1,0 0,9 1,5-10! 810° 2:10%
Signal-to-noise ratio 0,01 0,1 1,0 10 100

Probability of modem errors | 7,5-10% | 1-10-*

The error probability of the demodulator depending on the signal-to-noise ra-
tio with the help of graphs is shown in Figure 4.5, where curve 1 characterizes
the error probability according to the data obtained here, curve 2 - the ideal PM
according to the data of [15, ¢.473]. The variable coefficient K| significantly af-
fects the probability of modem errors. Thanks to it, you can adjust the amount of
demodulator errors.

Comparison of the noise immunity of a new modem model with the noise im-
munity of a well-known device in which ideal PM is used shows its superiority by
at least ten orders and even up to thirty orders. These figures are simply fantastic.
Perhaps they determine the potential noise immunity of statistical modulation for
the near future, which must be achieved. Therefore, in a noisy channel, modem B1
has maximum noise immunity or, in other words, it works without errors when re-
ceiving a telegraph message in the range of signal-to-noise ratios from 0.01 to 100,
i.e. in the range of 40 dB, starting from a value of minus 20 dB. This indicates that
the expectation operator in the mathematical model of ch.f. reliably protects the
signal from noise. Modems of the new generation can work without errors when
the signal-to-noise ratio is much less than one. This modem model can be used in
radio and wired, cable, fiber-optic communication channels. This modem has no
analogues and competitors all over the world.
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Figure 4.5. Error probability of a single-channel modem Bl

4.2.2. Noise immunity of the B2 modem when accepting an additive
mixture of noise and signal with the distribution of instantaneous values
according to the non-centered Veshkurtsev law

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its name will be: modem B2. The modulation algorithm for a quasi-
deterministic signal (2.9) is written in Table 4.16.

Table 4.16.
Signal modulation algorithm with V. =1
. . . . The value of the expectation
Telegraph signal | Signal dispersion value of the signal
logical "0" 0,01 0
logical "1" 0,01 0,6

The research methodology and results are published in [10,13,31]. Let us turn
to the analysis of the noise immunity of the demodulator, when an additive mix-
ture of a quasi-deterministic signal (2.9) and "white" noise acts at its input

z()=u(1)+n(1), (4.12)
where n(?) — "white" noise, u(z) — signal (2.9).
Using expressions (2.12,3.10) and the data in Table 4.16, using formulas
(3.13), we calculate the thresholds in the demodulator. As a result, with the value
V., =1, we get
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1= % ~0,5646 , 11 0 % | _1.
1= 1 ( 2 Jexp( 2 jsm(eo) 2= 1, [ 1 Jexp{ 2 ]

Let us calculate the real and imaginary parts of the ch.f. additive mixture (4.12)
and is comparable with the thresholds. Then, during the transmission s(z) = 0 and
value V=1 in the channels of the demodulator, the threshold devices will accept
the values of the real and imaginary parts of the ch.f. additive mixture equal to

2

A(L,2) Tcos(z)/V (z)dz = 1( jex {—GO[ZJrh H, B(l,t):i]isin(z)/V(z)dz=0, (4.13)

4n’

where W(z) - the probability density of the additive mixture; =o0,/c, - signal-to-
noise ratio; o, * - dispersion of "white" noise. When transmitting s(z) = 1 and the
value V=1 in the channels of the demodulator, the threshold devices will accept
the values of the real and imaginary parts of the ch.f. additive mixture, equal

)= ooteptevente -1 % o -2 ke, o

B,1)= jsmzwz+e0)dz_ ( ]ex {_%[ +h2ﬂsin(eo). (4.15)

4n*

Let K, =096,K, =0,532;11, = ;I1, = 0,5646;0, =0,01;¢, =0,6. The results of calcula-
tions by formulas (4.13,4.14,4.15) are summarized in tables 4.17, 4.18,4.19,4.20,
recorded in the line with the name of the evaluation.

Table 4.17.
Probability of errors in the cosine channel of the modem at a logical "1"
Threshold 17, 1- 0,96 =0,96
Evaluation A(1,¢) 0,0067 | 0,6065 | 0,9512 0,99 1 1
Relation /’ 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 0,988 | 2,1-10° | 1,5-10® | 1,5-10*

Analysis of the data in tables 4.17-4.20 shows that the logical "1" in the co-
sine channel and the logical "0" in the sine channel are determined correctly, i.e.
without errors, at any signal-to-noise ratio in the range from 103 to 10? or 50 dB
in power. Logical "0" in the cosine channel is determined without errors when the
signal-to-noise ratio is from 0.1 to 100, i.e. in the range of 30 dB in power.
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Table 4.18.
Probability of errors in the cosine channel of the modem with a logical "0"
Threshold 17, 1- 0,96 = 0,96
Evaluation A(1,7) 0,0056 | 0,5005 0,785 0,817 0,8253 | 0,8253
Relation A’ 0,001 0,01 0,1 1.0 10 100
Probability of errors P, 0 0 2:10% | 2-10% | 2-10% | 2-10%
Table 4.19.
Probability of errors in the sinus channel of the modem at a logical "1"
Threshold /7 0,532-:0,5646 = 0,3
Evaluation B(l,z) 0,0038 | 0,3424 | 0,537 | 0,559 | 0,5646 | 0,5646
Relation A’ 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 5,8-102(2,810%(4,3-103"| 1,5-10** | 1,5-10°2
Table 4.20.
Probability of errors in the sinus channel of the modem at a logical "0"
Threshold 77 0,532-0,5646 = 0,3
Evaluation B(1,¢) 0 0 0 0 0 0
Relation A’ 0,001 0,01 0,1 1,0 10 100
Probability of errors P, | 3,8-10*" | 3,8-10*" | 3,8-10*' | 3,8-10“" | 3,8-10*' | 3,8-10*

At the same time, in the sinus channel, the logical "1" is determined without
errors when the signal-to-noise ratio is from 0.01 to 100, i.e. in the range of 40
dB on power. In this modem, the sinus channel prevails, since it has a maximum
noise immunity in the range of signal-to-noise ratio of 40 dB when operating in a
communication channel with white noise interference, and the lower limit of the
range is minus 20 dB.

From a qualitative analysis of the data, let's move on to a quantitative assess-
ment of the noise immunity of the B2 modem. In tables 4.17 - 4.20, the following
designations are adopted: P, — the probability of errors when accepting a logical
"0"; P, — the probability of errors when accepting a logical "1"; P= %(P0 +P) —
total probability of device errors.

Quantitative assessment of modem noise immunity B2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we get evaluations of the real and imaginary parts
of the ch.f., which are recorded in tables 4.17 - 4.20. Both evaluations are random
variables with their own properties and distribution laws. Repeating verbatim the
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rationale and methodology for calculating errors in the demodulator channels, set
out in Section 4.1.1, we obtain the data recorded in Table 4.21. For comparison,
the error probability of ideal phase modulation (PM) in the same place from [15,
p-473] is given, calculated in a noisy channel.

Table 4.21.
Probability of errors of different modems

Total sinus channel

102 1026 <1031 1033 L1033
error probability 2,910 1,410 2,110 7,510 7,510

Total cosine channel

105 109 109
error probability 0,5 0,5 1-10 7,510 7,510
PM error probability 1,0 0,9 1,5-10°! 810° 2:10%
Signal-to-noise ratio 0,01 0,1 1,0 10 100

The dependence of the B2 modem error probability on the signal-to-noise ratio
is shown in Figure 4.6, where curves 1,2 refer to the cosine channel of the de-
modulator; curves 3,4 - to the sinus channel of the demodulator; curve 5 - to the
ideal PM. The sine and cosine channels have different noise immunity, and in each
channel it strongly depends on the value of the thresholds (3.13). With the help of
variable coefficients K, K,, the modem can be configured. An example of this is
shown in Figure 4.6, where curve 2 is obtained with a coefficient K, = 0.52; curve
4 - with coefficient K,=0.532; curve 1 - with coefficient K, = 0.98; curve 3 - with
coefficient K, = 0.96. Curves 1, 2 have the expectation of the signal e, =0.4, and
curves 3,4 have the value e, =0.6, which is recorded in Table 4.16. This means that
changing the value of e, also affects the noise immunity of modem B2. Therefore,
it is necessary to create the foundations of the theory of statistical signal modula-
tion algorithms with the Veshkurtsev distribution law in order to obtain good noise
immunity of the B2 modem. Unfortunately, this has not been done yet, and the sig-
nal modulation algorithm is written approximately. Nevertheless, the probability
of errors in the sinus channel of the modem turned out to be tremendously low and
lies at the level of 7.5-10* when receiving weak signals, when the signal-to-noise
power ratio does not exceed 17 dB, and the lower limit of the ratio is minus 10 dB.
According to this indicator, the B2 modem is thirty orders of magnitude superior
to a similar device with ideal phase modulation (curve 5). On the other hand, the
cosine channel of modem B2 has an error probability of 7.5-10° and competes
very little with the well-known device using PM. Therefore, it has no prospects
for existence in the future.
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Figure 4.6. Error probability of a dual-channel modem B2

Single-channel modem B2-1

The new modem contains a modulator (Fig. 3.3) and a single-channel demodu-
lator (Fig. 3.8). Its name will be: modem B2-1. The modulation algorithm for a
quasi-deterministic signal (2.9) is written in Table 4.16. At the same time, the
above theoretical analysis of modem noise immunity when operating in a noisy
channel remains unchanged for the new modem model. However, the new modem
has only one channel and one output, on which the telegraph signal will appear
as a result of the execution of the state table 3.1. Let's recall that the demodula-
tor (Figure 3.8) combines the advantages of the sine and cosine channels of the
demodulator shown in Figure 3.7.

Table 4.20 shows that in the sinus channel of the demodulator, the logical "0"
is determined without errors in the entire range of signal-to-noise power ratios,
i.e. in the range of 50 dB, if the probability of errors 3.8-10*! is conventionally
equated to zero. Table 4.18 shows that in the cosine channel of the demodulator,
the logical "1" is determined without errors also in the entire range of signal-to-
noise power ratios, i.e. in the range of 50 dB, if the probability of errors 2-10* is
conventionally equated to zero. When combining these advantages of both chan-
nels together, we get a new modem with maximum noise immunity in the range of
signal-to-noise ratios of 50 dB, with the lower limit of the range equal to minus 30
dB. However, this theoretical result cannot be realized in practice. The demodula-
tor in Figure 3.8 improves the noise immunity of the B2 modem's cosine channel
by only a factor of 20 on average.
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The error probability of different modems of the new generation is shown in
Figure 4.7, where curve 3 refers to modem B2 - 1, curve 1 - to modem B1. It also
shows the error probability of the sine channel (curve 2) and the cosine channel
(curve 4) of the modem B2, as well as the known device (curve 5) for accepting
signals with phase modulation.

The B2-1 modem is superior in noise immunity to the cosine channel of the
B2 modem, but inferior to the sine channel of the B2 modem, the Bl modem and
the device using phase modulation. Such a modem has no prospects for the future.
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Figure 4.7. The probability of errors of different modems of the new generation

4.3. Noise immunity of the modem K2 when accepting an additive mixture
of noise and signal with the distribution of instantaneous values according to
the cosine law

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its name will be: modem K2. The modulation algorithm for a quasi-
deterministic signal (2.19) is written in Table 4.22.
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Table 4.22.
Signal modulation algorithm with V. =1

. . . . The value of the expectation
Telegraph signal | Signal dispersion value of the signal
logical "0" 0,4674 0
logical "1" 0,4674 0,8

The modem research technique was developed in [14]. Let us turn to the analy-
sis of the noise immunity of the demodulator, when an additive mixture of a quasi-
deterministic signal (2.19) and "white" noise acts at its input

2(O=u()+n(1), (4.16)
where n(1) — "white" noise, u(1) — a signal with a=U,.
Using expressions (2.26,2.27) and the data in Table 4.22, using formulas (3.13),
we calculate the thresholds in the demodulator. As a result, with the value V =1,
we get

1= 7sin(e,)=0,5634, 112 =T/, =0,7854.

For the value V =1, we define for the additive mixture (4.16) the real part of
the ch.f.

A4 (1,1)= _Tcos(z)W(z)dz =%exp[— 2O-hcz } 4.17)

—o0

where i =0,/0, - signal-to-noise ratio. When s(2)=0, similarly to (4.17) we calcu-
late for the value V=1 for the additive mixture (4.16) the imaginary part of the
ch.f.

B(1,¢)= Tsin(z)W(z)dz =0, (4.18)

-0

The results (4.17), (4.18) require a quantitative analysis. Tables 4.23, 4.24
present the results of calculations at /7, =0,5634, II, =0,7854, K, =053, K, =0,764,
written in a line with the name of the evaluation.

Table 4.23.
Probability of errors in the cosine channel of the modem at a logical "1"
Threshold 77, 0,7854- 0,764 = 0,6
Evaluation A4(1,¢) 0 0 0,08 | 0,624 | 0,77 0,79
Relation 42 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 6,9-10* | 2:10% | 2-10%
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Table 4.24.
Probability of errors in the sinus channel of the modem at a logical "0"
Threshold /7, 0,5634:0,53 =0,3
Evaluation B(1,¢) 0 0 0 0 0 0
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 0 0 0

Analysis of the data in Table 4.23 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors in the range of signal-to-
noise power ratios from 1 to 100 or from 0 dB to 20 dB. Table 4.24 presents the
ideal results, as logical "0" in the sinus channel of the demodulator is determined
without errors, i.e. with ultimate noise immunity, at any signal-to-noise power
ratio in the range of 50 dB. This allows us to say that simple control commands
such as turn on-off, open-close and others will be accepted with a reliability equal
to one, in any operating conditions of the K2 modem.

Suppose the additive mixture (4.16) at the demodulator input contain non-cen-
tered quasi-deterministic signal, this corresponds to the condition s(#)=1. Similarly
to (4.17), at the value V =1 we define

w© 2
A(1,t)= J.cos(z)W(z)dz = %exp[— ;-}:2 ]cos(eo) (4.19)
or similarly (4.18) with the value V/ =1 we calculate
B(L.1)= [sin(z)W (2)dz = %exp[— 2"}:2 Jsin(eo (4.20)

The results (4.19), (4.20) require a quantitative analysis. Tables 4.25, 4.26
show calculation data at 77, =0,5634, II, =0,7854, K, =053, K, =0,764, written in
a string with the name of the evaluation.

Table 4.25.
Probability of errors in the sinus channel of the modem at a logical "1"
Threshold /7 0,5634- 0,53 =0,3
Evaluation B(1,) 0 0 0,05 0,44 0,55 0,56
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 1,1-107"2 | 810 | 8,6-10%

In case of the selected threshold values according to the data of tables 4.25,
4.26, the distinction of logical "1" from zero in the sinus channel of the demodula-
tor occurs without errors in the range of signal-to-noise ratios from 1 to 100, i.e. in
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the range equal to 20 dB. In this case, in the cosine channel of the demodulator the
maximum noise immunity is maintained at a signal-to-noise power ratio of 0.001
and higher up to 100, i.e. in the 50 dB range, for which the lower limit is minus
30 dB. Therefore, simple control commands such as turn on-off, close-open and
others will be accepted by the cosine channel with a reliability equal to one, under
any operating conditions of the K2 modem.

Table 4.26.
Probability of errors in the cosine channel of the modem at a logical "0"
Threshold /7, 0,7854- 0,764 = 0,6
Evaluation A(L?) 0 0 0,05 0,43 0,54 0,55
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 2:10% | 2,2-107 | 1,5-10"2

As a result of the analysis of the noise immunity of the K2 modem, we can say
that in the presence of "white" noise in the data transmission channel, the noise im-
munity according to Kotelnikov of the proposed modem is limiting. With accurate
synchronization of the operation of both channels of the K2 modem, there are no
errors when receiving a telegraph signal in the range of signal-to-noise ratios of 20
dB or more, and the lower limit of the range is 0 dB.

Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the K2 modem. In tables 4.23-4.26, the following designa-
tions are accepted: P, — the probability of errors when receiving a logical "0";
P, — the probability of errors when receiving a logical "1"; P= %(P0 +P) - the
total probability of device errors.

Quantitative assessment of the noise immunity of the K2 modem

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we obtain estimates of the real and imaginary parts
of the ch.f., which are recorded in tables 4.23 - 4.26. Both estimates are random
variables with their own properties and distribution laws. Let's recall that evalua-
tions for the real and imaginary parts of the ch.f. are efficient, consistent, and un-
biased. This is shown in earlier works, for example [2], in which the effectiveness
of estimates is characterized by their variances.

Repeating verbatim the reasoning stated above in section 4.1.1, we get, in rela-
tion to the data of tables 4.23 - 4.26, the quantitative values of the error probability
of the new modem model. The probability of demodulator errors depending on
the signal-to-noise ratio with the help of graphs is presented in Figure 4.8. Curve
1 characterizes the error probability of the sine channel, curve 2 characterizes the
cosine channel of the K2 modem, curve 3 characterizes the device in which PM
is applied.
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The total error probability of the sine and cosine channels of the K2 modem
is shown in Table 4.27. For comparison, in the same place from [15, p. 473] there
is presented the error probability of ideal phase modulation (PM) calculated in a
noisy channel.

Comparison of the noise immunity of a new modem with the noise immunity
of a well-known device in which an ideal PM, shows its superiority by thirteen
orders and up to thirty orders. Modem K2 in the cosine channel has a reference
point with an error probability of a value P=3,5-107*, different from zero, i.e. from
the maximum noise immunity of the device. Its occurrence may be associated with
a random, without any justification, choice for modulating the quantitative pa-
rameters of the distribution law of a quasi-deterministic signal. It is likely that the
optimization of these parameters using the newly constructed theory of statistical
modulation will eliminate the modem reference point.

Table 4.27.
Probability of errors of different modems

Total sinus channel error probability | 0,5 | 9-10° | 5,510 | 4-10% | 4,3-10

Total cosine channel error probability | 0,5 0,5 3,5-10% | 1,1-1077 | 7,5-10°13

PM error probability 0,9 | 3,2-10" | 1,510 8-10¢ 2-10%

Signal-to-noise ratio 0,1 0,5 1,0 10 100

There are no fixed points in the sinus channel of the modem. Therefore, even
with such data as they are recorded in table 4.27, one can hope for a good future
for the K2 modem.

Comparison of the noise immunity of the K2 modem with the previously con-
sidered modems A2, A2-1 shows that it is lower, since the A2-1 modem under
equal conditions has a maximum noise immunity in the range of signal-to-noise
ratios of 20 dB.

The difference between the two compared modems lies only in the models of
quasi-deterministic signals used in them. Apparently, a quasi-deterministic signal
with an arcsine distribution law has an entropy less than an oscillation (2.19) with
a cosine distribution law or a random process (2.9) with the Veshkurtsev distribu-
tion law, which has no equal among the distribution laws of signals considered in
Chapter 2.
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Figure 4.8. Probability of modem K2 errors

Single-channel modem K2 -1

Suppose the new modem contain a modulator (Fig. 3.3) and a single-channel
demodulator (Fig. 3.8). The modulation algorithm for a quasi-deterministic signal
(2.19) is written in Table 4.22. At the same time, the above analysis of modem
noise immunity when operating in a noisy channel remains unchanged for the new
modem model. However, the new modem has only one channel and one output,
on which the telegraph signal will appear as a result of fulfilling the positions of
the truth table 3.1. Let's recall that the demodulator (Figure 3.8) combines the ad-
vantages of the sine and cosine channels of the demodulator shown in Figure 3.7.

Table 4.24 shows that in the sinus channel of the demodulator, the logical "0"
is determined without errors in the entire range of signal-to-noise power ratios,
i.e. in the range of 50 dB. Table 4.26 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors also in the entire range
of signal-to-noise power ratios, i.e. in the range of 50 dB. When combining these
advantages of both channels together, we get a new modem with maximum noise
immunity in the range of signal-to-noise ratios of 50 dB, with the lower limit of the
range equal to minus 30 dB. However, this theoretical result cannot be realized.
The demodulator in Figure 3.8 improves the noise immunity of the cosine channel
of the K2 modem on average only 20 times.

The error probability of the K2 modem and the K2-1 modem is shown in
Figure 4.9, where curve 1 refers to the sinus channel of the K2 modem; curve
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3 - to the cosine channel of modem K2; curve 2 - to modem K2-1; curve 4 - to the
device in which phase modulation is applied.

