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Abstract. The problem of the effect of a moving load of an arbitrarily decreasing profile on
a soil layer of finite thickness lying on a horizontal foundation is considered.

The soil is modeled by an ideal compressible medium in which the relationship between
pressure and volumetric deformation under loading and during unloading of the medium is linear
and irreversible.

The load is applied to the upper surface of the layer and moves at a superseismic speed.

If the moving load acting on the boundary of the half-space has a monotonically decreasing
profile, then in the perturbation region, the medium is unloaded and the oblique compression
wave is obtained by the load-unloading wave. The pressure of the medium against the
background of this wave, depending on the depth of the half-space, decreases slowly than on the
free surface. In the case when the relationship between pressure and deformation during loading
of the medium is assumed to be nonlinear and shock, which corresponds to the propagation of a
shock wave in the medium, the pressure in the perturbed region is somewhat overestimated in
comparison with the linear one.
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Formulation of the problem. The problem of the effect of a moving load of an arbitrarily
decreasing profile on a soil layer of finite thickness h, lying on a rigid horizontal foundation is
considered.

The soil is modeled by an ideal compressible medium, in which the relationship between
pressure P and volumetric deformation & under loading and during unloading of the medium is
linear and irreversible.

The load is applied to the upper surface of the layer and moves at a superseismic speed D .

Since in this case the modulus of volumetric compression ¢, > E, —of the modulus of
unloading of the medium, in the physical plane (§,77) the characteristic AB has a greater in
comparison with the speed of the reflected wave AD, and as a result, regions 2, 3, 4 appear,
which are separated by the characteristic of the positive direction BC and the front reflected
wave AD . The parameters of the environment in region 1 are known from the solution of the
problem about AB. Note that this problem is stationary, and therefore all the parameters of the
medium depend on two moving coordinates & =X+ Dt, 7=y, and the motion of the

medium in regions 2 and 3 of loading and unloading is described by the wave equation of the

potential of the velocity ¢ we have the wave equation [1-4]

0° 0° D?
uz—‘f——“z’zo, 1 =— —1|in plane deformation.
o0& on CP
We represent solutions in research areas in the form

0, (&)= 1(E—un)+ £,(E+un),
0 (&.1) = £5(E—un)+ 1,(&+un),

where @,, @, —velocity potentials.

1)

To find the unknown functions f, and f, i.e. to solve the problem in region 2, we have the

conditions for the continuity of the velocities on the characteristic AB and the condition that at
different horizontal levels (77 :ConSt) the pressure of the medium in front of the reflected
wave is equal to the pressure at the front of the incident wave. This means that the state of the
medium in region 1 is on the unloading branches of the P ~ & diagram, and after the arrival of
perturbations from the rigid boundary using the characteristic AB, in region 2 the pressure
increases continuously to values determined by the points of intersection of the unloading and
loading branches of the P ~ & diagram. Subsequently, under the action of the reflected plastic

wave AD an abrupt increase in pressure occurs. This means that the reduced media in regions 2
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and 3, according to the hydrostatic compressed, obeys Prandtal's scheme. A similar picture takes
place in the rod theory with the difference that, in this case, the loading of the medium starts
from the perturbed unloading region 1.

Thus, to solve the problem in domain 2 in the case of an exponential load

f(&)=Pe™, y>0, £20 wehave the conditions

1+ ut
on characteristic AB, i.e. when &+ un = M
tga
_%p R , )
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_9p, _ R , 3)
S, on pOD\'Plo(nyﬂ)

where
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in the section AE of the reflected wave front, i.e. when 77 + £tga = 2h [5-10]

P,=-p,Du, = F’O‘Pn(f,n). 4)
where
P (En)=1> A" e L Uye o +e v L em,

n=0

Then, substituting (1) into (2), (4) taking into account (3), we obtain the expressions
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So, the solution to the problem when using (5) and (6) will finally be written in the form
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Now let's start solving the problem in region 3. For this, we have the following conditions:
at the front of the reflected wave AE, i.e. at 77 + tga = 2h [5,6-10],

poa(‘gns - ,9n2) =R -P, Gs=9,, (10)
onarigid boundaryat 7 =h, &, <&<E,
%:O. (11)
on



Given that$, =-usina —$cosa, § =ucosa—Isina, a=Dsinea, (12)
from (10) we obtain
(% -9 )tga-=u, —u,. (13)
From the second equation in (1), taking into account (10) and (11) with respect to the

function f, and f, we obtain a system of equations in the form

f, (z)=f,/(z+2uh), (14)
f, (z)+ At (z+2uh)=G(z), (15)
where
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Solving equation (15), by the method of successive approximations, it is easy to obtain the
formula f4’(z)=G(z)+i(—;t)mG[;tmz+2ﬂh(ﬂ“m _1)] (16)
n=0 (/1 _l)
Thus, for region 3 we have a solution to the problem in the form
Uy (&17) =G (& — pm +2uh) + G (& + un) ¥ ir (E111), (17)
9 (Em)= | G(E+un)—G(&—un+2uh)+ Wy (Em) ], (18)



where
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The pressure in the region is determined by the formula

P=—p,Du, (i :2,3).
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Conclusion. An analytical solution to the problem of the propagation of a plastic wave in a

half-space is constructed in the case when the relationship between pressure and volumetric

deformation during loading and unloading is linear, but different. Based on the analysis of the

calculation results, it is shown that if the moving load acting on the boundary of the half-space

has a monotonically decreasing profile, then in the disturbance region, the medium is unloaded

and an oblique compression wave is obtained by the load-unloading wave. The pressure of the

medium against the background of this wave, depending on the depth of the half-space,

decreases slowly than on the free surface. In the case when the dependence between P and

during loading of the medium is assumed to be nonlinear and shock, which corresponds to the

propagation of a shock wave in the medium, the pressure in the perturbed region, in comparison

with the linear case, is somewhat overestimated.
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