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Abstract. The problem of the effect of a moving load of an arbitrarily decreasing profile on 

a soil layer of finite thickness lying on a horizontal foundation is considered. 

The soil is modeled by an ideal compressible medium in which the relationship between 

pressure and volumetric deformation under loading and during unloading of the medium is linear 

and irreversible. 

The load is applied to the upper surface of the layer and moves at a superseismic speed. 

If the moving load acting on the boundary of the half-space has a monotonically decreasing 

profile, then in the perturbation region, the medium is unloaded and the oblique compression 

wave is obtained by the load-unloading wave. The pressure of the medium against the 

background of this wave, depending on the depth of the half-space, decreases slowly than on the 

free surface. In the case when the relationship between pressure and deformation during loading 

of the medium is assumed to be nonlinear and shock, which corresponds to the propagation of a 

shock wave in the medium, the pressure in the perturbed region is somewhat overestimated in 

comparison with the linear one. 
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Formulation of the problem. The problem of the effect of a moving load of an arbitrarily 

decreasing profile on a soil layer of finite thickness h , lying on a rigid horizontal foundation is 

considered. 

The soil is modeled by an ideal compressible medium, in which the relationship between 

pressure P  and volumetric deformation   under loading and during unloading of the medium is 

linear and irreversible. 

The load is applied to the upper surface of the layer and moves at a superseismic speed D . 

Since in this case the modulus of volumetric compression 1 1E  − of the modulus of 

unloading of the medium, in the physical plane ( ),   the characteristic AB  has a greater in 

comparison with the speed of the reflected wave AD , and as a result, regions 2, 3, 4 appear, 

which are separated by the characteristic of the positive direction BC  and the front reflected 

wave AD . The parameters of the environment in region 1 are known from the solution of the 

problem about AB . Note that this problem is stationary, and therefore all the parameters of the 

medium depend on two moving coordinates ,x Dt y = + = , and the motion of the 

medium in regions 2 and 3 of loading and unloading is described by the wave equation of the 

potential of the velocity   we have the wave equation [1-4] 
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in plane deformation. 

We represent solutions in research areas in the form 
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where 2 3,  −velocity potentials. 

To find the unknown functions 
1f  and

2f  i.e. to solve the problem in region 2, we have the 

conditions for the continuity of the velocities on the characteristic AB  and the condition that at 

different horizontal levels ( )const =  the pressure of the medium in front of the reflected 

wave is equal to the pressure at the front of the incident wave. This means that the state of the 

medium in region 1 is on the unloading branches of the ~P   diagram, and after the arrival of 

perturbations from the rigid boundary using the characteristic AB , in region 2 the pressure 

increases continuously to values determined by the points of intersection of the unloading and 

loading branches of the ~P   diagram. Subsequently, under the action of the reflected plastic 

wave AD  an abrupt increase in pressure occurs. This means that the reduced media in regions 2 
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and 3, according to the hydrostatic compressed, obeys Prandtal's scheme. A similar picture takes 

place in the rod theory with the difference that, in this case, the loading of the medium starts 

from the perturbed unloading region 1. 

Thus, to solve the problem in domain 2 in the case of an exponential load 

( ) 0 , 0, 0f P e   −=      we have the conditions 

on characteristic AB , i.e. when 
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in the section AE  of the reflected wave front, i.e. when 2tg h  + = [5-10] 

( )2 0 2 0 11 ,P Du P  = − =  .                                                 (4) 
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Then, substituting (1) into (2), (4) taking into account (3), we obtain the expressions 
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So, the solution to the problem when using (5) and (6) will finally be written in the form 
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Now let's start solving the problem in region 3. For this, we have the following conditions: 

at the front of the reflected wave AE, i.e. at 2tg h  + = [5,6-10], 

( )0 3 2 3 2n na P P  − = − ,           
3 2r r = ,                                   (10) 

on a rigid boundary at , a ch   =    

3 0
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Given that sin cos , cos sin , sin ,n u u a D        = − − = − =  (12) 

from (10) we obtain 

( )3 2 3 2tg u u  −  = − .                                                           (13) 

From the second equation in (1), taking into account (10) and (11) with respect to the 

function 3f  and 4f  we obtain a system of equations in the form 
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Solving equation (15), by the method of successive approximations, it is easy to obtain the 

formula               
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Thus, for region 3 we have a solution to the problem in the form 
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          The pressure in the region is determined by the formula 

( )0 , 2,3iP Du i= − = .                                                                    (19) 

Conclusion. An analytical solution to the problem of the propagation of a plastic wave in a 

half-space is constructed in the case when the relationship between pressure and volumetric 

deformation during loading and unloading is linear, but different. Based on the analysis of the 

calculation results, it is shown that if the moving load acting on the boundary of the half-space 

has a monotonically decreasing profile, then in the disturbance region, the medium is unloaded 

and an oblique compression wave is obtained by the load-unloading wave. The pressure of the 

medium against the background of this wave, depending on the depth of the half-space, 

decreases slowly than on the free surface. In the case when the dependence between P  and 

during loading of the medium is assumed to be nonlinear and shock, which corresponds to the 

propagation of a shock wave in the medium, the pressure in the perturbed region, in comparison 

with the linear case, is somewhat overestimated. 
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