An analysis of the graphs in Figure 4.9 shows that the K2-1 modem works well
with weak signals and has a minimum error probability of 1-10" at a signal-to-
noise ratio of 10 dB, and then the error probability begins to increase to a value
of 1-10™* if the signal is growing. Modem K21 is inferior in noise immunity to
the sinus channel of modem modem K2 up to the signal-to-noise ratio of 20 dB.
However, both modems are superior in noise immunity to the device for receiv-
ing signals with ideal PM (curve 4) in the range of signal-to-noise power ratios
0,1 < #* <20. Let's recall that the K2 modem and the modem K2—1 modem use sta-
tistical modulation of a quasi-deterministic signal. Therefore, the K2 modem and
the K2-1 modem have no analogues and competitors all over the world.
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Figure 4.9. The probability of errors of different modems of the new generation

4.4. Modem noise immunity when accepting an additive mixture of
noise and signal with the distribution of instantaneous values according to
Tikhonov law

Tikhonov law (2.34) contains the parameter D, which is included in all the
probabilistic characteristics of the signal. Parameter value 0< D <. Let's look
at a few examples.
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4.4.1. Noise immunity of the modem T2 when accepting an additive mix-
ture of noise and signal with the distribution of instantaneous values accord-
ing to Tikhonov law with the parameter D =1

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its name will be: modem T2. The modulation algorithm for a quasi-
deterministic signal (2.33) is recorded in Table 4.28. The method and results of
modem studies are published in [32].

Table 4.28.
Signal modulation algorithm with V, =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "0" 1,604 0

logical "1" 1,604 0,8

Let us turn to the analysis of the noise immunity of the demodulator, when an
additive mixture of a quasi-deterministic signal (2.33) and "white" noise acts at
its input

z(t)=u(t)+n(t), (4.21)
where n(?) — "white" noise, u(t) — signal (2.33).

With the help of expressions (2.26,2.27) and the data in Table. 4.27 using for-
mulas (3.13) we calculate the thresholds in the demodulator. As a result, at a value
of ¥ =1and D=1 we get

1= Msin(eo)=0,32 , Ih= 4 (D)

" 1,0) 7,(D)

At the value ¥, =1 we define for the additive mixture (4.21) the real part of the
ch.f.

=0,4464.

2
o

A(lt)= j cos(2)W(z)dz = gg g exp(— ZhCZ ] (4.22)

where h=0,/o, - the signal-to-noise ratio. When s(#)=0, similarly to (4.22) we
calculate at the value ¥ =1 for the additive mixture (4.21) the imaginary part of
the ch.f.

B(1,1)= ]Esin(z)W(z)dz =0, (4.23)
The results (4.22), (4.23) requireia quantitative analysis. Tables 4.29, 4.30

present the results of calculations at 7, =0,32, 11, =0,4464, K,=0375, K, =0,448,
written in a line with the name of the evaluation.
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Table 4.29.
Probability of errors in the cosine channel of the modem at a logical "1"
Threshold /7, 0,4464- 0,448 = 0,2
Evaluation 4(1,7) 0 0 0 0,201 0,412 0,446
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 8,9-10" | 2:10% | 2:10%
Table 4.30.
The probability of errors in the sinus channel of modem at a logical "0"
Threshold 17 0,32:0,375 =0,12
Evaluation B(1,¢) 0 0 0 0 0 0
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, | 1,5-10* | 1,5-10® | 1,5-10* | 1,5-10® | 1,5-10® | 1,5-10°®

Analysis of the data in Table 4.29 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors in the range of signal-to-
noise power ratios from 1 to 100 or from 0 dB to 20 dB. Table 4.30 presents the
ideal results, as logical "0" in the sinus channel of the demodulator is determined
without errors, i.e. with ultimate noise immunity, at any signal-to-noise power ra-
tio. This allows us to say that simple control commands such as turn on-off, open-
close and others will be accepted with a reliability equal to one, in any operating
conditions of the sinus channel of the modem T2.

Suppose the additive mixture (4.21) contain a non-centered quasi-deterministic
signal at the demodulator input, this corresponds to the condition s(z)=1. Similarly
to (4.22) at the value V =1 we define

A(l,t) = _]icos(z)W(z —e,))dz = 222)) exp(— 20_}:22 ]cos(eo) (4,24)
or similarly (4.23) with the value V/ =1 we calculate
B(l,t) = _J;sin(z)W(z —ey)dz = il,ElD))) exp[— Zo-hpz ]sin(eo)- (4.25)

The results (4.24), (4.25) require a quantitative analysis. Tables 4.31, 4.32
show the calculation data at 77, =0,32, 17, =04464, K, =0375, K, =0,448, written
in the line with the name of the evaluation.
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Table 4.31.
Probability of errors in the sinus channel of the modem at a logical "1"
Threshold /7, 0,32:0,375=0,12
Evaluation B(1,) 0 0 0 0,144 0,296 0,32
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 410" 1-10'¢ 110

In case of the selected values of the thresholds according to the data of tables
4.31, 4.32, the discrimination of the logical "1" from zero in the sinus channel of
the modem T2 occurs without errors in the range of signal-to-noise ratios from 1
to 100, i.e. in the range equal to 20 dB. In this case, in the cosine channel of the
demodulator, the limiting noise immunity is maintained at a signal-to-noise power
ratio from 0.001 and above to 1.0, i.e. from minus 30 dB to 0 dB. Therefore,
simple control commands such as turn on-off, close-open and others will be re-
ceived by the cosine channel of the modem T2 with a reliability equal to one in the
range of signal-to-noise ratios of 30 dB. If the signal-to-noise ratio is greater than
ten, there will be continuous errors in the cosine channel of the demodulator, i.e.
the operation of this channel of the modem T2 in the channel with noise becomes
impossible.

Table 4.32.
Probability of errors in the cosine channel of the modem at logic "0"
Threshold 17, 0,4464-0,448 =0,2
Evaluation A(1,7) 0 0 0 0,14 0,28 0,31
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 2,210 0,5 0,5

As a result of the analysis of the noise immunity of the modem, we can say
that in the presence of "white" noise in the data transmission channel, the noise
immunity according to Kotelnikov of the modem T2 turned out to be different in
both channels. With accurate synchronization of the operation of the sinus chan-
nel of the modem T2, there are no errors when receiving a telegraph signal in the
range of signal-to-noise ratios of 20 dB or more, and the lower limit of the range
is 0 dB. But the cosine channel of the modem T2 has an error probability of 0.5
and cannot work here.

Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the modem T2. In tables 4.29-4.32, the following designa-
tions are adopted: P, — the probability of errors when accepting a logical "0";
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P, — the probability of errors when accepting a logical "1"; P= %(P0 +P) - the
total probability of device errors.

Quantitative assessment of the noise immunity of the modem T2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we get estimates of the real and imaginary parts
of the ch.f., recorded in tables 4.29 - 4.32. Both evaluations are random variables
with their own properties and distribution laws. Let's recall that evaluations for the
real and imaginary parts of the ch.f. are efficient, consistent, and unbiased. This is
shown in earlier works, for example [2], in which the effectiveness of estimates is
characterized by their variances. Repeating verbatim the reasoning stated above in
section 4.1.1, we get, in relation to the data of tables 4.29 - 4.32, the quantitative
values of the error probability of the new modem model.

The total error probability of the sine and cosine channels of the modem T2 is
shown in Table 4.33. For comparison, in the same place from [15, p. 473] there
is presented the error probability of ideal phase modulation (PM) calculated in
a noisy channel. In addition, for clarity, the probability of modem errors using
graphs is shown in Figure 4.10.

Table 4.33.
Probability of errors of different modems
Total sinus channel error probability 0,5 0,5 2-10" | 7,5:10° | 7,5-10°
Total cosine channel error probability 0,5 0,5 0,45 0,5 0,5
PM error probability 0,5 0,5 1,510 | 810° | 2-10%
Signal-to-noise ratio 0,01 0,1 1,0 10 100
10° s
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Figure 4.10. Probability of modem T2p errors
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In Figure 4.10, curve 1 characterizes the cosine channel of the T2 modem
at modem K, = 0.448, curve 2 - the cosine channel of the T2 modem at modem
K,=0.78 according to [30], curve 3 - the sine channel of the T2 modem at K, = 0.375,
curve 4 - device for accepting PM signals. Comparison of the noise immunity of
the modem with the noise immunity of the known device, in which the ideal PM
is used, shows the superiority of the sinus channel characteristics in comparison
with the prototype within the values 1<4” <10, and then it disappears. The gain in
noise immunity is only 0.8 dB at an error probability level of 7,5:10. The cosine
channel of the modem T2 is practically inoperable at the value of the variable co-
efficient modem K, = 0.448, because for any signal-to-noise ratio, the error prob-
ability is 0.5. But with the value of the variable coefficient modem K, = 0.78, the
cosine channel of the modem T2 becomes better than the sine channel.

Therefore, we will consider this modem to be bad and replace its code with
another one: modem T2p (the letter p is a bad modem). The modem T2p does not
have great prospects for existence in the future.

4.4.2. Noise immunity of modem T2 when receiving an additive mixture
of noise and signal with the distribution of instantaneous values according to
Tikhonov law with the parameter D =2

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its cipher will be: modem T2. Let's repeat the analysis of modem noise
immunity with the value of the Tikhonov distribution parameter D = 2. The modu-
lation algorithm for a quasi-deterministic signal (2.33) is recorded in Table 4.34.
The method and results of modem research are published in [33].

Table 4.34.
Signal modulation algorithm with V. =1
. . . . The value of the expectation
Telegraph signal | Signal dispersion value of the signal
logical "0" 0,7645 0
logical "1" 0,7645 0,8

The results (4.22 — 4.25) need to be quantified. Tables 4.35 - 4.38 present the
results of calculations at the values 77, =0,5, II,=0,7, K, =0,5, K, =0,715, written
in the line with the name of the evaluation.
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Table 4.35.
Probability of errors in the cosine channel of the modem at a logical "1"
Threshold /7, 0,7-0,715=10,5
Evaluation A4(1,¢) 0 0 0,015 | 048 0,67 0,7
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 0,99 2:10% | 2-10%
Table 4.36.
Probability of errors in the sinus channel of the modem at a logical "0"
Threshold /7, 0,50,5=0,25
Evaluation B(1,) 0 0 0 0 0 0
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 8-1032 | 8103 | 8103 | 810 | 8103 | 810

Table 4.37.
Probability of errors in the sinus channel of the modem at a logical "1"
Threshold /7, 0,5:0,5=0,25
Evaluation B(1,¢) 0 0 0 0,34 0,48 0,5
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 2,2:10° | 3,7-10% | 810

Analysis of the data in Table 4.35 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors in the range of signal-to-
noise ratios from 1 to 100 or from 0 dB to 20 dB. Table 4.36 presents the ideal re-
sults, as logical "0" in the sinus channel of the demodulator is determined without
errors, i.e. with ultimate noise immunity, at any signal-to-noise power ratio. This
allows us to say that simple control commands such as turn on-off, open-close and
others will be accepted with a reliability equal to one, in any operating conditions
of the modem T2.

Table 4.38.
Probability of errors in the cosine channel of the modem at a logical "0"
Threshold 77,, 0,7:0,715=0,5
Evaluation 4(1,¢) 0 0 0,01 0,33 0,47 0,49
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 0 2,2:10° | 1,610

82 |



The foundations of the theory of construction of new-generation modems

With the selected threshold values according to tables 4.37, 4.38, the distinc-
tion between logical "1" and zero in the sinus channel of the demodulator occurs
without errors in the range of signal-to-noise ratios from 1 to 100, i.e. in the range
equal to 20 dB. In this case, in the cosine channel of the demodulator, the maxi-
mum noise immunity is maintained at a signal-to-noise power ratio from 0.001 to
1, i.e. with a signal-to-noise ratio of 30 dB. If the signal-to-noise ratio is greater
than one, there will be continuous errors in the cosine channel of the demodula-
tor, i.e. operation of the modem in a noisy channel becomes impossible. And as a
result of this, the cosine channel of the modem can be excluded from the structure
of the demodulator, and only the sine channel can be left in the modem.

Let's move on from qualitative data analysis to a quantitative assessment of
modem noise immunity. In tables 4.35 - 4.38, the following designations are ad-
opted: P, — the probability of errors when accepting a logical "0"; P, — the prob-
ability of errors when accepting a logical "1"; P= %(PO +P) - the total probability
of device errors.

Quantitative assessment of the noise immunity of the modem T2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we get evaluations of the real and imaginary parts
of the ch.f., which are recorded in tables 4.34 - 4.37. Both evaluations are random
variables with their own properties and distribution laws. Repeating verbatim the
rationale and methodology for calculating errors in the channels of the demodula-
tor, set out in Section 4.1.1, we get the data recorded in Table 4.39.

The total error probability of the sine (curve 1,2,3) and cosine (curve 4,5,6)
demodulator channel for different values of the parameter is shown in Figure 4.11.
For comparison, in the same place from [15, p. 478] there is presented the error
probability (curve 7) of ideal phase modulation (PM), calculated in a noisy chan-
nel. The main fragments of this noise immunity are listed in Table 4.39.

An analysis of the curves in Figure 4.11 confirms that the noise immunity of
the sine and cosine channels of the demodulator is different and depends on the
D - parameter of Tikhonov law. According to Table 4.39, it is desirable to take a
large value of the parameter, and its optimal value can be obtained only as a re-
sult of constructing the theory of statistical modulation and conducting additional
research. Comparison of the noise immunity of the new modem with the noise
immunity of the known device, in which ideal PM is used, shows the superior-
ity of its characteristics by at least ten orders, if we analyze weak signals, when
h?<10. In case of strong signals, when 4?>10, the noise immunity of an ideal PM
is higher. The cosine and sine channels of the T2 modem are configured using the
variable coefficients K, K, in different ways. In the cosine channel of the modem,
the highest noise immunity at value D = 5 is obtained at ratio #*> = 1 (curve 6),
and with increasing value /4 it decreases. This modem T2 channel is suitable for
excellent performance with marginal noise immunity with weak signals. In the
sinus channel of modem T2, the opposite is done (curve 3). The sinus channel of
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the modem T2 works equally well with both weak and strong signals. Therefore,
we indicate in the modem T2 cipher that it is good. Its new cipher will be: T2x
modem, where x is good.
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Figure 4.11. The probability of errors of different models of the modem T2

Thus, increasing the value of the parameter D of the Tikhonov distribution up
two allows raising the thresholds /7, , I7, at least twice in the sine and cosine chan-
nels of the modem T2 demodulator. And as a result of this, with a value of 42 =1,
the probability of errors in the sinus channel of the T2 modem decreases by four
orders of magnitude (Table 4.39)

Table 4.39.
Probability of errors of different modems
D=1 | Curvel 0,5 0,5 2-10" 8:10° 8-107
Sinus channel D=2 | Curve 2 0,5 0,5 1-10° 2:10%7 | 4-10%

D=5 | Curve3 0,5 7-10° 1-10"7 | 5-10%® | 4-10*

D=1 |Curved| 05 0,5 05 | 910" | 810°

Cosine channel D=2 | Curve5 0,5 0,5 0,5 1-10° 8107

D=5 | Curve 6 0,5 2-102 1-10% | 5-10% | 2-10%

Ideal PM Curve 7 0,9 3-10 1-10! 810¢ | 2-10%

Signal-to-noise ratio /’ 0,1 0,5 1 10 100
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By increasing only the thresholds in the demodulator channels, the downward
trend in the error probability in the sinus channel of the modem T2 continues up to
the signal-to-noise ratio of 10 dB. In the cosine channel of the modem T2, unfortu-
nately, such a trend is not observed. Nevertheless, such a model of the modem T2
is promising and can be included in the class of new generation modems.

4.4.3. Noise immunity of the modem T2 when accepting an additive
mixture of noise and signal with the distribution of instantaneous values
according to Tikhonov law with the parameter D =5

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its cipher will be: modem T2. Let's repeat the analysis of the noise im-
munity of the modem with the value of the Tikhonov distribution parameter D = 5.
The modulation algorithm for a quasi-deterministic signal (2.33) is recorded in
Table 4.40. The method and results of modem research are published in [34].

Table 4.40.
Signal modulation algorithm with V. =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "0" 0,228 0

logical "1" 0,228 0,8

The results (4.22 — 4.25) need to be quantified. Tables 4.41 - 4.44 present the
results of calculations at 17, = 0,64, IT,=09, K, =0,625, K, =0,78, written in a
line with the name of the evaluation.

Table 4.41.
Probability of errors in the cosine channel of the modem at a logical "1"
Threshold 77,, 0,9:0,78 = 0,7
Evaluation A(L) 0 0 0,29 0,81 0,89 0,9
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 2-10% | 2:10% | 2:10%
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Table 4.42.
Probability of errors in the sinus channel of the modem at a logical "0"
Threshold /7, 0,640,625 = 0,4
Evaluation B(1) 0 0 0 0 0 0
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 0 0 0
Table 4.43.
Probability of errors in the sinus channel of the modem at a logical "1"
Threshold 7, 0,640,625 = 0,4
Evaluation B(1) 0 0 0,21 0,58 0,64 0,65
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 2,2-10"7 | 1107 | 810
Table 4.44.
Probability of errors in the cosine channel of the modem at a logical "0"
Threshold /7, 0,9:0,78 =0,7
Evaluation A(1) 0 0 0,2 0,56 0,62 0,63
Relation A2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 0 0 0 2:10% | 1-10%7 [4,2-10%

Analysis of the data in Table 4.41 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors in the range of signal-to-
noise power ratios from 1 to 100 or from 0 dB to 20 dB. Table 4.42 presents the
ideal results, as logical "0" in the sinus channel of the demodulator is determined
without errors, i.e. with ultimate noise immunity, at any signal-to-noise power ra-
tio. This allows us to say that simple control commands such as turn on-off, open-
close and others will be accepted with a reliability equal to one, in any operating
conditions of the modem T2.

With the selected threshold values according to the data of tables 4.43, 4.44,
the distinction between logical "1" and zero in the sinus channel of the demodula-
tor occurs without errors in the range of signal-to-noise ratios from 1 to 100, i.e.
in the range equal to 20 dB. In this case, in the cosine channel of the demodulator,
the maximum noise immunity is maintained at a signal-to-noise power ratio from
0.001 to 100, i.e. in the range of 50 dB.
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Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the modem T2. In tables 4.41 - 4.44, the following desig-
nations are accepted: P, — the probability of errors when accepting a logical "0";

P, — the probability of errors when acceptinga logical "1"; P = 12 (P, +P) — total
probability of device errors.

Quantitative assessment of the noise immunity of the modem T2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we obtain estimates of the real and imaginary parts
of the ch.f., which are recorded in tables 4.40 - 4.43. Both estimates are random
variables with their own properties and distribution laws. Repeating verbatim the
rationale and methodology for calculating errors in the channels of the demodula-
tor, set out in Section 4.1.1, we get the data recorded in Table 4.45.

The total error probability of the sine (curve 1) and cosine (curve 2) channels
of the demodulator is shown in Figure 4.12. For comparison, in the same place
from [15, p. 478] shows the error probability (curve 3) of ideal phase modulation
(PM), calculated in a noisy channel.

Table 4.45.
Probability of errors of different modems
Total sinus channel error probability 0,5 7,2:103 | 1,1-107 | 5-10%% | 4-10%
Total cosine channel error probability 0,5 |[1,7210%| 1-10% | 510 |2,1-10%
PM error probability 0,9 |[3,2210"]1,5-10"| 810° | 2:10%
Signal-to-noise ratio 0,1 0,5 1,0 10 100

Comparison of the noise immunity of the modem T2 with the noise immunity
of the known device, in which ideal PM is used, shows the superiority of its char-
acteristics by at least ten orders of magnitude. The cosine and sine channels of the
modem T2 are configured using the variable coefficients K, K, in different ways.
With the value D=5 in the cosine channel of the modem, the error probability itself
is obtained with the ratio 42 = 1 (curve 2), and with increasing value 4%, it grows.
This modem T2 channel is suitable for excellent performance with marginal noise
immunity with weak signals. In the sinus channel of the modem T2, the opposite is
done (curve 1). The sinus channel of the modem T2 works equally well with both
weak and strong signals. The probability of errors at a point 42 = 1 in both modem
channels is the same, and then curves 1,2 in Figure 4.12 diverge. Moreover, in the
cosine channel of the modem, the error probability increases to the value P=2.1-10%
with a signal-to-noise ratio of 20 dB, while in the sinus channel of the modem,
the error probability continues to decrease to the value P= 4-10* with the same
signal-to-noise ratio.
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Figure 4.12. Probability of modem T2 errors at D=5

Thus, increasing the value of the parameter D of the Tikhonov distribution
to five makes it possible to raise the thresholds /7, , /7, at least three times in the
sine and cosine channels of the modem T2 demodulator. And as a result of this,
with a value 42 = 1 by seventeen orders of magnitude (Table 4.39), the probability
of errors in the sinus channel of the modem T2 decreases. By increasing only the
thresholds in the demodulator channels, the downward trend in the error probabil-
ity in the sinus channel of the modem T2 continues up to the signal-to-noise ratio
of 20 dB. In the cosine channel of the modem T2, unfortunately, such a trend is not
observed. Nevertheless, such a model of the modem T2 is promising and occupies
a worthy place in the class of new generation modems.

