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Abstract. A model of a rigid body with internal stresses and is presented, which makes it possible 

to describe the dissipation of energy when changing from the elastic stage of deformation to the 

plastic one. The dependence of heat release on the heat-physical properties of the contacting 

structures is noted. 
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In various technological processes of metal processing, residual stresses (internal, intrinsic [1]) 

are formed, which usually remain in parts after their manufacture. One of the important 

characteristics of a deformed solid is the strain tensor [2].  

    (1) 

which is introduced as a result of comparisons of two states of the body: the data considered by 

 and the "initial" . There are theories in which the "initial" state is taken to be a state that is 

not really realized. This is the case when the metal solidifies and as a result of preliminary plastic 

deformation. Then, we can write down  

    (2) 

where  is expressed in terms of displacement and satisfies the deformation compatibility 

equations, and  - is not expressed through displacement and, generally speaking, does not 



satisfy the conditions of compatibility. The tensor components  describe the "initial" 

deformed state. It is easy to see that the internal metric  can be Euclidean only in the absence 

of internal stresses [3]. Therefore, , describes the incompatibility of deformation and 

generates internal stresses [3]. 

The influence of residual (internal) stresses on strength under static and dynamic loads is known 

[1], the presence of internal stresses is unknown to us. In this paper, it is proposed to consider the 

features of heat generation during deformation of metals, taking into account internal stresses. 

Approximate solution of some problems of heat conduction in contact with bodies with different 

thermophysical properties.  

The formation of an inhomogeneous (granular) structure of metals in various technological 

processes occurs in different ways. Their occurrence is usually based on irreversible volumetric 

changes in the material. Therefore, in practice, problems are often encountered associated with 

the calculation of thermal conductivity in an inhomogeneous medium. The solution of such 

problems associated with the stepped behavior of the thermal diffusivity depending on heating 

and cooling [1] is fraught with great difficulties. In this regard, it is advisable to consider 

approximate methods for solving the heat equation based on the satisfaction of integral relations.  

The process of thermal conductivity in a material is described by the Fourier equation:  

 

T-temperature, λ-coefficient of thermal conductivity, c- heat capacity of the material, - density.  

As a boundary condition, we will consider the heat flux on the wall, that is, boundary conditions 

of the second kind. For a semi-bounded body and a constant heat flux , going to heat the 

material, we write approximately the temperature profile in the form of a quadratic parabola.  

  (3) 

- material heating thickness, - the initial temperature of the material, in what follows we will 

assume .  

Let us integrate (2) within  taking into account the boundary condition: 

  (4) 



  (5) 

We integrate (5) over time and substitute approximation (3) into (5), we obtain:  

  (6) 

Where α=  – thermal diffusivity coefficient. From (6) we determine the heating thickness: 

  (7) 

Thus, the temperature profile is described by the expression:  

  (8) 

The exact solution to this problem [4] 

   (9) 

The error does not exceed 9%, which is acceptable for applied tasks.  

Now let us consider the process of thermal conductivity in the presence of contact between 

different materials. The process of thermal conductivity in material "1" does not depend on the 

thermophysical properties of material "2" and vice versa. 

Consider the contact of two plates of finite thickness with different thermophysical 

characteristics (Fig. 1). 

(Fig. 1 Temperature profile near contact surfaces) 



Let the temperature distribution function in material 1  be the same as that of a 

semi-bounded body. Let us assume that the boundary conditions on the wall change in such a 

way that a constant flow  acts on the contact line for a certain time interval Δt.  

The origin of  is explained by the existence of internal stresses  in the material and the 

coefficient of friction f of the contact planes (Coulomb's Law).  

Then the temperature of the contacting surfaces at the end of the time interval Δt will be  

 

  (10) 

It follows from (10) that for    (11) 

There will be a temperature gap on the contact line. 

In reality, of course, there is no temperature gap. Consequently, the assumption about the mutual 

independence of thermal conductivity upon contact of different materials is not true, since the 

following conditions must be met on the contact line: 

 

  (12) 

Then we represent the temperature in the vicinity of the contact line as a sum:  

 

   (13) 

 ,  temperatures without taking into account mutual influence, calculated for a semi-

infinite space;  

 and  – temperature components due to the mutual influence of materials on thermal 

conductivity (contact disturbances).  

Based on the conditions of the heat balance, it is necessary that the equality is observed: (Fig. 1)  

 (14) 



Hence it follows that the temperatures of contact disturbances should have opposite signs (13), 

and the heat fluxes of contact disturbances  are equal and mutually opposite (Fig. 1). As 

applied to the example (Fig. 1), we have 

 (15) 

Thus, taking into account the mutual influence of contacting materials is reduced to determining 

the magnitude of the heat flux of the contact disturbance . From (10), (12), (13) we get: 

  (16) 

From (16) we define  

  (17) 

  (18) 

You can name the k-coefficient of thermal activity of the material "2" in relation to the material 

"1". Relation (17) was obtained with a constant heat flux on the contact line. Since the equation 

of thermal conductivity is linear, the obtained relation is valid for any law of change on the 

contact surface.  

It follows from (17) that the magnitude of the thermal contact disturbance depends on the ratio of 

the thermophysical properties of materials (contacting grains with different internal stresses, etc.)   

At k=1,   there are no thermal disturbances, the material is thermophysically 

homogeneous.  

If k 1, , which means that material "2" has a cooling effect on material "1".  

At k=0- corresponds to absolute cooling. 

If k 1,   

k=  corresponds to the absolute heat insulator. The heat flux on the contact line will be zero. 

There is a complete reflection of the undisturbed heat flux from the line of contact with the 

absolute heat insulator, and this reflected flux goes to heating material "1". At  only 

partial reflection takes place, that is, a part of the thermal energy arriving at the contact surface 

goes to heating material "2" by thermal conduction.  
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