Single-channel modem T2-1

Let the new T2-1 modem contain a modulator (Fig. 3.3) and a single-chan-
nel demodulator (Fig. 3.8). The quasi-deterministic signal modulation algorithm
(2.33) is written in Table 4.40. At the same time, the above analysis of the modem
noise immunity when operating in a noisy channel remains unchanged for the new
modem model. However, the new modem has only one channel and one output, on
which the telegraph signal will appear as a result of the execution of the truth table
3.1. Let's recall that the demodulator (Figure 3.8) combines the advantages of the
sine and cosine channels of the demodulator in Figure 3.7.

Table 4.42 shows that in the sinus channel of the demodulator, the logical "0"
will be determined without errors in the entire range of signal-to-noise power ra-
tios, i.e. in the range of 50 dB. Table 4.44 shows that in the cosine channel of the
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demodulator, the logical "1" is determined without errors also in the entire range
of signal-to-noise power ratios, i.e. in the range of 50 dB. When combining these
advantages of both channels together, we get a new modem with maximum noise
immunity in the range of signal-to-noise ratios of 50 dB, with the lower limit of the
range equal to minus 30 dB. However, in practice this does not work out, which
is confirmed by table 3.1 of truth. The probability of errors in the modem T2 - 1
is reduced by an average of 20 times compared with the error probability of the
cosine channel of the modem T2.

The error probability of the modem T2 and the modem T2-1 is shown in Figure
4.13, where curve 1 refers to the T2-1 modem; curve 2 - to the cosine channel of
modem T2; curve 3 - to the sinus channel of modem T2; curve 4 - to the device in
which phase modulation is applied.

10°%

10701

1020 L

10301

10»40 -
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107! 10° 10" 102
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Figure 4.13. Probability of modem errors T2 - 1

An analysis of the graphs in Figure 4.13 shows that the modem T2-1 works
well with weak signals and has an error probability of 1-10" in the range of signal-
to-noise ratios from 0.1 to 1.0 (minus 10 dB), and then the error probability starts
to increase to the value of 1-102* if the signal grows. After a signal-to-noise ratio
of 10 dB, the modem T2-1 is equal in noise immunity to the sinus channel of the
modem T2. However, both modems are superior in noise immunity to the device
for receiving signals with ideal PM (curve 4) in the range of 26 dB, the lower
limit of which is minus 10 dB. Starting from 16 dB to 20 dB, the modem T2 and
the T2-1 modem together are inferior in terms of noise immunity to a device for
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receiving signals from PM. Let's recall that the modem T2 and the modem T2-1
use statistical modulation of a quasi-deterministic signal. Therefore, the modem
T2 and the modem T2-1, when receiving weak signals, have no analogues and
competitors all over the world. They can work with signals 10 times weaker than
the noise power.

4.4.4. Noise immunity of the modem T1 when receiving an additive mix-
ture of noise and signal with the distribution of instantaneous values accord-
ing to Tikhonov law with a variable parameter D

The modem contains a modulator (Fig. 3.3) and a single-channel demodulator
(Fig. 3.9). Its name will be: modem T1. Let us repeat the analysis of the noise
immunity of the modem, modulating only the distribution parameter of Tikhonov
law. The modulation algorithm for a quasi-deterministic signal (2.33) is recorded
in Table 4.46. The method and results of modem research are published in [16].

Table 4.46.
Signal modulation algorithm with V, =1

The value of the distribution

Telegraph signal | Signal dispersion value parameter of the Tikhonov law

logical "0" 1,604 1

logical "1" 0,228 5

Taking into account the modulation algorithm described above, we calculate
the threshold in the demodulator in accordance with expression (3.13). As a result,
with the value V' =1 and D = 5 we get

m="8)_ 080
1,5)
At the value ¥, =1 we define for the additive mixture (4.21) the real part of the
ch.f.

A(l,2)= Icos(z)W(z)dz = 2 Eg; exp(— 2o-h°'2 j, (4.26)

where h=o0,/o, - the signal-to-noise ratio. In expression (4.26) the signal disper-
sion ¢ * changes according to the modulation algorithm. Taking this into account,
we write down the value of the estimate for the ch.f.

A(l,t)_"(S)exp{_;fj at s(t)=1 and A(l,t)_"(‘)exp(_fﬂ at s(t)=0, (4.27)

—0

1,(5) b L)\ 28
where  h, :O—% - the signal-to-noise ratio when accepting a logi-
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cal "0"; hl=o%_ - - signal-to-noise ratio when accepting a logical "1";

ol =1,604; o] =0,228.

The results (4.27) need to be quantified. Tables 4.47, 4.48 present the results of
calculations at /7, = 0,89, K, =0,84, written in a line with the name of the evalua-
tion. In this case the following is taken into account. The modulation algorithm in
Table 4.46 contains o2 =1,604 and o} =0,228. This means that at a constant noise

power in the case of transmission of a logical "0" and a logical "1", the ratio /, > h7.
For the given values of the dispersions, we will get a value #; = 7,035k and use it
in the calculations. When the modem is operating in a noisy channel, it is impos-
sible to provide a different signal-to-noise ratio at its input when receiving a logi-
cal "0" and a logical "1", because the noise power in the channel does not depend
on the logical "0" and "1". Therefore, the final conclusions about the probability of
modem errors in this case should be taken depending on the values of the ratio A/.

Analysis of the data in Table 4.47 shows that the modem T1 has maximum
noise immunity when accepting a logical "1" in the range of signal-to-noise ratios
from 1 to 100, i.e. in the range of 20 dB. From table 4.48 we see that when accept-
ing a logical "0", the maximum noise immunity modem T1 takes place in the range
of signal-to-noise ratios from 0.001 to 100, i.e., in the range of 50 dB. Let's re-
member that in the modem T1 the relation o /o =7,035. So, when o, = const,
relation 4. > h. Therefore, the final noise immunity characteristics of the modem
T1 should be evaluated by errors when accepting a logical "1", i.e. in relation to 4.

Table 4.47.
Probability of modem errors with logical "1"
Threshold 77, 0,89:0,84 =075
Evaluation A(L?) 0 0 0,29 0,81 0,89 0,9
Relation /2 0,001 0,01 0,1 1,0 10 100
Probability of errors P, 1 1 1 2,2-1017 | 2-10°" | 2-10%!
Table 4.48.
Probability of modem errors at logical "0"
Threshold 17, 0,89-0,84 =0,75
Evaluation 4(1,¢) 0 0 0,143 0,4 0,442 0,446
Relation /,? 0,007 0,07 0,703 7,035 70,35 703,5
Probability of errors P, 0 0 0 0 2-10°" | 2-10°

X
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From a qualitative analysis of the data, let's move on to a quantitative assess-
ment of the noise immunity of the modem T1. In tables 4.47, 4.48, the following
designations are accepted: P, - the probability of errors when accepting a logical
"0"; P,— the probability of errors when accepting a logical "1"; P = % (R, +P)-
total probability of device errors.

Quantitative assessment of the noise immunity of the modem T1

In expression (3.11), an ideal adder is used instead of the expectation opera-
tor. And, as a result of this, we get an estimate of the real part of the ch.f., which
is written in tables 4.47, 4.48. Evaluation of ch.f. is a random variable that has its
own properties and distribution law. Repeating verbatim the rationale and meth-
odology for calculating errors in the demodulator, set out in Section 4.1.1, we get
the data recorded in Table 4.49.

The error probability of the modem T1 depending on the signal-to-noise ra-
tio is shown using graphs in Figure 4.14, where curve 1 characterizes statistical
modulation (SSK), and curve 2 characterizes QPSK modulation. For details on
the error probability of the modem T1, its individual values are recorded in Table
4.49. For comparison, the error probability of a device for receiving signals with
ideal phase modulation (QPSK) in the same place from [15, p.473] is given, cal-
culated in a noisy channel.
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Figure 4.14. Probability of modem T1 errors

92 |



The foundations of the theory of construction of new-generation modems

Table 4.49.
Probability of errors of different modems
Probability of modem T1 errors 0,5 1,5-10% | 1,1-10""7 | 2-10°' |Less than
2109
PM error probability 0,9 3,2:10" | 1,510 8-10° 2:10%
Signal-to-noise ratio 0,1 0,5 1,0 10 100

Comparison of the noise immunity of the new modem T1 using SSK modula-
tion with the noise immunity of the known device, which uses ideal PM, shows its
superiority by at least ten orders and up to forty orders of magnitude. SSK modula-
tion provides good noise immunity for weak signals. This effect arises due to the
properties of ch.f. ideal to filter weak signals [7]. Therefore, at 22 = 0,5 the error
probability of the modem T1 is only 1.5-10%. In our opinion, with such data, we
can hope for a good future for the modem T1.

Thus, the new modulation algorithm for a centered quasi-deterministic signal
with the Tikhonov distribution made it possible to significantly improve the noise
immunity of the modem T1 and made it possible to use it in a radio channel, since
the expectation of the signal is always identically equal to zero. It turns out that a
quasi-deterministic signal with the Tikhonov distribution law has advantages over
other signals if only its dispersion is modulated. However, the demodulator then
becomes single-channel (Fig. 3.9).

4.5. Performance indicators of digital systems with new generation mo-
dems

The class of quasi-deterministic signals includes oscillations of the form (2.1),
(2.9), (2.19), (2.33) proposed by us, whose mathematical models do not contain
time functions, but have only random variables. And, as a result of this, the energy
spectra (2.8), (2.18), (2.32), (2.43) have one spectral line located at a frequency
equal to the carrier frequency of the signal. In case of statistical modulation of
signals (2.1), (2.9), (2.19), (2.33), their mathematical model changes and takes a
different form (3.5), (3.8), which includes a telegraph signal s(z), which is a se-
quence of elements in the form of logical "0" and logical "1". The elements of a
telegraph signal carry information.

As an example, let's consider the signal (3.8). We assume that the telegraph
signal has the Poisson distribution law and the correlation function k_(z), and it
does not depend on the signal (2.9). Therefore, the signal correlation function
(3.8), in accordance with its properties, will be equal to the sum of the correlation
functions of independent variables [5]

k, (r) =k, (‘r)+ k, (T) = %ez exp(f 2v“r‘)+ k, (r), (4.29)
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Where v - the average number of pulse jumps per unit time; 7 - shift in time;
e - amplitude of impulses. The signal correlation function (2.9) is defined in
Chapter 2 and is equal to (2.16).

Let us proceed to the analysis of the power spectral density (energy spectrum)
of the signal (3.8). Let us write the energy spectrum of the signal [16]

G, (a)) = Tku‘ (‘r)exp(— jan')d‘r =G, (a))+ G, (a)), (4.30)
where [16] -
Gs(a))zle2 5 Y = (4.31)
2 vitow

the spectrum G (w) was obtained and described earlier in Section 2.2. The spec-
trum (4.31) is continuous. The spectrum envelope has the form of a Gaussian
curve at any carrier frequency of the numerical axis from -oo to +oo. In the transi-
tion to the physical spectrum, i.e. to the spectrum in the region of positive frequen-
cies, we obtain [16]

2
ev

2 2"
Vitao

G, (0)=nmxm,la}d(0+a,)+ (4.32)
Let us determine the effective width of the energy spectrum of the modulated sig-
nal (3.8) at the frequency w,, after which we have [16]

v

Aw, :%(O)!Gs(a))da)=7 (4.33)

where Aw, =27AF,, AF, = % Expression (4.33) needs clarification. The funda-

mental provisions recorded in the book explain that ". . . the value AF can be inter-
preted as the width of a energy Aw spectrum process uniform in the band, equiva-
lent to the given one in terms of average power [4, p.202]”. If the frequency band
(4.33) is implemented in a digital communication system, then half of the power
of the received signal will be lost. This is not allowed in practice. To preserve the
total power of the received signal, one should fulfill the equality AF, = 4AF, =v,
where AF, - the effective bandwidth of the digital system. Then the signal power
loss will be 1.54-10° %, i.e. practically zero.

Digital systems in the literature are characterized by performance indicators
[35], which include noise immunity, spectral and energy efficiency.

Let's compare the potential capabilities of a digital system with a new genera-
tion modem, for example, a modem T1, and a digital system with a modem for
accepting signals with ideal phase modulation, as the most promising among the
known types of modulation. The potential noise immunity of a digital system with
a modem T1 after calculations (Tables 4.47, 4.48) turns out to be limiting in a
channel with “white” noise, i.e. the modem T1 has no errors when receiving data
in the range of signal-to-noise ratios of 27 dB, starting from a ratio of minus 3 dB.
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The potential noise immunity of a modem with ideal phase modulation (PM) is
lower, and the error probability is greater by sixteen orders of magnitude. This is
shown in Figure 4.14 and using the data in Table 4.49.

The spectral efficiency of digital systems with PM according to [36] is 2
[(bit/s)/Hz]. Theoretically, for modems with statistical modulation, it will be 4
[(bit/s) / Hz], if you use the formula [35]

7y =R, /AF,, (4.34)
where R, =1000 - information transfer rate at binary coding, bit/s; AF, - modem
bandwidth at v = 1000 Hz. Taking into account the Nyquist bandwidth, the spec-
tral efficiency of a statistic modulation modem can decrease to 2.8-3.6 [(bps)/Hz],
but it is still greater than the spectral efficiency of digital PM systems.

The energy efficiency of digital systems with PM is calculated by the formula
[35] with the same error probability in the channel with "white" noise in the 1 Hz
band

B=R,/AF,h* =y/h?, (4.35)

where /2’ — the signal-to-noise power ratio. We choose the value of the error prob-
ability at the level of 1:10"7 (fig. 4.14). Then for systems with PM at R, = 1000
bit/s, the energy efficiency will be 0.13 [(bit/s)/Hz-dB]. For modems with statisti-
cal modulation, it will be 1.4 [(bit/s) / Hz-dB], i.e. it approaches the limit equal to
1/In2 =1,44 [35]. Summing up the analysis of the effectiveness of digital systems
with new generation modems, we see that these digital systems in all respects are
approaching the limiting theoretical values of system efficiency known in the lit-
erature, and this confirms their promise.

4.6. Comparison of noise immunity of new generation modems

In total, we have considered 13 models of new generation modems. At the
first stage of selection, 11 models of modems were left for further analysis, un-
fortunately, the T2p modem and the T2x modem were left without attention. For
clarity, all other modem models are listed in Table 4.50. Let's pay attention, in ac-
cordance with the cipher in table 4.50, single-channel and dual-channel modems
are recorded, which have sine and cosine channels independent of each other.

Table 4.50.
Models of new generation modems

New generation modems

modem Al modem B1 modem T1
modem A2 modem B2 modem K2 modem T2
modem A2-1 modem B2-1 modem K21 modem T2-1
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Completing the analysis of the noise immunity of different variants of new
generation modems, let us compare the error probabilities of modem A, modem B,
modem K, modem T when operating in a channel with noise and signals that have
different distribution laws. Such information is prepared separately for wired and
radio communication channels. It is shown in Figure 4.15, where a) - radio - and
wired communication channels; b) - wired communication channel.

In Figure 4.15a, curve 1 refers to modem B1, curve 2 - to modem T1, curve 3 -
to modem A1 with the optimal modulation algorithm (Table 4.11), curve 4 - to the
modem for receiving signals from PM. The main values of the error probability in
Figure 4.15a are recorded in tables 4.15, 4.49.

It follows from the analysis of the graphs in Figure 4.15a that in the radio
channel, preference should be given to modems for receiving modulated signals
with distribution according to Veshkurtsev's law or according to Tikhonov's law.
Moreover, Veshkurtsev law has priority out of the two named distribution laws,
since the error probability of the modem B1 when accepting weak signals in the
range 102 </h* <1 is less by 27 orders of magnitude than that of the modem T1 and
the modem Al. In addition, the energy gain for the modem B1 compared to QPSK
(curve 4) at the error probability level of 1-10* is 30 dB, for the T1 modem it is
only 12 dB, and for the modem Al it does not exceed 10 dB.
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Figure 4.15a. Error probability of single-channel
modems in radio and wired communications
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In Figure 4.15b, curve 1 refers to the sinus channel of modem B2, curve 2 - to
modem T2-1, curve 3 - to the sinus channel of modem A2, curve 4 - to the sinus
channel of modem K2, curve 5 - to the modem for receiving signals from PM. The
main values of the error probability in Figure 4.15b are presented in Table 4.51.

It follows from the analysis of the graphs in Figure 4.15b that modem B2 and
modem T2-1 have a low probability of errors in the section 102 < /? < 10°. There
is a big difference between modems in the area 1 </? <100. Modem A2 becomes
the leader in noise immunity, followed by modem B2, and then modem K2 goes
and modem T2-1 closes the circuit. On the site 20 <A4* <100 with modem A2, a
modem competes for accepting signals from PM. In this section, the energy gain
of the modem A2 compared to the QPSK modem is 10 dB. For weak signals, when

h* <10, all new-generation modems have no analogues and competitors all over the
world, and for the A2 modem, this can be said even with any signal-to-noise ratio.

Table 4.51.
Probability of errors of different modems
Sinus channel modem A2 0,5 0,5 4-10 1-10% | Less than
1-10%
Sinus channel modem B2 2,9-10% | 1,4-10% | 2,1-10°" | 7,5-10°% | 7,5-10°%
Modem T2 - 1 2,5-10 2,5-10 5-10% 2,510 1-102#
Sinus channel of modem K2 0,5 0,5 5,510 4-1032 4-10%
Relation / 0,01 0,1 1,0 10 100
10°%
107101
1020}
P
10°%0
1040
10°50 : —
102 10! 10° 10’ 102
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Figure 4.15b. Probability of modem errors in wired communications
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In our opinion, the modem A2 will soon appear in digital systems with quadra-
ture amplitude shift keying (QAM). Let's recall that the modem A2 is proposed
for receiving signals with distribution according to the arcsine law. Such a dis-
tribution law has a physical process at the output of the generator, for example,
electrical oscillations.

The rule follows from the history of the development of telegraphy on planet
Earth that the decrease in the probability of modem errors by an order of magni-
tude while maintaining the signal strength occurs after ten years of exploratory
scientific research in this direction. If you follow this rule, then the appearance of
the modem B1 with an error probability of 1-10* can be expected for more than
three hundred years, counting from the present time, in which known PM modems
have an error probability of 1-10%. This time will come, because technological
progress cannot be stopped. In the meantime, the modems in table 4.51 are lined
up in a certain queue one after another, the first in which, in our opinion, are mo-
dem B2 and modem A2.
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5. NOISE IMMUNITY OF THE MODEM IN THE CHANNEL WITH
"NON-WHITE" NOISE

"Non-white" noise has a Gaussian distribution law and, unlike "white" noise, it
can have an expectation. For the operation of a new generation modem, such noise
is dangerous, because significantly reduces its noise immunity. Let's consider the
operation of each modem model separately in a channel with "non-white" noise or
simply in a channel with Gaussian noise.

5.1.1. Noise immunity of the modem A2 when accepting an additive mix-
ture of Gaussian noise and a non-centered signal with the distribution of in-
stantaneous values according to the arcsine law

The modem contains a modulator (Fig. 3.1) and a two-channel demodulator
(Fig. 3.7). Its cipher was recorded earlier as modem A2. Let's repeat the modula-
tion algorithm for a quasi-deterministic signal (2.1) using Table 5.1.

Table 5.1.
Signal modulation algorithm with V, =1

The value of the expectation
of the signal

logical "0" 0,18 0
logical "1" 0,18 0,9

Telegraph signal | Signal dispersion value

The analysis technique was developed in [26, 37]. Let's consider the noise
immunity of a demodulator under the action of an additive mixture of a quasi-
deterministic signal (2.1) and "non-white" Gaussian noise at its input

z()=u(t)*+n(1), (5.1)
where n(t) — Gaussian noise, u(t) — a signal with a=UQ .

Using expressions (3.3, 3.4) and the data in Table 5.1, using formulas (3.13),
we calculate the thresholds in the sine and cosine channels of the demodulator. As
a result, with the value ¥, =1 and U; = 0,6 we get

1h=Jo(Uo,t)sin(eo) = 0,7116; I = Jo(Uo,t) = 0,912.

Further, at the value ¥ =1 we define for the additive mixture (5.1)
) 2

Alt)= jcos(z)W(z —e,)dz=J,(U,) exp(— 62”‘] cosle, )=

-0

=J, (o-c V2 )exp(— 20-}:22 ] co s[epoj.
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When s(2)=0, then, similarly to (5.2), we calculate for the value V =1 for the
additive mixture (5.1)

B(1,t)= Tsin(z)W(z —e,)dz=J,(U, )exp[— Uz’f‘J sin(e,, )=

=J, (O'L, x/E)exp[— Zo-hcz ]Sm(i:) >

where W(z-e ) — the probability density of instantaneous values of the additive

(5.3)

2
mixture; A= 0%_ — signal-to-noise ratio; o’ = U% — the dispersion of the qua-
si-deterministic signal; o} — the dispersion of the Gaussian noise; e, — the expec-
tation of Gaussian noise; p = % the ratio of mathematical expectations of the

signal and Gaussian noise (coefficient).

The results (5.2, 5.3) need to be quantified. Tables 5.2, 5.3 present the results
of calculations at /1,=0,7116; I11,=0,912; K,=0,56; K,=0,88, ¢, = 0,9, written in the
line with the name of the evaluation. In addition, in tables 5.2, 5.3, the values of
the coefficient p are recorded in a separate column on the right.

Table 5.2.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold 17, 0,912-0,88 =0,8 Coefficient p
Evaluation 4(1,¢) 0 0 10,23]0,52|0,57|0,57 1
Evaluation A(1,¢) 0 0 (0,36]0,820,89 0,89 5
Evaluation 4(1,¢) 0 0 1037]0,83]0,91]0,91 10
Relation /2 0,001 |0,01] 0,1 | 1,0 | 10 | 100
Table 5.3.
The values of the estimate of the ch.f. in the sinus channel of the modem
Threshold /7 0,7116-0,56 = 0,4 Cocfficient p
Evaluation B (1,f) 0 0 0,29 | 0,65 | 0,71 | 0,71 1
Evaluation B(1,f) 0 0 0,06 | 0,15 | 0,16 | 0,16 5
Evaluation B(1,f) 0 0 0,03 0,07 0,08 0,08 10
Relation /2 0,001 | 0,01 0,1 1,0 10 100
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In tables 5.2, 5.3, we compare the values of the ch.f. with the threshold
specified in the first line. The values of the estimate depend on the coefficient p.
Therefore, the noise immunity of the modem when operating in a channel with
Gaussian noise will depend on two variables, namely, the signal-to-noise ratio 4>
and the coefficient p.

Analysis of the data in tables 5.2, 5.3 shows that there are errors in the sine
and cosine channels of the demodulator when accepting a logical "0". When the
value of the coefficient p=1, then continuous errors appear in the cosine channel
of the modem when accepting a logical "0" for any signal-to-noise ratio. And,
conversely, in the sinus channel of the modem, the maximum noise immunity is
observed when accepting a logical "0" in the range of the signal-to-noise ratio of
20 dB, the lower limit of which is 0 dB. The situation changes dramatically when
the value of the coefficient p>5. Now, in the cosine channel of the demodulator,
the modem has the maximum noise immunity when operating in a channel with
Gaussian noise when accepting a logical "0" in the range of signal-to-noise ratios
of 20 dB, the lower limit of which is 0 dB. In this case, continuous errors are
observed in the sinus channel of the demodulator when accepting a logical "0".
Therefore, the modem has a maximum noise immunity when accepting a logical
"0" in the range of signal-to-noise ratios of 20 dB, depending on the coefficient p,
the values of which were indicated above. Moreover, the sine and cosine channels
of the demodulator work in this case in different ways and there is no algorithm
for choosing the preferred channel.

Suppose the additive mixture (5.1) contain a non-centered quasi-deterministic
signal at the demodulator input, this corresponds to the condition s(z)=1. Similarly
to (5.2), at the value ¥ =1 we define

2

A(L,1)= Tcos(z)W(z —e,—e,)dz = J, (Uo)exp(— °’2J cos(e, +e,) =

, i+ p) (54)
o, ﬁ)exp[- ;j cof 2lL2)
or similarly (5.3) at the value V =1 let's calculate
© 2
B(l, t) = .[sin(z)W(z —e,—e)dz=J,(U,) exp{— 02‘“) sin(e, +e,) =
- (5.5)

2

— o2 )exp[— 2Ghzj sin[e‘)(lJ’p)j.

Yol

The results (5.4), (5.5) require a quantitative analysis. Tables 5.4, 5.5 show
calculation data at /7=0,7116; 11,=0,912; K ,=0,56; K =0,88, written in the line
with the name of the evaluation. In addition, in tables 5.4, 5.5, the values of the
coefficient p are recorded in a separate column on the right.
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Table 5.4.
The values of the estimate of the ch.f. in the cosine channel of the modem
Threshold 77, 0,912-0,88 = 0,8 Coefficient p
Evaluation A(1,7) 0 0 |-0,08]|-0,19|-021 |-021 1
Evaluation A(1,7) 0 0 | 0,17 | 0,39 | 0,43 | 0,43 5
Evaluation A(1,7) 0 0 02 [ 045 | 0,5 | 05 10
Relation A2 0,001 | 0,01 0,1 1,0 10 100
Table 5.5.
The values of the estimate of the ch.f. in the sinus channel of the modem
Threshold 7 0,7116-0,56 = 0,4 Coefficient p
Evaluation B(1,7) 0 0 0,36 | 0,81 0,9 0,9 1
Evaluation B(1,) 0 0 [033]073] 08 | 08 5
Evaluation B(1,) 0 0 | 031 07 | 076 | 0,76 10
Relation /2 0,001 | 0,01 0,1 1,0 10 100

Analysis of the data in tables 5.4, 5.5 shows that the accepting a logical "1" in
the sine and cosine channels of the demodulator occurs without errors at any value
of the coefficient p in the range of signal-to-noise ratios of 20 dB, the lower limit
of which is different for each channel. For the sine channel of the demodulator,
it is equal to 0 dB, and for the cosine channel, it is minus 30 dB. It turns out that
the expectation of Gaussian noise does not affect the reception of the logical "1"
by both channels of the modem. As a result, we can say that in the presence of
Gaussian noise in the data transmission channel, the noise immunity according
to Kotelnikov of the proposed modem is limiting, depending on the value of the
expectation of noise. So, for example, at p>5 and accurate synchronization of both
channels of the modem, there are no errors when receiving a telegraph signal in the
range of signal-to-noise power ratios of 20 dB, the lower limit of which is 0 dB.

Let's recall that the expectation of "non-white" Gaussian noise will be pres-
ent in a wired communication channel and absent in a radio channel. In the radio
channel, the effect of "white" and Gaussian noise on the operation of the modem
is identical and was discussed earlier in Section 4.1. Therefore, the error probabili-
ties of modem A2 in the channel with Gaussian noise at e = 0 will be obtained
from Table 4.6 and calculated for other values e  using the method described in
Section 4.1.1. The main values of the error probability of modem A2 are recorded
in Table 5.6.
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To visualize the error probability of the modem A2 depending on the signal-to-
noise ratio and the value of p, the graphs in Figure 5.1 are presented. Curves 1 - 4
characterize the error probability of the sine channel, and curves 5 - 8 characterize
the cosine channel of modem A2. Curve 9 shows the error probability of the device
for accepting signals with ideal PM according to the work [15, p.473]. In Figure
5.1, curves 1.5 are the same for any signal-to-noise ratio. In addition, curves 7 and
8 also coincide with each other. This means that the expectation of “non-white”
Gaussian noise at value does not affect the noise immunity of the cosine channel
of modem A2, but positively affects the operation of the sine channel. In the sinus
channel of modem A2 (curves 3 and 4), noise immunity increases by 10 dB. This
means that the signal modulation algorithm in Table 5.1 is not optimal and can be
corrected. Apparently, it would be more correct to write e, = 1. Then the probability
of errors in the sinus channel of modem A2 at 42 = 0,1 will decrease by five orders
of magnitude up to the value P=1,1-10". Moreover, nothing will change in the
cosine channel of the modem A2.

And it's a completely different matter when the value of e > 0,1. Ate = 0,9
For both modem channels, the error probability is 0.5 (curves 1.5) for any signal-
to-noise ratio. Here, the noise immunity of the A2 modem in the channel with
Gaussian noise reaches a minimum, as a result of which it becomes inoperable. To
ensure the operation of the A2 modem with high noise immunity in a channel with
Gaussian noise, additional measures are required. The contents of these activities
are outlined below.

Table 5.6.
Probability of errors of different modems
P 0,5 0,5 0,4 0,5 0,5 0,9 Curve 1
P 0,5 |5510%| 410 [5510%°| 5510% | 045 | Curve2
P 0,5 | 1,1-10% | 1-10% | 1-10% L‘;Sj (;2?“ 0,09 | Curve3
P 0.5 05 | 410 | 1-10% L?j (;2?“ 0 Curve 4
P 0.5 0,5 0,5 0.5 0,5 0,9 Curve 5
P 0,5 0,5 |[2410°| 2107 | 2-10¥ 045 | Curve6
P 0,5 05 | 1,1-10° | 1-10% LE]’S? (;2?“ 0,09 | Curve7
P 0,5 05 | 1,1-10° | 1-10% Li’si (;E?n 0 Curve 8
P 09 |[3210' 1510 | 810 2:10% 0 Curve 9
S 0,01 0,1 1,0 10 100 ’
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Figure 5.1. Modem A2 Error Probability in a Channel
with “Non-White” Gaussian Noise

Single-channel modem A2-1

The new modem contains a modulator (Fig. 3.1) and a single-channel demodu-
lator (Fig. 3.8). The modulation algorithm for a quasi-deterministic signal (2.1)
remains the same and is recorded in Table 5.1. At the same time, the above theo-
retical analysis of the noise immunity of the modem A2 when operating in a chan-
nel with "non-white" Gaussian noise remains unchanged for the modem A2 - 1.
However, the new model of the modem A2 has only one channel and one output,
on which the telegraph signal will appear as a result of the states in table 3.1 of
truth. Let's recall that the demodulator (Figure 3.8) combines the advantages of the
sine and cosine channels of the demodulator shown in Figure 3.7.

The data in the table. 5.3 show that in the sinus channel of the demodulator,
the logical "0" will be determined without errors. There are no errors in the sinus
channel in the range of signal-to-noise power ratios equal to 50 dB, while the
value of the coefficient 5< p <10. Table 5.4 shows that in the cosine channel of
the demodulator, the logical "1" is determined without errors. There are no errors
in the cosine channel in the range of signal-to-noise ratios equal to 50 dB, if the
probability of errors 2-10-* is conditionally equated to zero. Combining these ad-
vantages of both channels together, we get a new modem model with maximum
noise immunity in the range of signal-to-noise ratios of 50 dB, with the lower limit
of the range being minus 30 dB. However, in practice this does not work, which is
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confirmed by truth table 3.1. The probability of errors in modem A2 - 1 decreases
on average by 20 times compared with the probability of errors in the cosine chan-
nel of modem A2.

The probability of modem errors A2—1 is shown on fig. 5.2, where curve 1 is
obtained with a coefficient p=1; curve 2 — with coefficient p=5; curve 3 — with
coefficient p=10. In the same place, for comparison, the probability of errors of
a known device (curve 5) using ideal phase modulation is shown. Curves 1,2,3,4
coincide in the section 107 < A* <102 and curves 3,4 coincide at any value of /%
The main values of the error probability of the modem A2-1 in the channel with
"non-white" Gaussian noise are listed in Table 5.7.

Table 5.7.
Probability of errors of different modems

2,5102 | 2,5102 | 2,5102 | 2,5102 | 2,510? 0,9 Curve 1

2,5102 | 2,5-102 | 1,2:10% | 1-10% | 1-10% | 045 | Curve2
P | 25102 | 25102 | 55107 | 510 L‘;si (;E?n 0,09 | Curve3
P | 25102 | 25102 | 55107 | 510% L‘;Sj g}i‘n 0 Curve 4
P 0,9 32100 | 1,5100 | 810° 2:104 0 Curve 5
| 001 0,1 1,0 10 100 e

An analysis of the curves in Figure 5.2 shows that the error probability of the
A2-1 modem in a channel with “non-white” Gaussian noise strongly depends on
the noise expectation value. If the value is e < 0,1, then the probability of modem
errors A2 - 1 is minimal and lies at the level of 1-107 and even lower. In this case,
the probability of modem errors A2 - 1 increases to a value of 2.5-10 (curve 1),
as a result of which the noise immunity is completely lost. To restore the noise
immunity of the A2-1 modem, it is necessary to compensate for the expectation
of "non-white" Gaussian noise. Recommendations for eliminating the influence of
non-white Gaussian noise characteristics on the noise immunity of new generation
modems are outlined below.

Modem A2-1 in terms of noise immunity surpasses only the cosine channel
of modem A2. It has a potential noise immunity in the range of 30 dB and in this
indicator exceeds, at least twenty orders of magnitude, modems known from do-
mestic and foreign literature. The A2-1 modem with such characteristics has no
analogues and competitors all over the world.
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Figure 5.2. Probability of modem A2—1 errors in a
channel with “non-white” Gaussian noise

Recommendations for eliminating the influence of the characteristics of
"non-white'" Gaussian noise

It is not possible to know the signal-to-noise ratio and the status of noise in the
communication channel in advance before the communication session, namely:
to consider the noise as "white" or "non-white" Gaussian. Unlike “white”, other
noise may have an expectation, which negatively affects the noise immunity of
the demodulator (Fig. 3.7) of the modem A2 we propose. Therefore, additional
measures are required to resolve this issue positively, leaving everything else un-
changed. To this end, we recommend the following.

We propose to modernize the expressions (3.11, 3.12 ), bringing them to the
form

A1, = 5 Dol )=, )] 66
E(Vm)=%gsin[Vm [=(kat)— i, (0] (5.7)

where m, {n(t)} - the estimate of the expectation of the noise. This expectation of
noise is measured using the characteristic function in advance for no more than
one second in the channel before the communication session, when there is still
no signal, and is recorded in memory, and then, during modem operation, is sub-
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tracted from each current discrete instantaneous reading of the additive mixture
(5.1) . Algorithm for measuring the expectation of a random process using ch.f.
already developed [2]

. m+l

=3 1) [ZVjé(mAv), (5:8)
where

N
B(V,)= iZsin[sz(kAt)] (5.9)

NS
the estimate of the imaginary part of the ch.f.; ¥ =mAV, Ay - quantization step
of the ch.f. The previously constructed theory for measuring estimates of proba-
bilistic characteristics of random processes using ch.f. is described in the book
[2], where the step AV is calculated and all the properties of estimates, including
estimates (5.8,5.9), are studied. Moreover, a virtual device XN 31.1 beta has been
developed, with which you can measure estimates of 15 probabilistic characteris-
tics of a random process for no more than five seconds and thus control the status
of noise and other interference. The description of the device and instructions for
its use are published in the book [3]. We recommend to include separate files of
the program of the device for measuring estimates (5.8,5.9) into the computer
program of the modem A2 and thereby eliminate the influence of the numerical

characteristics of noise (mathematical expectation) on the noise immunity of digi-
tal systems with amplitude shift keying.

5.1.2. Noise immunity of modem A1l when receiving an additive mixture
of Gaussian noise and a centered signal with the distribution of instantaneous
values according to the arcsine law

The modem contains a modulator (Fig. 3.2d) and a single-channel demodula-
tor (Fig. 3.9). Its cipher was recorded earlier as modem A1l. We repeat the modu-
lation algorithm for a quasi-deterministic signal (2.1) using Table 5.8.

Table 5.8.
Signal modulation algorithm with V. =1

Telegraph signal | Signal dispersion value | The value of the expectation of the signal
logical "0" 0 0
logical "1" 1,125 0

The analysis technique was developed in [37]. Let us turn to the analysis of
the noise immunity of the demodulator, when an additive mixture of a centered
quasi-deterministic signal (2.1) and “non-white” Gaussian noise acts at its input
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z(t)=u(t)+n(1), (5.10)
where n(1) — Gaussian noise, u(1) — a signal with a=U,.
Using expressions (3.3, 3.4) and the data in Table 5.8, using formulas (3.13),
we calculate the threshold in the cosine channel of the demodulator. As a result, at
the value ¥, =1 and U, =1,5 we get

11, =J (U, =J(0)=1.
Further, at the value ¥ =1 and s(?) =0 we define for the additive mixture (5.10)

2

A(l,t) = Tcos(z)W(z —e,)dz=J, (Uo)exp[— 62‘“ Jcos(em ) =

2

—Jo(a(,x/i)exp(— ;}ZZJCOS(peW), (5.11)

where W(z-e ) — the probability density of instantaneous values of the additive

2

mixture; h = e o signal-to-noise ratio; o = U h the dispersion of the quasi-
deterministic signal; o — the variance of the Gaussian noise; e  — the expecta-
tion of noise; p — the coefficient. The result (5.11) needs to be analyzed quan-
titatively. Table 5.9 presents the results of calculations at /7,=1; K,=0,55 and
o’ =125, ¢, =0,9, written in the line with the name of the evaluation. In addi-
tion, in table 5.9, the values of the coefficient p are recorded in a separate column
on the right.

Table 5.9.
The values of the evaluation of the ch.f. in the modem channel
Threshold 7, 1:0,55=10,55 Coefficient p
Evaluation A(L,7) 0 0 |0002| 035 | 059 | 062 1
Evaluation A(L) | 0 0 |0004]| 051 | 08 | 09 0,5
Evaluation A(L7) 0 0 |0004| 057 | 095 | 099 0,1
Relation A2 0,001 | 0,01 0,1 1,0 10 100

In table 5.9, the values of the ch.f. compare with the threshold written in the
first line. The noise immunity of the modem when operating in a channel with
Gaussian noise now depends on two coefficients, namely, on the signal-to-noise
ratio /2? and on p, i.e. from the expectation of noise. Analysis of the data in Table
5.9 shows that there are errors in the modem A1 demodulator when accepting a
logical "0". When the value of the coefficient is (5 < p<l,, then continuous errors
appear in modem A1l when accepting a logical "0" at a signal-to-noise ratio from
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107 to 10. The situation changes dramatically when the value of the coefficient
p<05. Now modem Al has the maximum noise immunity when operating in a
channel with Gaussian noise when accepting a logical "0" in the range of signal-
to-noise ratios of 20 dB, the lower limit of which is 0 dB. Therefore, modem
Al has a maximum noise immunity when accepting a logical "0" in the range of
signal-to-noise ratios of 20 dB, depending on the expectation of Gaussian noise,
the values of which vary from 0 to 0.45.

In the range of signal-to-noise ratios from 0.1 to 1, errors are possible when
receiving a logical "0". However, it can be stated that the noise immunity of the
modem A1 when operating in a channel with Gaussian noise is an order of magni-
tude better than the data given in the publication.

Let the additive mixture (5.10) at the demodulator input contain a centered
quasi-deterministic signal with dispersion &’ =1,125, which corresponds to the
condition s(?)=1. In this case, expression (5.11) will not change.

The result (5.11) needs to be analyzed quantitatively. Table 5.10 shows the
calculation data at /7,=1; K,=0,55 and ol =125, e, =09, written in the line with
the name of the evaluation. In addition, in table 5.10, the values of the coefficient
p are recorded in a separate column on the right.

Similarly to the analysis of table 5.9, we will study the data in table 5.10. The
data in Table 5.10 turned out to be below the set threshold at any value of the
expectation of Gaussian noise. It turns out that the expectation of Gaussian noise
does not affect the accepting the logical "1". Hence, they correspond to the ideal
case. Therefore, it can be stated that the accepting the logical "1" in modem Al
occurs without errors (i.e. with maximum noise immunity) in the range of signal-
to-noise ratios from 10 to 10? or in the range of 50dB. This data is like at least by
three orders of magnitude better than the noise immunity of the modem, known
from the publication. As a result, we can say that in the presence of "non-white"
Gaussian noise in the data transmission channel, the potential noise immunity ac-
cording to Kotelnikov of the proposed modem Al is limiting, because with ac-
curate modem synchronization, there are no errors when accepting a telegraph
signal in the range of signal-to-noise ratios of 20 dB, and the lower limit of the
range is 0 dB.

Table 5.10.
The values of the evaluation of the ch.f. in the modem channel
Threshold /7 1-0,55=10,55 Cocfficient p
Evaluation A(L¢) 0 0 0,001 10,18 | 03 |0,32 1
Evaluation A(1,¢) 0 0 0,002 0,26 | 0,44 | 0,46 0,5
Evaluation A(L¢) 0 0 0,002 | 0,29 | 0,49 | 0,51 0,1
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Relation /* 0,001 | 0,01 0,1 1,0 10 | 100

To visualize the demodulator error probability depending on the signal-to-
noise ratio and the value of the coefficient p, the graphs are presented in Figure
5.3. The main values of the error probability of modem A1 are recorded in Table
5.11. Curves 1,2,3 characterize the noise immunity of the modem A1l according
to the data obtained here, curve 4 - devices according to the data of [25], curve 5 -
devices for receiving signals with ideal PM according to the data of [15, p.473]. In
figure 5.3 curves 3,4 coincide. This means that the expectation of Gaussian noise
at value e,, <0,1 does not affect the noise immunity of the modem Al.

And it's a completely different matter when the value is e, > 0,1. Here, the noise
immunity of modem Al in a channel with Gaussian noise depends significantly
on the signal-to-noise ratio. For strong signals, 4> >10 the noise immunity of the
modem Al increases by an order of magnitude or more, and for weak signals h* <1
it drops sharply. Let us determine, starting from the value 4* =1 using curve 1, the
decrease noise immunity of the modem in the channel with "non-white" Gaussian
noise in comparison with its characteristic obtained earlier (curve 4). It turned out
to be 5 dB. Therefore, additional measures are needed to eliminate the influence of
the expectation of Gaussian noise on the noise immunity of the modem A1. These
activities are outlined in Section 5.1.1.

Table 5.11.

Probability of errors of different modems
P 0,5 0,5 0,5 7,710° | 2,1-10% 0,9 Curve 1
P 0,5 0,5 0,5 1,1-10% 2:10% 0,45 Curve 2
P 0,5 5-10! 2,5-10° | 1,1-10"7 | 7,5-10° 0,09 Curve 3
P 0,5 5-10 2,5-10% | 1,1-107 | 7,5-10° 0 Curve 4
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Figure 5.3. Modem Al error probability in a channel
with “non-white” Gaussian noise

5.2.1. Noise immunity of the modem B2 when receiving an additive
mixture of Gaussian noise and a signal with the distribution of instantaneous
values according to the non-centered Veshkurtsev law

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its cipher was recorded earlier as modem B2. The modulation algo-
rithm for a quasi-deterministic signal (2.9) is repeated in Table 5.12.

Table 5.12.
Signal modulation algorithm with V. =1

The value of the expectation
of the signal

logical "0" 0,01 0
logical "1" 0,01 0,6

Telegraph signal | Signal dispersion value

The research methodology and results are published in [10,13,31]. Let us turn
to the analysis of the noise immunity of the modem B2 under the action of an
additive mixture of a quasi-deterministic signal (2.9) and “non-white” Gaussian
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noise at its input

z(t)=u(t)+n(1), (5.12)
where n(t) — the Gaussian noise, u(?) — signal (2.9).
Using expressions (2.12,3.10) and the data in Table 5.12, using formulas
(3.13), we calculate the thresholds in the demodulator. As a result, at the value
V =1 we get

2 2 Cfg
Hl— 4 exp| — 4 sm(eo) 05646 1= 1, 4 exp| 7 =1.

Let us calculate the real and imaginary parts of the ch.f. of additive mixture
(5.12) and is comparable with the thresholds. Then, during the transmission
s(t) =0 and value ¥, = 1 in the channels of the demodulator (Fig. 3.7), the thresh-
old devices will receive the values of the real and imaginary parts of the ch.f. ad-
ditive mixture, equal to

AlLr)= Tcos(z)/V(z)dz - Io[cf] expl— 63(2 +h Hcos(pem ), (5.13)

an?

-0

800)- lepoh 1 % Jon i 2 o). 510

an

where W(z) - the probability density of the additive mixture; h=o,/o,, - signal-to-
noise ratio; o’ - variance of Gaussian noise; e, - expectation of Gaussian noise;
p — the coefficient. When transmitting s(z) = 1 and the value ¥/, =1 in the channels
of the demodulator (Fig. 3.7), the threshold devices will receive the values of the
real and imaginary parts of the ch.f. of additive mixture, equal to

Al,1)= Tcos(z)/V(z +e,)dz=1, (O‘—EJ exp{— o, (zzhilzﬂ cos(e, + pe,, ), (5.15)

—o0

-0

B(1,1)= Tsm(z)/V(z+eO)dz 1( ] {GO(ZL?ZHSin(eO+pem). (5.16)

Suppose K, =0,96,K, =0,532; I1, = 1; I1, = 0,5646; o2 = 0,01; e, = 0,6; e, =0,06-
The results of calculations by formulas (5.13 - 5.16) are summarized in tables
5.13 - 5.16, recorded in the line with the name of the assessment. In addition, in
tables 5.13 - 5.16, the values of the coefficient p are recorded in a separate column
on the right.

An analysis of the data in tables 5.13 - 5.16 shows that modem B2 is very sen-
sitive to the mean of Gaussian noise. For example, logical "0" in the sine channel
and in the cosine channel of modem B2 is determined with errors if the expecta-
tion of Gaussian noise lies within 0,06 < e, <0,6. But the logical "1" in the cosine
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channel and in the sine channel of modem B2 is determined correctly, i.e. without
errors, for any value of the expectation in the range 0<e, <0,6. An analysis of
the data in tables 5.13 - 5.16 shows that modem B2 is very sensitive to the mean
of Gaussian noise. For instance, logical "0" in the sine channel and in the cosine
channel of modem B2 is determined with errors if the expectation of Gaussian
noise lies within 0,06 < e, <0,6. But the logical "1" in the cosine channel and in
the sine channel of modem B2 is determined correctly, i.e. without errors, for any
value of the expectation in the range 0<e, <0,6.

Table 5.13.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold /7, 1:0,96 = 0,96 Cocfficient p
Evaluation A(1,¢) 0,0055| 0,5 0,785 | 0,817 {0,8253 10,8253 1
Evaluation A(1,7) 0,0064 | 0,58 0,91 0,95 |0,9553|0,9553 0,5
Evaluation A(1,¢) 0,0067 | 0,61 0,95 0,99 10,9982 10,9982 0,1
Relation A2 0,001 | 0,01 0,1 1,0 10 100
Table 5.14.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold /7, 1:0,96 = 0,96 Coefficient p
Evaluation A(L,7) |0,0024 | 0,22 | 0,345 | 0,359 | 0362 | 0,362 1
Evaluation 4(1,¢) |0,0042 | 0,377 | 0,591 | 0,615 | 0,622 | 0,622 0,5
Evaluation A(L¢) |0,0053 | 0,479 | 0,751 | 0,782 | 0,79 | 0,79 0,1
Relation A2 0,001 0,01 0,1 1,0 10 100
Table 5.15.
The values of the estimate of the ch.f. in the sinus channel of the modem
Threshold 7, 0,532-0,5646=10,3 Coefficient p
Evaluation B(1,f) | 0,0038 | 0,342 | 0,537 | 0,559 | 0,565 | 0,565 1
Evaluation B(1,) | 0,002 | 0,179 | 0,281 | 0,293 | 0,296 | 0,296 0,5
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Evaluation B(1,7) | 0,0004 | 0,036 | 0,057 | 0,059 | 0,06 | 0,06 0,1
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Table 5.16.

The values of the estimate of the ch.f. in the sinus channel of the modem
Threshold /7 0,532:0,5646 =0,3 Coefficient p
Evaluation B(1,/) |0,0062 | 0,565 | 0,887 | 0,923 | 0,932 | 0,932 1
Evaluation B(1,/) |0,0052| 0,475 | 0,745 | 0,775 | 0,783 | 0,783 0,5
Evaluation B(1,r) |0,0041 | 0,372 | 0,583 | 0,607 | 0,613 | 0,613 0,1
Relation A2 0,001 | 0,01 0,1 1,0 10 100

In this modem, the sinus channel prevails, since it has a maximum noise immunity
in a wide range of signal-to-noise power ratios of 50 dB when operating in a chan-
nel with Gaussian noise, and the lower limit of the range is minus 30 dB.

From a qualitative analysis of the data, let's move on to a quantitative assess-
ment of the noise immunity of the B2 modem. For this, the following designations
are accepted: P,— the probability of errors when accepting a logical "0"; P, — the

probability of errors when accepting a logical "1"; P =} 2(1”0 +P,)~ total prob-
ability of device errors.

Quantitative assessment of modem noise immunity B2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder is
used. And, as a result of this, we obtain estimates of the real and imaginary parts of
the ch.f., which are recorded in tables 5.13 - 5.16. Both estimates are random vari-
ables with their own properties and distribution laws. Repeating verbatim the ratio-
nale and methodology for calculating errors in the demodulator channels (Fig. 3.7),
set out in Section 4.1.1, we obtain the data recorded in Table 5.17. For comparison,
in the same place from [15, p.473], the error probability of a device for receiving
signals with ideal phase modulation (PM), calculated in a noisy channel, is given.

The dependence of the modem B2 error probability on the signal-to-noise ratio
in the channel with Gaussian noise is shown in Figure 5.4, where curves 1-4 refer
to the modem's sine channel; curves 5 - 8 - to the cosine channel of the modem;
curve 9 - to the device for receiving signals with ideal PM. Curves 1,5,6 coincide
at any value of /42, and in the range of values, 10~ < A? <10* curve 2 joins them.
Curves 7,8,9 merge with curves 1,5,6 in the section 107 < /4* <107,

An analysis of the curves in Figure 5.4 shows that the modem B2 error prob-
ability in a channel with "non-white" Gaussian noise is at the level of 0.5 when
the noise expectation is large and lies within 0,06 <e, <0,6. Here, there is no
need to talk about any noise immunity of the modem B2, since it becomes unable
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to receive digital data. To restore the noise immunity of modem B2, it is neces-
sary to compensate for the expectation of Gaussian noise. Recommendations for
the implementation of such an activity are developed and presented in section
5.1.1. Following them it is enough to reduce the expectation of noise to the value
e, <0,06 (p=0,1). Then the noise immunity of modem B2 will be practically the
same as that considered earlier in the channel with "white" noise. In Figure 5.4,
curves 3,4 and curves 7,8 confirm this.

10° __i /&<‘% e = =
2/ % i s <
o —8/ Y
\§ \
1020t
P
100
1040
4
10°%0
108 102 107! 10° 10° 102
h2
Figure 5.4. Modem B2 error probability in a channel
with “non-white” Gaussian noise
Table 5.17.
Probability of errors of different modems
P 0,5 0,5 0,4 0,5 0,5 0,6 Curve 1
P 7,5-10° 0,18 0,38 0,42 0,42 0,3 Curve 2
P 3,510 1,1-10%° | 5,510 | 5,5-10°% | 5,5-10%° 0,06 Curve 3
P | 29102 | 14107 | 2,1-10% | 7,510% | 7,5-10% 0 Curve 4
P 0,5 0,5 0,5 0,5 0,5 0,6 Curve 5
P 0,5 0,5 0,5 0,25 0,25 0,3 Curve 6
P 0,5 0,43 3,3-10° 3,410 3,4-10°% 0,06 Curve 7
P 0,5 0,5 1,1-10° 7,5-10° 7,5-10° 0 Curve 8
P 0,9 32100 | 1,510" | 810° | 2-10% 0 Curve 9
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Again, in modem B2, the sine channel prevails over the cosine channel. Up to a
signal-to-noise ratio of 16 dB, this channel is better in terms of noise immunity
than a device for receiving signals with ideal PM (curve 9), and for the cosine chan-
nel of modem B2, this superiority remains only up to a ratio of 10 dB (curves 7,8).

Single-channel modem B2-1

The new modem contains a modulator (Fig. 3.3) and a single-channel demodu-
lator (Fig. 3.8). The modulation algorithm for a quasi-deterministic signal (2.9) is
the same as before and is written in Table 5.12. At the same time, the above theo-
retical analysis of the modem B2 noise immunity in a channel with “non-white”
Gaussian noise remains unchanged for the new modem model. However, the new
modem has only one channel and one output, on which the telegraph signal will
appear as a result of the coincidence of the channel states recorded in the truth
table 3.1. Let's recall that the demodulator (Figure 3.8) combines the advantages
of the sine and cosine channels of the demodulator in Figure 3.7.

Table 5.15 shows that in the sinus channel of the demodulator, the logical "0"
is determined without errors in the entire range of signal-to-noise power ratios, i.e.
in the range of 50 dB, if there is the inequality e < 0,06. Table 5.14 shows that
in the cosine channel of the demodulator, the logical "1" is determined without
errors also in the entire range of signal-to-noise power ratios, i.e. in the range of
50 dB. When combining these advantages of both channels together, we get a new
modem with maximum noise immunity in the range of signal-to-noise ratios of 50
dB, with the lower limit of the range equal to minus 30 dB. However, in practice
this does not work, which is confirmed by truth table 3.1. The probability of errors
in modem B2 - 1 is reduced by an average of 20 times compared with the error
probability of the cosine channel of modem B2.

The error probability of the new generation B2-1 modem is shown in Figure 5.5,
where curve 1 is plotted for the value e =0,6; curve 2 - for the value e =0,3;
curve 3 - for the value e =0,06; curve 4 - for the value e, =0. It also shows the
error probability of a known device (curve 5) for receiving signals with phase
modulation. The main values of the B2-1 modem error probability in a channel
with Gaussian noise are recorded in Table 5.18.

Table 5.18.
Probability of errors of different modems

P 25102 | 2,5:102 | 2,5-102 | 2,510 | 2,5-10% | 06 Curve 1
25107 | 2,5:10% | 2,5-10% | 2,5-102 | 2,5102 | 0,3 Curve 2
P 25102 | 2,1-10? | 1,6:10¢ | 1,7:10° | 1,7-10° | 0,06 Curve 3

~
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P 0,5 0,5 1,1-10° | 7,5-10° | 7,5-107 0 Curve 4
0,9 3,2:10" | 1,5-10" | 8-10° 2-10% 0 Curve 5
h? 0,01 0,1 1,0 10 100 e

10710

10-20 L
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Figure 5.5. Modem B2-1error probability
in a channel with “non-white” Gaussian noise

An analysis of curves 1,2,3 in Figure 5.5 shows that the modem B2-1 error
probability is highly dependent on the expected value of non-white Gaussian
noise over the 40 dB signal-to-noise ratio range. Only when e =0 the error prob-
ability stabilizes at the level of 7.5-10® in the range of the signal-to-noise ratio
10 < #* <100. Therefore, the modem B2-1 has no potential noise immunity in a
channel with "non-white" Gaussian noise, in which the expectation is present and
changing. Recommendations for compensation of the mathematical expectation
of "non-white" Gaussian noise in a wired channel are developed and presented in
Section 5.1.1. The modem B2-1 is inferior in noise immunity to the sinus channel
of the modem B2 by more than twenty orders of magnitude when working with
"non-white" Gaussian noise.

5.2.2. Noise immunity of modem B1 when receiving an additive mixture
of Gaussian noise and a signal with the distribution of instantaneous values
according to the centered Veshkurtsev law

The modem contains a modulator (Fig. 3.3) and a single-channel demodulator
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(Fig. 3.9). Its cipher was recorded earlier as modem B1. The modulation algo-
rithm for a quasi-deterministic signal (2.9) is repeated in Table 5.19.

Table 5.19.
Signal modulation algorithm with V, =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "0" 0,0009 0
logical "1" 1,0

The research methodology and results are published in [10,13,31]. Let us turn
to the analysis of the noise immunity of the demodulator, when an additive mix-
ture of a quasi-deterministic signal (2.9) and "non-white" Gaussian noise with
expectation acts at its input

z()=u(t)+n(1), (5.17)

where n(?) —the Gaussian noise, u(?) — signal (2.9) .
Using expression (2.12) and the data in Table 5.19, using formula (3.13), we
calculate the threshold in the demodulator. As a result, at the value V=1 we get

lelo(ofjexp(— Oj] = 0,7917

Letusrepresentthe functional transformationinthe demodulator circuit (Fig. 3.9)
by the dependence y =cosz at the value ¥/, = 1 and N>> 1. Calculate the math-
ematical expectation m {y/, since the ch.f. is the expectation of the cosine function
for the real part and the sine function for the imaginary part. Let's recall that the
imaginary part of the ch.f. signal (2.9) is equal to zero. We get at the value V=1

T 1 *+20]
m iy} = jcos(z)W(z —e )dz=1, (Z Jz)exp{— [0-46‘“}} exp(je,), (5.18)
where W(z-e ) - the probability density of the additive mixture (5.20); ¢, * - dis-
persion of Gaussian noise; e, — the expectation of the Gaussian noise. Dispersion
of the modulated c.c.s. varies discretely from ¢’ to ¢ %, the values of which are
recorded in Table 5.19. Then, when transmitting a logical "0", we get

2 i 24 952
m{y}, :IO(O:TO)CXP _[0-040',“} COS(ew), (5.19)
and when transmitting a logical "1" we will have
ol [ (o2+202)]
my )y =1, () expl | === | eosle,, ). (5.20)
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Having performed the following substitutions in expressions (5.19,5.20)
o’=0/h’ c’=07/h} we get

ﬁ(l,t)zlo[%gjexpl—ag[z;?g ]:Icos( ) (5.21)
- o} . 2+h!
A(1,t)=10[Tjexp[ 0'1( " j:lcos( s (5.22)

where h,=0,/ o - signal-to-noise ratio when receiving logical "0"; 4, =0,/ o,
- signal-to-noise ratio when receiving a logical "1"; p — coefficient. The results
(5.21), (5.22) require a quantitative analysis. Tables 5.20,5.21 show calculation
dataat V =1,0,=0,03,0,= 1,11, =09,

Table 5.20.
The values of the evaluation of the ch.f. in the modem channel
Threshold 11, 0,7917-1,14=0,9 Coefficient p
Evaluation 4(L,r) | 0,444 | 0,663 0,7 0,7 0,7 0,7 1
Evaluation ;1(1,t) 0,59 0,88 0,92 0,92 0,92 0,92 0,5
Evaluation ,:l(l,t) 0,635 | 0,948 | 0,997 | 0,997 | 0,997 | 0,997 0,1
Relation 4> 0,001 0,01 0,1 1,0 10 100
Table 5.21.
The values of the evaluation of the ch.f. in the modem channel
Threshold 0.7917-1,14 = 0.9 Coefficient
ch p
%al‘)‘a“o“ 0,352 | 0,527 | 0,549 | 0552 | 0552 | 0,552 1
Evaluation
;1(1,[) 0,465 0,697 0,726 0,73 0,73 0,73 0,5
EAj‘(’lai‘)la“‘m 0,503 | 0,755 | 0,785 | 0,789 | 0,789 | 0,789 0,1
Relation A2 | 1,11111 | 11,1111 [ 111,111 | 1111,11 | 11111,1 | 111111

e, =0,8, written in a line with the name of evaluation. In addition, in tables 5.20,
5.21, the values of the coefficient p are recorded in a separate column on the right.

When the modem is operating in a noisy channel, it is impossible to know the
different signal-to-noise ratio at its input when accepting a logical "0" and a logi-
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cal "1", because the noise power in the channel does not depend on the telegraph
signal. In our example, the signal dispersions during the transmission of telegraph

2
signal elements correlate with each other as 0%2 =1111,11. In this regard, in a
1

noisy channel, the ratio is 42 =1111,114} at constant noise power.

In Table 5.21, all evaluation values A(l,t) are less than the threshold for any
signal-to-noise ratio, regardless of the coefficient p. This means that in a channel
with "non-white" Gaussian noise, modem B1 does not have errors when accept-
ing a logical "0" in the range of signal-to-noise ratios of 50 dB. In Table 5.20, the

evaluation values A(1,t) exceed the threshold for a signal-to-noise ratio of 0.1 to
100 when the coefficient is 0 < p<(,5.. Here, in a channel with Gaussian noise,
modem B1 has no errors when accepting a logical "1". At ' < 0,1 and the value
of the coefficient p = 0,5 of the demodulator (Fig. 3.10), errors appear in the chan-
nel with Gaussian noise when accepting a logical "1". Thus, at a value p = 0,5 the
signal-to-noise ratio range is only 30 dB. If the value is p < 0,1, then the range of
signal-to-noise ratios for modem Bl increases to 40 dB. It turns out that the ex-
pectation of "non-white" Gaussian noise affects the noise immunity of modem B1.

The final conclusions about the noise immunity of the modem will be made
according to the data in Table 5.20 (the accepted designations 4,k are further
simplified to the form A?). Its analysis shows that the noise immunity of modem
B1 will be the limit in the range of signal-to-noise power ratios from 0.01 to 100,
i.e. in the range of 40 dB, if the coefficient is p <0,1. This indicates that the ex-
pectation operator in the mathematical model of ch.f. reliably protects the signal
from Gaussian noise. New generation modems can work without errors when the
signal-to-noise ratio is less than one.

Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the B1 modem. Let's introduce the following designations:
P, — the probability of errors when accepting a logical "0"; P, — the probability of
errors when accepting a logical "1"; P = %(P0 +P,) - is the total probability of
device errors.

Quantitative assessment of modem noise immunity

The demodulator (Fig. 3.10) measures the value of the real part of the ch.f.

with some error. And, as a result of this, we obtain A(1,t) - an estimate of the real
part of the ch.f. Estimated ch.f. is a random variable that has its own properties and
distribution law. Repeating verbatim to the conditions of our problem the method-
ology for calculating errors in the demodulator, written in detail in Section 4.1.1,
we obtain the data included in Table 5.22. Curve | was obtained at a value of
p =0,5, curve 2 - at a value of p = 0.1, curve 3 - at a value of p =0. For comparison,
in the same place from [15, p.473], the probability of errors of ideal phase modula-
tion is given (curve 4).
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Table 5.22.
Probability of errors of different modems
Curve 1 0,5 0,5 2,3-10°% | 2,3-10° 2,3-10° 2,3-10°
Curve 2 571012 3,8:10% [ 3,810 | 3,810 | 3,810 | 3,810®
Curve 3 0,5 7,510 | 1-10% | Less than | Less than | Less than
1-10% 1-10% 1-10%
Curve 4 1 0,9 3,2-10" | 1,5-10" 8-10° 2:10%
Signal-to-noise ratio 0,01 0,1 0,5 1,0 10 100

To visualize the dependence of the Bl modem error probability on the signal-
to-noise ratio, the graphs in Figure 5.6 are presented. The figure shows that curves
1,2,3 differ significantly from each other. This means that e - the expectation of
"non-white" Gaussian noise has a strong influence on the noise immunity of the
considered modem B1. The initial state of noise immunity is characterized by
curve 3, obtained when modem B1 operates in a channel with "white" noise, when
e, =0. And it is a completely different matter when the product p xe, =0,08,
which is calculated with a coefficient p =0,1. In this case, the noise immunity of
modem B1 in the channel with "non-white" Gaussian noise (curve 2) increases by
almost 10 dB compared to its noise immunity (curve 3) in the channel with "white"
noise (if the comparison is performed at the error probability level of P =1072).
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Figure 5.6. BI modem error probability in a channel




Veshkurtsev Yuriy Mikhaylovich

with "non-white" Gaussian noise
Indeed, in this case, curve 2 then #* = 0,1 rises by three orders of magnitude, and
the error probability decreases to the value P=10"". The probability P =10
(curve 2) is greater than the probability P = 107 (curve 3), however, at this stage
of research, these two probabilities are equivalent for us. It can even be considered
that a small expectation of Gaussian noise (e, <0,1) has a positive effect on the
operation of the B1 modem.

The situation changes with the value of the product px e, =0,4. Curve 3 rises
sharply and is located parallel to the x-axis at the probability level P =107 (curve
1). At the same time, it is not necessary to talk about the maximum noise immu-
nity of the B1 modem. Here, additional measures are needed to compensate e .
Recommendations for eliminating the influence e  on the noise immunity of the
modem were formulated earlier in section 5.1.1 and recorded in [37].

As a result, the behavior of modem B1 in a channel with "non-white" Gaussian
noise is ambiguous. Its noise immunity first increases when the expectation of the
Gaussian noise does not exceed 0.1, and then drops noticeably if the expectation
of the noise reaches 0.2 and continues to grow. At a coefficien p = 1 and value
e, = 0,4 we get curve 1. And this is not the end. Further increase in the expectation
of noise to a value of 0.8 straightens curve 1 to a straight line running parallel to
the x-axis at the error probability level P =0,5. Again, the expectation of Gaussian
noise affects the noise immunity of modem B1 only in a wired communication
channel. In the radio channel, the antenna-feeder system at the input of the re-
ceiver filters the expectation of noise and thereby eliminates its effect on the noise
immunity of modem B1.

Comparison of the noise immunity of modem B1 with the same characteristic
of a known device in which ideal PM is used (curve 4) shows its superiority by at
least 30 dB with an error probability P = 107" if the value is e, <0,1. At a value
e, >0,2 superiority disappears.

5.3.1. Noise immunity of the modem T2 when accepting an additive
mixture of Gaussian noise and a signal with the distribution of instantaneous
values according to Tikhonov law with the parameter D =5

The modem contains a modulator (Fig. 3.3) and a two-channel demodula-
tor (Fig. 3.7). Its cipher was recorded earlier as a T2 modem. Let us repeat the
analysis of the noise immunity of the T2 modem in the channel with "non-white"
Gaussian noise at the value of the Tikhonov distribution parameter D =5. The
modulation algorithm for a quasi-deterministic signal (2.33) in its previous form
is written in Table 5.23. The method and results of modem research are published
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in [34].
Table 5.23.
Signal modulation algorithm with V, =1

The value of the expectation

Telegraph signal Signal dispersion value of the signal

logical "0" 0,228 0
logical "1" 0,228 0,8

Let us turn to the analysis of the noise immunity of the T2 modem under the ac-
tion of an additive mixture of a quasi-deterministic signal (2.33) and "non-white"
Gaussian noise with expectation at its input

z()=u(1)+n(1), (5.23)
where n(t) — the Gaussian noise, u(?) — signal (2.33).

Using expressions (2.26,2.27) and the data in Table 5.23, using formulas
(3.13), we calculate the thresholds in the demodulator. As a result, at the value
V =1and D=5 we get

m

_ D) _4(D)
1= IO(D)sm(eO )=0,64, I —]0 D)

At the value V =1, we define for the additive mixture (5.23) the real part of
the ch.f.

=0,9.

© 2
Al,2)= :[Qcos(z)W(z)dz = ;;EZD); exp(— 20-}:2 jcos(pem )s (5.24)
where & =0, /o, - signal-to-noise ratio: e — expectation of Gaussian noise; p — is
the coefficient. When s(2)=0, similarly to (5.24) we calculate at the value V' =1 for
the additive mixture (5.23) the imaginary part of the ch.f.

B(1,¢)= Tsin(z)W(z)dz = 22’3 ; exp(— 26,;2 ]sin(pem )- (5.25)

The results (5.24), (5.25) require a quantitative analysis. Tables 5.24, 5.25 pres-
ent the results of calculations at /7, =0,64, 1, =09, K, =035, K, =0,78,
e, =08, ¢, =08, written in a line with the name of the evaluation. In addition,
in tables 5.24, 5.25, the values of the coefficient p are recorded in a separate col-
umn on the right.

-0

Table 5.24.
The values of the estimate of the ch.f- in the cosine channel of the modem
Threshold 77, 0,9-0,78 =0,7 Coefficient p
Evaluation A(L¢) 0 0 0,202 | 0,564 | 0,62 | 0,627 1
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Evaluation A(1,¢) 0 0 0,267 | 0,746 | 0,82 | 0,829 0,5
Evaluation 4(1,¢) 0 0 0,289 | 0,807 | 0,887 | 0,897 0,1
Relation /* 0,001 0,01 0,1 1,0 10 100
Table 5.25.

The values of the evaluation of the ch.f. in the sinus channel of the modem
Threshold 17, 0,64:0,625=0,4 Coefficient p
Evaluation B(1,5) | 0 0 | 0208 | 0581 | 0,638 | 0,646 1
Evaluation B(1,) 0 0 0,113 | 0,315 | 0,347 | 0,35 0,5
Evaluation B(1,f) 0 0 0,023 | 0,065 | 0,071 | 0,072 0,1
Relation /2 0,001 | 0,01 | 0,1 1,0 10 100

Analysis of the data in Table 5.24 shows that in the cosine channel of the T2
modem, the logical "1" is determined with errors, the probability of which de-
pends on e — the mathematical expectation of "non-white" Gaussian noise. When
e =0,8 (p =1) there will be continuous errors in the cosine channel. A similar con-
clusion regarding errors when accepting a logical "0" in the sinus channel of the
T2 modem follows after analyzing the data in Table 5.25.

Let the additive mixture (5.23) contain a non-centered quasi-deterministic sig-
nal at the demodulator input, this corresponds to the condition s(z)=1. Similarly to
(5.24) at the value V =1 we get

or similarly (5.25) at the value V =1 we calculate

Jcos(e0 +pe,) (5.26)

B(l,t): Tsin(z)W(z—eO)dz = 4 (D) exp( o Jsin(eo +pe,)- (5.27)

i 1,(0) T\ 2w
Table 5.26.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold 77, 0,9-0,78 =0,7 Coefficient p
Evaluation A(L) 0 0 -0,008 | -0,024 | -0,026 | -0,026 1
Evaluation A(1,¢) 0 0 0,105 | 0,294 | 0,323 | 0,326 0,5
Evaluation A(L¢) 0 0 0,185 | 0,516 | 0,567 | 0,573 0,1
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Relation /* 0,001 0,01 0,1 1,0 10 100
Table 5.27.

The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold 7, 0,64:0,625=0,4 Coefficient p
Evaluation B(1,7) 0 0 0,29 | 0,81 0,87 0,9 1
Evaluation B(1,f) 0 0 0,27 | 0,755 | 0,83 | 0,84 0,5
Evaluation B(1,/) 0 0 0,224 | 0,624 | 0,686 | 0,694 0,1
Relation /2 0,001 | 0,01 | 01 | 1,0 | 10 | 100

The results (5.26), (5.27) require a quantitative analysis. Tables 5.26, 5.27
show the calculation data at 77, =0,64, I1,=09, K =0,625, K, =0,78,
e, =0,8, e, =0,8, written in a line with the name of the evaluation. In addition, in
tables 5.26, 5.27, the values of the coefficient p are recorded in a separate column
on the right.

Table 5.26 presents the results of an ideal discrimination of a logical "0" in the
cosine channel of the modem T2 in the signal-to-noise ratio range of 50 dB, for
which the lower limit is minus 30 dB. There are no errors here within the values
0,08<e, <08 of the expectation of "non-white" Gaussian noise. The data in
Table 5.27 shows that a logical "1" in the sinus channel of the modem T2 is de-
termined without errors, regardless of the value of e  in the 20 dB signal-to-noise
ratio range, which has a lower limit of zero decibels.

Let's move on from a qualitative data analysis to a quantitative assessment of the
noise immunity of the modem T2. Let's introduce the following designations: P, —
the probability of errors when accepting a logical "0"; P, — the probability of errors
when accepting a logical "1"; p= %(Po +P) total probability of device errors.

Quantitative assessment of the noise immunity of the modem T2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we obtain estimates of the real and imaginary parts
of the ch.f., which are recorded in tables 5.24 - 5.27. Both estimates are random
variables with their own properties and distribution laws. Repeating verbatim the
justification and the method for calculating errors in the channels of the modem
T2, set out in Section 4.1.1, we obtain the data recorded in Table 5.28.

For clarity of presentation of the data in Table 5.28, Figure 5.7 shows the
dependencies of the modem T2 error probability on the signal-to-noise ratio in
a channel with “non-white” Gaussian noise. Curves 1-4 refer to the sine channel
of the modem T2, curves 5-8 refer to the cosine channel of the modem T2. For
comparison, in the same place from [15, p.473], the error probability of a device
for receiving signals with ideal PM is given (curve 9). Curves 1,5 coincide for any
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value of the signal-to-noise ratio.

In Figure 5.7, the graphs are very densely focused on the area 10~ < 4* <10
Curves 7 and 8 show good noise immunity of the cosine channel of the modem T2
in a channel with Gaussian noise. Indeed, curves 7,8 diverge at the point 4> =1,
and then curve 7 goes parallel to the abscissa at the level of error probability
P = 1-10"%, and curve 8 rises. It turns out that a small value of the expectation
(e, <0,1) of Gaussian noise increases the noise immunity of the cosine channel of
the modem T2 by 20 dB at the level of error probability P = 2-1023. The same is
observed in the sinus channel of modem T2 (curves 3 and 4).

Table 5.28.
Probability of errors of different modems
P 0,5 0,5 0,4 0,5 0,5 0,8 Curve 1
P 0,5 0,5 3105 | 6,5-10° 9-10° 0,4 Curve 2
P 0,5 0,5 2,510 | 1,9-10% 5,5-10% 0,08 Curve 3
P 0,5 0,5 1,1-10Y7 | 5-10%8 41032 0 Curve 4
P 0,5 0,5 0,5 0,5 0,5 0,8 Curve 5
P 0,5 0,5 3,910 | 1-10% Less than 0,4 Curve 6
1104
P 0,5 0,5 1-10% 1-10% Less than 0,08 Curve 7
1-10%
P 0,5 0,5 1-10% 5-10%8 2,1-103 0 Curve 8
0,9 3,2-10" | 1,5-10" 8-10° 2:10% 0 Curve 9
n 0,01 0,1 1,0 10 100 e,
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Figure 5.7. Probability of modem T2 errors in a
channel with "non-white" Gaussian noise

Comparison of the noise immunity of the modem T2 with the noise immunity
of the known device (curve 9), in which the ideal PM is used, shows the superior-
ity of its characteristics by at least ten orders of magnitude. The cosine and sine
channels of the modem T2 behave identically in the channel with Gaussian noise
and show high noise immunity. To do this, it is necessary to control the expecta-
tion of "non-white" Gaussian noise in the communication channel. The necessary
recommendations have already been developed and are presented in section 5.1.1.
As a result, such a model of the T2 modem is promising and occupies a worthy
place in the class of new generation modems.

Single-channel modem T2-1

Let the new T2-1 modem contain a modulator (Fig. 3.3) and a single-channel
demodulator (Fig. 3.8). The modulation algorithm for a quasi-deterministic signal
(2.33) remains the same and is recorded in Table 5.23. At the same time, the above
analysis of the noise immunity of the modem T2 in the channel with "non-white"
Gaussian noise remains unchanged for the new modem model. However, the new
modem has only one channel and one output, on which the telegraph signal will
appear as a result of modem channel transitions to the states recorded in the truth
table 3.1. Let's recall that the demodulator (Figure 3.8) combines the advantages of
the sine and cosine channels of the demodulator shown in Figure 3.7.
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Table 5.25 shows that in the sinus channel of the modem T2, the logical "0" is
determined without errors in the entire range of signal-to-noise power ratios, i.e. in
the range of 50 dB, if the coefficient is 0,1<p <0,5. Table 5.26 shows that in the
cosine channel of the modem T2, the logical "1" is determined without errors also
in the entire range of signal-to-noise power ratios, i.e. in the range of 50 dB. When
combining these advantages of both channels together, we get a new modem with
maximum noise immunity in the range of signal-to-noise ratios of 50 dB, with the
lower limit of the range equal to minus 30 dB. However, in practice this does not
work out, which is confirmed by truth table 3.1. The probability of errors in the
T2-1 modem decreases on average by a factor of 20 compared to the error prob-
ability of the cosine channel of the modem T2.

The error probability of the modem T2-1is shown in Figure 5.8, where curve 1
is calculated for the value e  =0,8; curve 4 - for the value e =0,4; curve 3 - for the
value e =0,08; curve 2 - for the value e  =0. For comparison, in the same place
from [15, p.473], the error probability of a device for receiving signals with ideal
PM is given (curve 5). The main values of the modem T2-1 error probability are
recorded in Table 5.29.

Table 5.29.
Probability of errors of different modems
P | 25102 | 25102 | 25102 | 25102 | 25102 0.8 Curve 1
P | 25102 | 25107 | 1,9-102 | 5:10% LTST (;2?“ 04 | Curve2
P | 2510° | 25102 | 510+ | Lessthan o Lessthan g p0 )
1-10 110
P| 05 0.5 1110 | 5102 2,1:10% 0 Curve 4
P| 09 |[3210" | 1510" | 810 2:10% 0 Curve 5
K| 001 0,1 1,0 10 100 e,
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Figure 5.8. Probability of modem T2-1 errors in a
channel with “non-white” Gaussian noise

An analysis of the graphs in Fig. 5.8 shows that the modem T2-1 works fine in
a channel with "non-white" Gaussian noise. It has an error probability of 1-10+
in the range of signal-to-noise ratios from 10" to 10', i.e. 20 dB with a lower
limit of minus 10 dB if the value e = 0,08. When the value e = 0, then the error
probability of the modem T2-1starts to increase to the value of 1-102 if the signal
grows. It turns out that small values of the expectation of "non-white" Gaussian
noise increase the noise immunity of the modem T2-1. Therefore, compensation
algorithms (5.6), (5.7) for the expectation of Gaussian noise in the modem T2-1
should be reduced to the form

1)~ Dol i)« 01 - ] (5.29)
E(Vm):%isin[Vm [=(0kAe)+ 0,1 — i, {nle)]. (529)

k=1

And then the potential noise immunity of the modem T2-1 will become limiting,
and the error probability will lie at the level of 1:107 in the range of signal-to-
noise ratios of 20 dB, in which the lower limit is equal to minus 10 dB. In this
range, the modem T2-1 is superior in noise immunity to a device for receiving
signals with ideal PM (curve 5).
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The T2-1 modem has no analogues and competitors all over the world. It can
handle signals with 10 times less noise power.

5.3.2. Noise immunity of the modem T1 when accepting an additive mix-
ture of Gaussian noise and a signal with the distribution of instantaneous
values according to Tikhonov centered law

The modem contains a modulator (Fig. 3.3) and a single-channel demodulator
(Fig. 3.9). Its cipher was recorded earlier as a modem T1. The modulation algo-
rithm of a quasi-deterministic signal (2.33) is repeated in Table 5.30

Table 5.30.
Signal modulation algorithm with V. =1

The value of the distribution
parameter of the Tikhonov law

logical "0" 1,604 1
logical "1" 0,228 5

Telegraph signal | Signal dispersion value

The research methodology and results are published in [32 — 34,38].

Let's proceed to the analysis of the noise immunity of the modem T1. Suppose
an additive mixture of a centered quasi-deterministic signal (dynamic chaos with
Tikhonov's law) and "non-white" Gaussian noise act at the demodulator input
(Fig. 3.9)

zZ(t)=u(t)+n(1), (5.30)
where u(?) — a signal (2.33) with the distribution of instantaneous values according
to Tikhonov law, n(?) - "non-white" Gaussian noise with a characteristic function

2 2
of the form G)(V ): exp[— VO ]exp( jV e ), V' - aparameter of the characteris-
m 2 m T w m

tic function (ch.f)); o2 - the dispersion (average power) of the noise.
At the value V' =1 we define for the additive mixture (5.30) the real part of the
ch.f.

A1) = Tcos(z)W(z)dz = 2) Eg; exp[— 26}52 Jcos(pem )s (5.31)

where & =0, /o, - signal-to-noise ratio; p - coefficient; D - parameter of Tikhonov
distribution law; 7, () - the Bessel function of the imaginary argument of the n-th
order of the first kind. In expression (5.31), the signal dispersion o} changes in
accordance with the modulation algorithm written in table 5.30,

-0

at S(l)=1 parameter D = 5, and dispersion o? = o, =0,228;
at s(t)=0 parameter D = 1, and dispersion o = &, =1,604,

where s(?) - a telegraph signal in the form of a sequence of logical "0" and logical
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"1". The time dependence A(1,?) appeared due to the telegraph signal. Taking this
into account, we write down the value of the ch.f.

Al7)= flgexp(_ ;fzjc"s(pew) at s(t)=1 and

A(l t)— 7 EI; exp(

where h, = O-% - the signal-to-noise ratio when accepting a logical "0";

o2 JCOS( pe. ) ats(t)=0, (5.32)

h, = % - signal-to-noise ratio when accepting a logical "1".

The results (5.32) need to be analyzed quantitatively. Tables 5.31, 5.32 pres-
ent the calculation data at 77, =0,75, e, =0,8, written in a line with the name of
the evaluation. In addition, in tables 5.31, 5.32, the values of the coefficient p are
recorded in a separate column on the right.

When the modem is operating in a noisy channel, it is impossible to know the
different signal-to-noise ratio at its input when receiving a logical "0" and a logi-
cal "1", because the noise power in the channel does not depend on the telegraph
signal. In our example, the signal dispersions during the transmission of elements
of a telegraph message correlate with each other as o7 /0;=7,03508. In this
regard, in a noisy channel, the ratio is 4. = 7,03508% at a constant average noise
power. In addition, the demodulator (Fig. 3.9) with some error measures the value
of only the real part of the characteristic function, so the threshold device receives
an evaluation of the ch.f. in the form A(1,7)..

In Table 5.32, all evaluation values A(l,¢) are less than the threshold for any
signal-to-noise ratio, regardless of the coefficient p. This means that in a chan-
nel with "non-white" Gaussian noise, errors when accepting a logical "0" modem
T1 does not have a signal-to-noise ratio of 50 dB in the range. In Table 5.31, the
evaluation values A(1,¢) exceed the threshold for a signal-to-noise ratio of 1 to 100
when the coefficient 0< p<0,5. Here in the channel

Table 5.31.
The values of the evaluation of the ch.f. in the modem channel
Threshold /7, 0,75 Cocfficient p
Evaluation ;l(l,t) 0 0 0,2 |0,564 | 0,62 | 0,627 1
Evaluation 4(1,¢) 0 0 0,267 | 0,746 | 0,82 | 0,829 0,5
Evaluation A(1,¢) 0 0 0,289 | 0,807 | 0,887 | 0,897 0,1
Relation /2 0,001 | 0,01 0,1 1,0 10 100
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Table 5.32.
The value of the evaluation of the ch.f. in the modem channel
Threshold /7, 0,75 Coefficient p
Evaluation A(L¢) 0 0 0,1 0,279 | 0,31 0,31 1
Evaluation A(L¢) 0 0 0,132 | 0,368 | 0,407 | 0,44 0,5
Evaluation A(1,7) 0 0 | 0,142 | 0,399 | 0,441 | 0,445 0,1
Relation /,? 0,007 | 0,07 | 0,703 | 7,035 | 70,35 | 703,5

Gaussian noise there are no errors when accepting a logical "1" modem T1. At
h =1 and the value of the coefficient p = 0,5 the modem has errors in the channel
with Gaussian noise when accepting a logical "1". Thus, at a value p = 0,5 the
signal-to-noise ratio range is only 10 dB. If the value is p <0, 1, then the signal-to-
noise ratio range is increased to 20 dB. It turns out that the expectation of “non-
white” Gaussian noise affects the noise immunity of the modem T1, and at p = 1
and value of e = 0,8 and the value of the error when accepting a logical “1” is
constantly present in the modem for any signal-to-noise ratio.

We will draw the final conclusions about the noise immunity of the modem
T1 according to the data in Table 5.31 (the accepted designations 4.,k are fur-
ther simplified to the form #?). Its analysis shows that the noise immunity of the
modem will be limiting in the range of signal-to-noise ratios from 1 to 100, i.e. in
the range of 20 dB, if the coefficient p < 0,1. This indicates that the expectation
operator in the mathematical model of ch.f. reliably protects the signal from noise.

Let's move on from a qualitative data analysis to a quantitative assessment of
the noise immunity of the modem T1. Let's introduce the following designations:
P, — the probability of errors when accepting a logical "0"; P, — the probability
of errors when accepting a logical "1"; P = %(P0 + P,) - the total probability of
device errors.

Quantitative assessment of the noise immunity of the modem T1

The demodulator (Fig. 3.9) measures the value of the estimate of the real part
of the ch.f. And, as a result of this, we obtain ;l(l,t) - an estimate of the real part
of the ch.f. Estimated ch.f. is a random variable that has its own properties and
distribution law. Repeating verbatim to the conditions of our problem the method-
ology for calculating errors in the demodulator, written in detail in Section 4.1.1,
we obtain the data included in Table 5.33. Curve | was obtained at a value of
p=0.5, curve 2 - ata value of p = 0.1, curve 3 - at a value of p = 0. For comparison,
in the same place from [15, p.473], the error probability of a device for receiving
signals with ideal PM is given (curve 4).

To visualize the dependence of the modem T1 error probability on the signal-
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to-noise power ratio, the graphs in Figure 5.9 are presented. The figure shows that
curves 1,2,3 differ significantly from each other. This means that e - the expecta-
tion of "non-white" Gaussian noise has a strong influence on the noise immunity
of the modem T1 over the entire range of signal-to-noise ratios. Therefore, we
select two sections in the figure, namely: the first, where 0,1 < 4#? <10, and the
second, where 10 < 4* <100. Let's consider each section separately.

Table 5.33.
Probability of errors of different modems
Curve 1 0,5 2,8-10" 2,110 2,810
Curve 2 0,5 3,8-10°1¢ 1-10% 1-10%
Curve 3 0,5 3,8:10°1¢ 2-10%! 2-10*
Curve 4 0,9 1,5-10" 8-10° 2-10%
Relation 4° 0,1 1 10 100

In the first section of the figure, curves 2 and 3 coincide up to the ratio 4> =1,
and then diverge. Curve 3 shows the error probability of the modem T1 when oper-
ating in a channel with "white" noise, when e = 0. In this case, the noise immunity
of the modem turns out to be maximum, and it drops by 1.25 dB if the coefficient
p=0,1,and e = 0.8. This result is obtained by comparing the abscissas of curves
2,3 at the level of error probability 10*°. Comparing the abscissas of curves 1,3 at
the error probability level P =107, we see a drop in modem noise immunity by 7
dB when the coefficient p=0,5, ¢, =0,8. Let's continue the analysis of the figure.
Suppose the coefficient p = 1 and e = 0.8. Then, regardless of the signal-to-noise
ratio, curve 1 is transformed into a straight line running parallel to the x-axis at the
level P=0,5 As aresult, the noise immunity of the modem T1 reaches a minimum.

In the second section of the figure, curves 1,2,3 run almost parallel to each
other at different levels of error probability. It ranges from 0.5 at value e = 0,8
(p = 1) to 107" at value e = 0. This shows that the expectation of "non-white"
Gaussian noise must be reduced. Recommendations on this matter were formulat-
ed earlier in section 5.1.1 and published in [37]. It should be noted that the expec-
tation of "non-white" Gaussian noise affects the noise immunity of the modem T1
only in a wired communication channel. In the radio channel, the antenna feeder
system at the receiver input filters the expectation of noise and thereby eliminates
its effect on the noise immunity of the modem T1.
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Figure 5.9. Probability of modem T1 errors in a
channel with "non-white" Gaussian noise

Comparison of the noise immunity of the modem T1 with the noise immunity
of the known device, in which the ideal PM is used (curve 4), shows the superior-
ity of the modem T1 by at least 5 dB with the error probability P = 10, if the
value of e < 0,4. At value of e > 0,4 and 4> > 30 superiority is lost.

5.4. Noise immunity of the modem K2 when receiving an additive mixture
of Gaussian noise and a signal with the distribution of instantaneous values
according to the cosine law

The modem contains a modulator (Fig. 3.3) and a two-channel demodulator
(Fig. 3.7). Its cipher was recorded earlier as the modem K2. The modulation algo-
rithm for a quasi-deterministic signal (2.19) is repeated in Table 5.34.

Table 5.34.
Signal modulation algorithm with V, =1

The value of the expectation

Telegraph signal | Signal dispersion value of the signal

logical "0" 0,4674 0

logical "1" 0,4674 0,8
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The modem research technique was developed in [14]. Let's proceed to the
analysis of the noise immunity of the K2 modem, when an additive mixture of a
quasi-deterministic signal (2.19) and "non-white" Gaussian noise acts at its input

z()=u(t)+n(1), (5.33)
where n(?) — the “non-white” Gaussian noise, u(?) — signal (2.19).
Using expressions (2.26,2.27) and the data in Table. 5.34 using formulas (3.13)
we calculate the thresholds in the demodulator. As a result, with the value V =1,
we get

= %sin(eo)=0,5634 , I=T/,=0,7854.

At the value V =1, we define for the additive mixture (5.33) the real part of
the ch.f.

A4 (1,¢)= ]:cos(z)W(z)dz =Zexp[— 26}52 Jcos(pem )s (5.34)

where h=0, /o, the signal-to-noise ratio; e expectation of Gaussian noise;
p — the coefficient. When s(#)=0, similarly to (5.34) we calculate at the value V =1
for the additive mixture (5.33) the imaginary part of the ch.f.

—o0

B(1,¢)= j sin(2)W (z)dz = Zexp(— 26;;? ]sin(pew)- (5.35)

The results (5.34), (5.35) require a quantitative analysis. Tables 5.35, 5.36
present the results of calculations at /7, =0,5634, I1,=0,7854, K, =0,53,
K, =0,764, e, =09, written in a line with the name of the evaluation. In addi-
tion, in tables 5.35, 5.36, the values of the coefficient p are recorded in a separate
column on the right.

An analysis of the data in Table 5.35 shows that in the cosine channel of the
modem K2, the logical "1" is determined without errors in the range of signal-to-
noise power ratios from 1 to 100 or from 0 dB to 20 dB with a coefficient value of
p <0,1. When 0,1 <p <0,5, then the range of signal-to-noise ratios in the cosine
channel of the K2 modem narrows to 10 dB. And for the values of the coefficient
0,5 <p <1 in the cosine channel of the K2 modem, there will be continuous errors
for any signal-to-noise ratio.

—o0

Table 5.35.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold 77, 0,7854 - 0,764 =0,6 Coefficient p
Evaluation 4(,r) | 0 0 | 005 |0388 | 048 | 049 1
Evaluation 4(1,¢) 0 0 0,072 | 0,56 | 0,69 | 0,71 0,5
Evaluation 4(1,) 0 0 0,079 | 0,622 | 0,767 | 0,787 0,1
Relation /2 0,001 | 0,01 0,1 1,0 10 100
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In table 5.36, logical "0" in the sinus channel of modem K2 is determined with-
out errors, i.e. with ultimate noise immunity, with signal-to-noise power ratio from
107 to 102 i.e. in the range of 50 dB, starting from minus 30 dB, if the coefficient

Table 5.36.
The values of the evaluation of the ch.f. in the sinus channel of the modem
Threshold 7 0,5634-0,53=0,3 Coefficient p
Evaluation B(1,7) 0 0 0,063 | 0,49 | 0,603 | 0,62 1
Evaluation B(1,7) 0 0 0,035 | 0,27 | 0,335 | 0,344 0,5
Evaluation B(1,7) 0 0 0,007 | 0,056 | 0,069 | 0,071 0,1
Relation A2 0,001 | 0,01 0,1 1,0 10 100

This allows us to say that simple control commands such as turn on-off, open-
close and others will be accepted with a certainty equal to one, in any operating
conditions of the K2 modem. Then things get worse. When 0,1 < p <1, then the
range of signal-to-noise ratios in the sinus channel of modem K2 is reduced to 30
dB with a lower limit equal to minus 30 dB. Here, in the sinus channel of the mo-
dem K2, the logical "0" will be determined without errors, and there will be errors
outside the specified range.

Suppose the additive mixture (5.33) contain a non-centered quasi-deterministic
signal at the demodulator input, this corresponds to the condition s(z)=1. Similarly
to (5.34) at the value V =1 let's define

A1) = ]Ecos(z)W(z)dz = Zexp(— 20-}:2 jcos(e0 +pe,) (5.36)

or similarly (5.35) at the value V =1 let's calculate

—o0

B(1,¢)= Tsin(z)W(z)dz = Zexp(— 2ah§2 )sin(eo +pe,) (5.37)

The results (5.36), (5.37) require a quantitative analysis. Tables 5.37, 5.38
show the calculation data at /7, =0,5634, II, =0,7854, K, =053, K, =0,764,
e, = 0,9, written in a line with the name of the evaluation. In addition, in tables
5.37, 5.38, the values of the coefficient p are recorded in a separate column on the
right.

At the selected threshold values according to Table 5.38, the discrimination of
logical "1" from zero in the sinus channel of modem K2 occurs without errors in
the range of signal-to-noise ratios from 1 to 100, i.e. in the range, equal to 20 dB,
at any value of the coefficient p. At the same time, in the cosine channel of the K2
modem (Table 5.37), when determining the logical "0", the maximum noise im-
munity is maintained at a signal-to-noise ratio of 10~ to 102 i.e. in the range of 50
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dB, in which the lower limit is equal to minus 30 dB, and it does not depend on the
value of the coefficient p. Therefore, simple control commands such as turn on-
off, close-open and others will be accepted by the cosine channel with a reliability
equal to one, under any operating conditions of the modem K2.

Table 5.37.
The values of the evaluation of the ch.f. in the cosine channel of the modem
Threshold 77, 0,7854 - 0,764 =0,6 Coefficient p
Evaluation A(1,7) 0 0 |-001]-008|-011]-0,1 1
Evaluation A(L¢) 0 0 |0025] 0197 [ 0,243 | 0,25 0,5
Evaluation A(L¢) 0 0 0,05 | 0,393 | 0,485 | 0,497 0,1
Relation /2 0,001 | 0,01 0,1 1,0 10 100
Table 5.38.
The values of the evaluation of the ch.f. in the sinus channel of the modem
Threshold 77 0,5634-0,53=0,3 Coefficient p
Evaluation B(1,f) 0 0 | 0,079 | 0,619 | 0,764 | 0,783 1
Evaluation B(1,7) 0 0 0,076 | 0,592 | 0,73 | 0,75 0,5
Evaluation B(1,7) 0 0 0,062 | 0,481 | 0,594 | 0,61 0,1
Relation A2 0,001 | 0,01 0,1 1,0 10 100

As a result of the analysis of the noise immunity of the modem K2, we can
say that in the presence of "non-white" Gaussian noise in the data transmission
channel, the Kotelnikov noise immunity of the modem K2 depends on the value
of the expectation of noise. At accurate synchronization of the operation of both
channels of the K2 modem, there are no errors when accepting a telegraph signal
in the range of signal-to-noise ratios of 20 dB or more, with the lower limit of the
range equal to 0 dB, and the value of the expectation of Gaussian noise e <0, 1.

Let's move from qualitative data analysis to quantification noise immunity mo-
dem K2. Let's take the following designations: P, — the probability of errors when
accepting a logical "0"; P, — the probability of errors when accepting a logical "1";

P= % (PO + P]) the total probability of device errors.

[ 137



Veshkurtsev Yuriy Mikhaylovich

Quantitative assessment of the noise immunity of the modem K2

In expressions (3.11,3.12), instead of the expectation operator, an ideal adder
is used. And, as a result of this, we obtain estimates of the real and imaginary parts
of the ch.f., which are recorded in tables 5.35 - 5.38. Both evaluations are random
variables with their own properties and distribution laws. Repeating verbatim to
the conditions of our problem the method of calculating errors in the demodulator,
written in detail in Section 4.1.1, we obtain the data included in Table 5.39.

To visualize the error probability of the K2 modem depending on the signal-to-
noise ratio and the value of p, the graphs in Figure 5.5 are presented. Curves 1 - 4
characterize the error probability of the sine channel, and curves 5 - 8 characterize
the cosine channel of the K2 modem. Curve 9 shows the error probability of the
device for receiving signals with ideal PM according to the work [15, p.473]. On
fig. 5.10 curves 1.5 coincide at any signal-to-noise ratio, and curves 7,8 coincide
in the section 10 </4* <100 and in the section 10~ <A <107". In addition, in the
section 0,1 < 4> <10 curves 7 and 8 are so close to each other, that it is sometimes
difficult to distinguish them. This means that the expectation of Gaussian noise at
value of ¢, <0,1 has almost no effect on the noise immunity of the cosine channel
of the K2 modem, but it has a positive effect on the operation of the sine channel.
In the sinus channel of modem K2 (curves 3.4), noise immunity increases by 4.26
dB. This means that the signal modulation algorithm in Table. 5.34 is not optimal
and can be adjusted.

Table 5.39.
Probability of errors of different modems
P |05 | 05 0,5 0,5 0,5 09 | Curvel
P|os| 05 8102 | 510° 19102 | 045 | Curve2
Pl 05| 05 | L1107 | 5510% 1-10 0,09 | Curve3
P05 | 05 |5510° 410 4310 0 | Curved
P los]| o5 0,5 0,5 0,5 09 | curves
P los| o5 05 | 2110% 1-10 045 [ Curve6
P05 | 05 LI110S | 110 LTST (;E?n 0,09 | Curve?
P |05 05 | 9310 | 110% L‘fi‘ (;E?n 0 | Curves
P | 09| 3210 | 15100 | 810 210 0 | Curve9
ool | o1 1,0 10 | 100 e,

Apparently, it would be more correct to write e, = 0,9. Then the probability of
errors in the sinus channel of the K2 modem at h* =1 will decrease by four orders
of magnitude up to the value P =1,1-10""7. Moreover, in the cosine channel of the
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K2 modem, the probability of errors will decrease only by one order and will be
P =1,1-107 (table 5.39).

And it's a completely different matter when the value of e, >0,1. When
e, =09 (p =1) in both modem channels, the error probability is 0.5 (curves 1.5)
for any signal-to-noise ratio. Here, the noise immunity of the modem K2 in the
channel with Gaussian noise reaches a minimum, as a result of which it becomes
inoperable. To ensure the operation of the K2 modem with high noise immunity
in a channel with Gaussian noise, additional measures are required. The content of
these activities is described in Section 5.1.1.

10%4

10710

1020}

1030}

1040}

10"
1073 102 10! 10° 10! 102

hZ

Figure 5.10. Error probability of modem K2 in a
channel with "non-white" Gaussian noise

Comparison of the noise immunity (curves 3,6,7,8) of the K2 modem with
the noise immunity (curve 9) of a known device in which ideal PM is used shows
its superiority by thirteen orders and up to thirty orders in a channel with "non-
white" Gaussian noise. The noise immunity of the K2 modem in the channel with
"non-white" Gaussian noise in the section 10 <A” <100 is even better than in the
channel with "white" noise. This follows from the comparison of curve 4 with
curves 3,6,7,8.

Single-channel modem K2 -1

Let the K2 modem contain a modulator (Fig. 3.3) and a single-channel demod-
ulator (Fig. 3.8). The modulation algorithm for a quasi-deterministic signal (2.19)
is written in Table 5.34. At the same time, the above analysis of the noise immuni-
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ty of the modem K2 when operating in a channel with "non-white" Gaussian noise
remains unchanged for the new model of the K2 modem - 1. However, the new
modem has only one channel and one output, on which the telegraph signal will
appear as a result of the transition of the modem channels to the states recorded in
the truth table 3.1. Let's recall that the demodulator (Figure 3.8) combines the ad-
vantages of the sine and cosine channels of the demodulator shown in Figure 3.7.

Table 5.36 shows that in the sinus channel of the demodulator, a logical "0"
is determined without errors in the range of signal-to-noise ratios from 107 to
107, i.e. in the range of 30 dB. Table 5.37 shows that in the cosine channel of the
demodulator, the logical "1" is determined without errors in the entire range of
signal-to-noise power ratios, i.e. in the range of 50 dB. When combining these
advantages of both channels together, we get a new modem with maximum noise
immunity in the range of signal-to-noise ratios of 50 dB, with the lower limit of the
range equal to minus 30 dB. However, in practice this does not work out, which
is confirmed by truth table 3.1. The probability of errors in the modem K2-1 is
reduced by an average of 20 times compared with the probability of errors in the
cosine channel of the modem K2.

The error probability of the modem K2-1 is presented in Table 5.40 and in
Figure 5.11, where curve 1 is plotted at e, = 0.9(p =1); curve 2 — e, =0,45(p=0,5);
curve 3 — e, =0,09(p =0,1); curve 4 - e, =0 (p =0); curve 5 refers to a device
in which phase modulation is applied. Curves 3 and 4 coincide in the section
107 <h*<10"

An analysis of the graphs in Figure 5.11 shows that the K2-1 modem works
well with large signals. It has an error probability of 1-10* in the range of signal-
to-noise ratios from 1 to 100, and the probability of errors depends on the value
of the expectation of "non-white" Gaussian noise. For example, at e, =0,09 the
probability of modem errors K2-1 remains at the level of 1:10* (curve 3) for any
signal-to-noise ratio in the range of 10 dB, starting from 10 dB. This is the best
indicator of the K2-1 modem. Curve 1 in the section 107 </* <100 shows the
low noise immunity of modem K2-1 with an error probability of 2.5-102. If the
expectation of “non-white” Gaussian noise is compensated to the value e, =0,1,
then the noise immunity of the K2-1 modem will be restored and will correspond
to curve 3. Recommendations for eliminating the expectation of “non-white”
Gaussian noise are recorded in section 5.1.1.
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Table 5.40.
Probability of errors of different modems
2,5-102 | 2,5-102 | 2,5:10% | 2,5-102 | 2,5:107 0,9 Curve 1
2,5:10% | 2,5-10% | 2,5:102 11038 5-10 0,45 Curve 2
2,5-102 | 2,5-102 | 5,5-107 5-10% | Less than 0,09 Curve 3
1-10
P 2,5-102 | 2,5:10% | 4,6:10° | 5-10% | Less than 0 Curve 4
5-10%
P 0,9 3,2-10" | 1,510 8-10¢ 2-10% 0 Curve 5
h? 0,01 0,1 1,0 10 100 e,

Q-

10°

107101

1020}

P

100

10-40 -

100
1072 101 10° 10" 102
h2
Figure 5.11. Probability of modem K2 errors - 1 in the
channel with "non-white" Gaussian noise
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6. COMPUTER SIMULATION OF THE MODEM

To confirm the results of theoretical studies, computer simulation of different
models of modem A, recorded in Table 4.50, was performed. At the same time, the
Matlab application software package was used, which has significant advantages
over currently existing mathematical modeling programs. The Matlab package
was created for scientific and engineering calculations and is focused on working
with data arrays. All these features make the Matlab package very attractive for
solving various problems, including modeling devices and systems for transmit-
ting discrete information over communication channels.

The characteristics of the systems under study are entered in an interactive
mode, by graphical assembly of the connection diagram of standard elementary
links. The elementary links are blocks (or modules) stored in the built-in library of
the Simulink environment. The composition of the library can be supplemented by
the user's own developments. Any model can have a nested structure, i.e. consist
of lower level models [39 — 45]. In this case, the number of nested models can be
very large. Further, we will agree to call nested models subsystems.

6.1. Description of the computer model

The computer model includes a modulator (Fig. 3.1), a communication chan-
nel and a demodulator (Fig. 3.7). Together they allow us to investigate the noise
immunity of all models of modem A (Table 4.50) in a channel with "white" noise.

Modeling and subsequent study of the modem was performed in the Matlab
software environment. To build the model, standard modules of the Simulink base
library, as well as DSP Blocksets and Communication Blocksets libraries were
used. Processed signals are stored in the working space of the environment. The
built-in generators of pseudo-random sequences of the Matlab package were used
for noise modeling.A general view of the computer model is shown on fig. 6.1
[24]. The model requires adjustment of block parameters taken from Simulink en-
vironment libraries. In the computer model, the communication channel contains
the Add1 adder block, which is used to form an additive mixture.
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In the modulator, the formation of the telegraph signal s(#) in the form of bi-
nary parcels is performed using the Random Integer Generatorl block. This block
generates a pseudo-random binary sequence that simulates the transmitted infor-
mation. The Product! block multiplies the quasi-deterministic signal u(?) and the
pseudo-random binary sequence. To transmit one data bit, N samplings of a quasi-
deterministic signal are used. Loading samples of a quasi-deterministic signal into
the model is performed using the FromWorkspacel block.

The demodulator is built in accordance with the block diagram in Figure 3.8, in
the model its functions are extended using the Manual Switch key, which allows
you to use the modem channels separately or together through a special combi-
nation scheme. Let's recall that the demodulator measures estimates of the real
and imaginary parts of the Lyapunov characteristic function (ch.f.) of the additive
mixture of signal and noise

;1(1,t):%§:cos[z(kAt)] , ©.1)

k=1
B(1,1)= ]lkalsin[z(km)] , (6.2)

where z(t)=u(t)+n(t) — is an additive mixture of a quasi-deterministic signal u(?)
and "white" noise n(2); At is the discretization interval, & is the ordinal number of
the discrete sample of the additive mixture. The additive mixture is fed to the input
of a demodulator having sine and cosine channels. Evaluation (6.2) is measured
in the sine channel, estimate (6.1) is measured in the cosine channel. The sine
values of the additive mixture of the useful signal and noise are calculated using
the Trigonometric Functionl block, and the cosine values are calculated using the
Trigonometric Function2 block.

The sum of sines averaged over 100 values in accordance with expression
(6.2) is compared with the II,  threshold set in the Constant3 block, and the sum
of cosines averaged over 100 values in accordance with expression (6.1) is com-
pared with the P, threshold set in the Constant4 block. The threshold devices are
implemented using the Relational Operator2 block and the Relational Operator3
block. Each block compares the value of the average sum with a threshold. If the
average sum is greater than the threshold, the threshold device outputs a logi-
cal unit. Otherwise, the threshold device outputs a logical zero. The output of
the Relational Operator2 block is the output of the sinus channel (Output 1). The
Relational Operator3 block is connected to a logic element "NOT" implemented
using the Logical Operatorl block, whose output corresponds to the output of the
cosine channel (Output 2). The threshold devices of the sine and cosine chan-
nels are combined using a special circuit. It consists of blocks Logical Operatorl
("NOT" logic element) and Logical Operator2 ("AND" logic element). Thus, after
combining the sine and cosine channels, the modem signal is generated at the out-
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put of the Logical Operator2 block (Output 3). A more detailed description of the
computer model in Figure 6.1 is available on the website [46].

6.2. Characteristics of a quasi-deterministic signal

Samplings of the quasi-deterministic signal are loaded into the model from the
workspace of the Matlab package, into which they are previously entered from the
output of the ADC connected to the source AKIP - 3409/4 of physical processes.
The From Workspacel block is used to load samplings of a quasi-deterministic
signal into the model. The settings window of the From Workspacel block con-
tains the name of the workspace variable of the Matlab package (the Data field),
as well as the values of the sampling period of the quadri-deterministic signal (the
Sample time field). The signal oscillation frequency is set to 50 kHz, and the sam-
pling period is set to At=2-10"° c.

Ar=2:10"s.

Verification of the probabilistic characteristics of the quasi-deterministic sig-

nal of the generator AKIP - 3409/4 was performed using a virtual instrument XN

31.1 beta [3]. Figure 6.2 shows an estimate of the probability density of a quasi-
deterministic signal.

W09

Figure 6.2. Signal probability density evaluation

The estimate of the probability density of the signal repeats the form of the
arcsine law, is symmetrical about zero, and has maxima at values equal to the
signal amplitude. Using the scale grid in Figure 6.2, we calculate the signal am-
plitude and get a value of 0.95. Measurements of the initial and central moment
functions of the signal using the XN 31.1 beta device showed the following result:
m, =0,0067 — an evaluation of the initial moment of the first order (the expectation
of the signal); M, = 0,4546447 — evaluation of the central moment of the second
order (signal dispersion). Using the formula, 20? =U; we calculate the signal
amplitude, as a result of which we obtain U, =0,95. The scale grid in Figure 6.2
does not allow you to see the expectation of the signal with a value of 0.0067.
However, its presence will adversely affect the modem simulation results.
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Other evaluations of the probabilistic characteristics of a quasi-deterministic
signal, measured by the XN 31.1 beta virtual instrument, do not differ from the
theoretical curves obtained for a signal with a mathematical model of the form
(2.1). They are not shown here, because were previously shown in Figures 2.2,
23,24.

As a result, we can assume that the physical process of the AKIP-3409/4
source has properties similar to those of a quasi-deterministic signal (2.1) and can
be used in modem modeling.

6.3. Noise characteristics

In the computer model in Figure 6.1, "white" noise is formed by the Band -
Limited White Noise 1 block. The value of the dispersion of "white" noise is set in
the workspace of the Matlab package, so the variable N is set in the Noise Power
field. The initial value of the pseudo-random number generator base (Seed field)
is taken by default. The sampling period of "white" noise corresponds to the sam-
pling period of a quasi-deterministic signal, i.e. value At =2-107s.

The probabilistic characteristics of the noise were investigated using the XN
31.1 beta virtual instrument. An evaluation of the noise probability density is pre-
sented in Figure 6.3.

The shape of the graph in Figure 6.3 repeats the form of a Gaussian curve.
Therefore, we can assume that the instantaneous values of the noise are distributed
according to the normal law, or, in other words, have a Gaussian distribution. The
initial and central moment functions have the following value: m, =0,00345—
evaluation of the initial moment of the first order (expectation of noise);

M, =0,7196696 — second-order central moment evaluation (noise dispersion).

weo 03¢

-35 -3 =2b -2 -1.5 El -05 0 05 1 15 2 25 3 35

Figure 6.3. Noise probability density evaluation

Figure 6.4 shows an estimate of the correlation function of noise, the value of
which at the value 7= 0 is equal to M , =0,7. The view of the graph in Figure 6.4

approaches the image of a delta function. When the value ¢ = At =2-10° of the
noise correlation function is k(t) = 0. This means that the discrete instantaneous

noise values taken over the sampling interval At =2-10™s, are uncorrelated.

146 ||




The foundations of the theory of construction of new-generation modems

An evaluation of the noise power spectral density is shown in Figure 6.5. It has
unevenness. If the density value G( f ): 13,7510 is conditionally taken as aver-
age, then the unevenness of the noise power spectral density will be 1.8% up and
3.6% down. The energy bandwidth of the noise is 100 kHz. Therefore, the carrier
frequency of the quasi-deterministic signal is chosen to be 50 kHz.

k()

Figure 6.4. Noise correlation function evaluation

1425x10"7;- === -m-wmmoees s e e
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Figure 6.5. Noise power spectral density evaluation
At the end of the show, let's give an evaluation of the characteristic function
of noise in Figure 6.6. As expected, the imaginary part of the ch.f. equals to zero.

It turns out, indeed, that the expectation of noise is zero. Therefore, the previously

indicated value m, =0,00345 can be considered the error of the device and nothing
more.

A(Vm)

B(Vm)

ocopooooooD =~

0 05 1 135 2 25 &l 35 4 45 5

Figure 6.6. Evaluations for the real and imaginary parts of the ch.f.

In conclusion, based on statistical radio engineering [4], let's write down the
main properties of "white" noise:
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1) instantaneous noise values are distributed according to the normal law;
2) any two adjacent instantaneous noise values are uncorrelated;
3) the noise power spectral density is constant within the energy bandwidth;
4) the expectation of noise is zero.
In our opinion, the noise formed in the computer model (Fig. 6.1) satisfies all these
properties, which means that it is “white”.

6.4. Characteristics of estimates of the characteristic function of a quasi-
deterministic signal

The modem demodulator in the absence of noise measures the values of the
ch.f. evaluations of quasi-deterministic signal according to algorithms (6.1, 6.2).
Ch.f. evaluations are random variables that have their own properties and distri-
bution laws, which are taken into account when analyzing the noise immunity
of the modem. Since it is theoretically possible to obtain the laws of distribution
of evaluations of ch.f. difficult enough, the hypothesis was put forward that the
scores are distributed according to the normal law. For the first time, this law was
obtained by the empirical method based on the results of demodulator simulation
using the computer model Figure 6.1 in [28] and is shown in Figure 6.7.

The cosine channel of the demodulator, which measures the estimate (6.1), is
considered first. In total, one thousand evaluation values were processed Alz),
each of which was measured in accordance with equation (6.1) ata value of N=100,
when the amplitude of the quasi-deterministic signal (2.1) with the arcsine distri-
bution law is U, = 1,5, and n(t): 0. The exact (principal) value of the estimate is
0.5118 and is calculated using the fundamental formula

A(Vm ) =m, {cos[Vmu (t)]} = Tcos(me)/V(y)dy =J,v,U,) (6.3)

at V,, =1, where W(y) - the probability density (2.2) of the signal u(z) with the
arcsine distribution law; J, () - Bessel function of the zeroth order of the first kind.
The probability density of estimate is shown in Figure 6.7 (6.1).

W(x)

Figure 6.7. Estimating the probability density of values A(l,t)
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The sinus channel of the demodulator, which measures estimate (6.2), is simi-
larly studied. The evaluation probability density (6.2) repeats the graph in Figure
6.7. Therefore, we can say that the probability density of evaluations of the real
and imaginary parts of the ch.f. almost repeats the Gaussian curve. This means
that the law of distribution of the estimate of the real part and the evaluation of the
imaginary part of the ch.f. is normal. Previously, this was discussed only hypo-
thetically, however, with the help of experimental studies of the demodulator, the
hypothesis has now been confirmed [28].

6.5. Studying of modem noise immunity using a computer model

In the computer model in Figure 6.1, white noise is generated by the Band-
Limited White Noisel block. Samples of the quasi-deterministic signal are loaded
into the model from the workspace of the Matlab package, into which they are
preliminarily entered with a volume of 107 discrete values from the output of the
ADC connected to the source AKIP - 3409/1 of physical processes. The oscillation
frequency of the quasi-deterministic signal is set to 50 kHz. The sampling period
of the signal and "white" noise with a bandwidth of 100 kHz is Az =2-10 s. The
probabilistic characteristics of both processes in statistical radio engineering are
well studied, and the estimates of these characteristics were checked before the
study using the XN 1.31 beta virtual instrument [3]. The check confirmed the
status of both processes.

To determine the error probability when receiving binary messages, the com-
puter model contains the Subsystem1 subsystem, the structure of which is shown
in Figure 6.8. In this subsystem, the number of erroneously received symbols (bits)
N, is calculated, and the total number of received symbols N, . In the computer
model in Figure 6.1, the number of transmitted and received binary characters is
the same.

Subsystem1 has three inputs: Strob, Tx and Rx. The Strob input receives a con-
trol signal from the Relational Operatorl block (Fig. 6.1). The Rx input receives
a binary sequence from any modem output (Output 1, Output 2, Output 3). The
original binary pseudo-random sequence is fed to the Tx input through the Delay1
delay block. The Addl block calculates the difference between the values of each
transmitted bit and the corresponding received bit. The Abs1 block calculates the
modulus of the difference values coming from the Add1 block. Thus, to determine
the number of erroneously received characters, the original binary pseudo-random
sequence is compared with the binary sequence at any output of the modem. The
Cumulative Sum1 block of the Subsystem1 subsystem counts and stores the num-
ber of erroneously accepted symbols (bits).
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Figure 6.8. Model subsystem for detecting errors
in the transmission of binary characters

The total number of transmitted binary symbols is counted by the single pulses
received at the Strob input from the output of the Logical Operatorl block (Fig.
6.1). The total number of received symbols is counted using the Cumulative Sum2
block of Subsysteml.

The study of the noise immunity of the modem was carried out at the value
N=100 in expressions (6.1), (6.2). Therefore, at the specified sampling time of the
additive mixture, the duration of one symbol (bit) is equal to N-Az = 100-2-10° =
=2-10*s. Then the information transfer rate will be 5000 bps.

Using the model in Figure 6.1, different versions of the modem (single-chan-
nel, dual-channel, with a connected channel combining scheme according to the
scheme in Figure 3.8) were successively studied. The results of the modem study
are recorded in tables 6.1 - 6.6, which include additional explanations and the
following designations: P =P =N_/N _ — error probability; P =0,5:(P+P ) — to-
tal probability of errors in modem modeling; P__— the calculated probability of
modem errors; 4* — the signal-to-noise power ratio; U, — amplitude and e, — the
expectation of the quasi-deterministic signal.

In tables 6.1 - 6.5, errors are shown separately when accepting logical "0" and
logical "1". Errors are different. For example, in a two-channel modem (Table 6.2)
in the sinus channel, the errors are equal to zero when accepting logical "0", while
in the cosine channel (Table 6.3), on the contrary, when accepting logical "1".
This point allows you to get a positive effect on modem errors. When combining
demodulator channels
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Table 6.1.
The results of the study of a single-channel modem

Modem type: single-channel

Suboptimal modulation algorithm: U =0; ¢;=0 at s(1)=0 and U =1,425; ¢ =0 at s(¢)=1

Transmission of logical "1"

h? 0,1 0,5 1,00 2,00 5,00 10,00 | 20,00 100
I, = P, 0 0 0 0 0,00001 0 0 0
0,6325
Cosine - 0 0 0 0 1 0 0 0
channel | Dbites
o 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Transmission of logical "0"
I, = P, 1,0 1,0 0,71499 | 0,00584 0 0 0 0
0,6325
Cosine | 100000 | 100000 | 71499 584 0 0 0 0
channel | bites
N, 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Table 6.2.
The results of the study of the two-channel modem
Modem type: two-channel
Suboptimal modulation algorithm: U;=0,594; e =0 at s(£)=0 and U;=0,594; ¢,=0,9 at s(¢)=1
Transmission of logical "0"

h? 0,01 0,10 1,00 2,00 4,00 10,00 | 20,00 100
I, =04 P, 0 0 0 0 0 0 0 0
Sinus
channel e 0 0 0 0 0 0 0 0

bites
> | 100000 | 100000 [ 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
0, =0,75 P, 1,0 1,0 0,00001 0 0 0 0 0
Cosine
channel | 100000 | 100000 1 0 0 0 0 0
bites
> | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
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Table 6.3.
The results of the study of the two-channel modem

Modem type: two-channel

Suboptimal modulation algorithm: U=0,594; ¢ =0 at s(1)=0 and U;=0,594; ¢,=0,9 at s(1)=1

Transmission of logical "1"

n 0,01 0,10 1,00 2,00 4,00 10,00 | 20,00 100
1, =04 P, 1,0 0,09492 0 0 0 0 0 0
Sinus
channel N, 100000 | 9492 0 0 0 0 0 0

bites
N, 100000 [ 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
I, = P, 0 0 0 0 0 0 0 0
0,75
Cosine N, 0 0 0 0 0 0 0 0
channel bites
N, 100000 [ 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Table 6.4.

Modem study results with connected channels scheme of union

Modem type: with connected channels scheme of union
Suboptimal modulation algorithm: U;=0,594; e, =0 at s(¥)=0 and U;=0,594; ¢,=0,9 at s(t)=1
Transmission of logical "1"
h? 0,01 0,10 1,00 2,00 4,00 10,00 | 20,00 100
I1, =0,15 P, 0,98355 | 0,01074 0 0 0 0 0 0
The mo-
demhasa| N.. | 98355 | 1074 0 0 0 0 0 0
common | Dites
output
No 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Transmission of logical "0"
I, = P, 0,01633 | 0,01549 0 0 0 0 0 0
0,67
The mo- | 1633 | 1549 0 0 0 0 0 0
dem has a | Dites
gﬁ‘;ﬁon N, | 100000 | 100000 | 100000 [ 100000 | 100000 | 100000 | 100000 | 100000
bites
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Table 6.5.
The results of the study of a single-channel modem
Modem type: single-channel
Optimal modulation algorithm: U =0; ¢ =0 at s(/)=0 and U;=1,1999; ¢ =0 at s(1)=1
Transmission of logical "1"
h? 0,01 0,10 1,00 1,50 4,00 10,00 20,00 100
I, = P, 1,0 0,00218 | 0,00208 | 0,00142 | 0,00015 0 0 0
0,2
Cosine | 100000 218 208 142 15 0 0 0
channel | bites
N, | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Transmission of logical "0"
I, = P, 1,0 1,0 0,28751 | 0,00147 0 0 0 0
0,2
> | 100000 | 100000 | 28751 147 0 0 0 0
Cosine | bites
channel
N, | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000
bites
Table 6.6.
Modem study results
h? 0,1 1,00 1,5 4,0 7,0 20,0 Note
c, 0,07 0,06 0,04 0,04 0,04 0,01 experiment
al 0,5 0,3 2,6:10° | 3,8-10" | 2,2:108 | 1-10% Table 6.1
" 0,5 0,36 2,9-10° no data 5-10¢ 0 Table 6.1
" 0,5 0,14 1,4-10° | 7,5-10° 0 0 Table 6.5
| 47107 0 0 0 0 0 Table 6.2,6.3
sine channel
P, 0,5 1-10° 0 0 0 0 Table 6.2,6.3
cosine channel
| 1.3:107 0 0 0 0 0 Table 6.4
P, 0,5 0,1 4,2:10% | 2,3-103 1-10* | 1-101° QPSK
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To compare the simulation results with the theoretical values of the error prob-
ability, graphs are plotted in Figure 6.9, which belong to signal modems with dif-
ferent types of modulation. Curve 1 is plotted for known 4-QAM modulation and
curve 3 for known QPSK modulation. Curves 2, 4 — 7 are plotted for the new SSK
modulation. Curve 2 shows the error probability of a single-channel modem with
a non-optimal algorithm, and curve 4 with an optimal algorithm. Curve 5 refers to
a two-channel modem (cosine channel); curve 7 - sinus channel. Curve 6 refers to
a two-channel modem with channel bonding connected.

The limited amount of computer RAM made it possible to write only 107 dis-
crete values of the signal into the workspace of the Matlab package and then trans-
fer 10° binary elements. The marginal probability of errors in this case was 1-10-5.
The calculated (total) probability of modem errors is much less than the level of
1-10°" and it is not possible to check it on the model. Indeed, in the cosine channel
of the modem, we managed to check the probability of errors at the ratio 22 =1. It
turned out to be equal to 110 (Table 6.2) and coincided with the calculated value
of the error probability (point D in Fig. 6.9) [24].

When modeling a modem with one channel, it was found that the mean root
square (RMS) of the estimate of the real part of the Lyapunov ch.f. exceeds the
previously known theoretical value 6, at ratios #*<10. In accordance with the work
[2] 6,=0,01. The new RMS values of the assessment are recorded in Table 6. 6.

Taking into account these data, the error probabilities of a single-channel mo-
dem were calculated for the set threshold I, =0,6325 and the modulation algo-
rithm recorded in Table 6.1. The order of the calculated and experimental error
probabilities coincided with the ratio 0,1< A2 <1,5.

At the end of the analysis, consider the optimal signal modulation algorithm
(Table 4.11) in a modem with one channel, the data on which are recorded in Table
6.5. They are better than the data of the same name in Table 6.1 and confirm the
results of the theory. For comparison, the last row of Table 6.6 shows the error
probabilities of the QPSK signaling modem. Comparison of the digits of this line
with the numbers of other lines of Table 6.6 generates a conclusion not in favor
of QPSK modulation. It was theoretically found that the new SSK modulation in
terms of energy performance, outgoes by 10 dB over QPSK modulation (compare
curves 3 and 4).
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10-10F
1020t
Ppac

107301

10-40 L

10"%0
107! 10° 10" 102

h?
Figure 6.9. Probability of errors of different modems

Thus, the simulation results of the modem do not contradict the theoretical
data regarding its performance, and they are better than those of the QPSK signal
modem.

The simulation showed the feasibility of the practical implementation of the
device and the operability of the new modem, and also provided a test of its char-
acteristics when operating in a channel with "white" noise. The noise immunity of
a modem of a single-channel, two-channel modem and a modem with a connected
circuit for combining the outputs of the sine and cosine channels of the device is
studied. At a signal-to-noise ratio of one or less, the noise immunity of the devices
turned out to be different, and at large signal-to-noise ratios, there were no errors
when receiving binary symbols. The minimum probability of modem errors is
determined at the level of 1-10”° with the volume of received binary symbols 10°.
This volume of symbols is limited by the technical characteristics of the computer
and could not be increased more. Nevertheless, in the error probability interval
1.0...1-107, the signal modem with SSK modulation has energy efficiency indica-
tors better than all known devices.
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